# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences
Handout 15
Advanced Digital Communications
Homework 7

Problem 1. Suppose we have a linear time invariant channel, i.e.,

$$
Y(D)=Q(D) X(D)+Z(D)
$$

with $Q(D)=Q^{*}\left(D^{-*}\right)$. Also there is another process $U(D)=H(D) X(D)$; which we want to estimate.
(a) Given observations $\left\{y_{k}\right\}$, find the linear estimator

$$
\hat{U}(D)=W(D) Y(D)
$$

which minimizes the mean-squared error, i.e.,

$$
W(D)=\operatorname{argmin}_{W(D)} E\left\|u_{k}-\hat{u}_{k}\right\|^{2}
$$

You can assume that $\left\{X_{k}\right\}$ and $\left\{Z_{k}\right\}$ are independent and that

$$
S_{x}(D)=E_{x}
$$

and

$$
S_{z}(D)=N_{0} Q(D) .
$$

(b) Given the optimum linear MMSE estimator given in part (a) we define the error as

$$
e_{k}=u_{k}-\hat{u}_{k}
$$

Find the power spectral density of $\left\{e_{k}\right\}, S_{E}(D)$.
(c) If $H(D)=1$, can you comment on the operation performed in part (a)?

Problem 2. Consider estimating the real zero-mean scalar $x$ from:

$$
\mathbf{y}=\mathbf{h} x+\mathbf{w}
$$

where $\mathbf{w} \sim \mathcal{N}\left(0, \frac{N_{0}}{2} \mathbf{I}\right)$ is uncorrelated with $x$ and $\mathbf{h}$ is a fixed vector in $\mathcal{R}^{n}$.
(a) Consider the scaled linear estimate $\mathbf{c}^{t} \mathbf{y}$ (with the normalization $\|\mathbf{c}\|=1$ ):

$$
\begin{equation*}
\hat{x}=a \mathbf{c}^{t} \mathbf{y}=\left(a \mathbf{c}^{t} \mathbf{h}\right) x+a \mathbf{c}^{t} \mathbf{z} \tag{1}
\end{equation*}
$$

Show that the constant $a$ that minimizes the mean square error $(x-\hat{x})^{2}$ is equal to

$$
\begin{equation*}
\frac{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{t} \mathbf{h}\right|}{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{t} \mathbf{h}\right|^{2}+\frac{N_{0}}{2}} \tag{2}
\end{equation*}
$$

(b) Calculate the minimal mean square error (denoted by MMSE) of the linear estimate in (1) (by using the value of $a$ in (2)). Show that

$$
\begin{equation*}
\frac{\mathbb{E}\left[x^{2}\right]}{\mathrm{MMSE}}=1+\mathrm{SNR}=1+\frac{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{t} \mathbf{h}\right|^{2}}{\frac{N_{0}}{2}} \tag{3}
\end{equation*}
$$

For every fixed linear estimator $\mathbf{c}$, this shows the relationship between the corresponding SNR and MMSE (of an appropriately scaled estimate).
(c) In particular, relation (3) holds when we optimize over all c leading to the best linear estimator. Find the value of vector $\mathbf{c}$ (with the normalization $\|\mathbf{c}\|=1$ ) by minimizing the MMSE derived in part (b). Compute optimal MMSE.
Hint. Use Cauchy-Schwarz inequality.
Problem 3. (Linear Estimation) Consider the additive noise model given below,

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

Let $X, Y_{1}, Y_{2}, Z_{1}, Z_{2} \in \mathcal{C}$, i.e. they are complex random variables. Moreover, assume $X, Z_{1}$ and $Z_{2}$ are zero mean and $Z_{1}$ and $Z_{2}$ are independent of $X$.
(a) Assume the following: $\mathbb{E}\left[|X|^{2}\right]=\mathcal{E}_{x}, \mathbb{E}\left[\left|Z_{1}\right|^{2}\right]=\mathbb{E}\left[\left|Z_{2}\right|^{2}\right]=1$ and $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=0$. Given $Y_{1}, Y_{2}$ find the best minimum mean squared error linear estimator $\hat{X}$, where the optimization criterion is $\mathbb{E}\left[|X-\hat{X}|^{2}\right]$.
(b) If $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=\frac{1}{\sqrt{2}}$, what is the best MMSE linear estimator of $X$ ?
(c) If $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=1$, what is the best MMSE linear estimator of $X$ ?

Problem 4. Let $Y_{a}$ and $Y_{b}$ be two separate observations of a zero mean random variable $X$ such that

$$
\begin{aligned}
Y_{a} & =H_{a} X+V_{a} \\
\text { and } Y_{b} & =H_{b} X+V_{b},
\end{aligned}
$$

where $\left\{V_{a}, V_{b}, X\right\}$ are mutually independent and zero-mean random variables, and $V_{a}, V_{b}, X, Y_{a}, Y_{b} \in$ $\mathcal{C}$.
(a) Let $\widehat{X}_{a}$ and $\widehat{X}_{b}$ denote the linear MMSE estimators for $X$ given $Y_{a}$ and $Y_{b}$ respectively. That is

$$
\begin{aligned}
W_{a} & =\operatorname{argmin}_{W_{a}} \mathbb{E}\left[\left\|X-W_{a} Y_{a}\right\|^{2}\right] \\
W_{b} & =\operatorname{argmin}_{W_{b}} \mathbb{E}\left[\left\|X-W_{b} Y_{b}\right\|^{2}\right]
\end{aligned}
$$

and

$$
\widehat{X}_{a}=W_{a} Y_{a} \text { and } \widehat{X}_{b}=W_{b} Y_{b} .
$$

Find $\widehat{X}_{a}$ and $\widehat{X}_{b}$ given that

$$
\mathbb{E}\left[X X^{*}\right]=\sigma_{x}^{2}, \mathbb{E}\left[V_{a} V_{a}^{*}\right]=\sigma_{a}^{2}, \mathbb{E}\left[V_{b} V_{b}^{*}\right]=\sigma_{b}^{2}
$$

Also, find the error variances,

$$
\begin{aligned}
P_{a} & =\mathbb{E}\left[\left(X-\widehat{X}_{a}\right)\left(X-\widehat{X}_{a}\right)^{*}\right] \\
P_{b} & =\mathbb{E}\left[\left(X-\widehat{X}_{b}\right)\left(X-\widehat{X}_{b}\right)^{*}\right]
\end{aligned}
$$

(b) We have the following identities,

$$
\begin{aligned}
\mathbf{R}_{x} \mathbf{H}^{*}\left[\mathbf{H} \mathbf{R}_{x} \mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} & =\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{*} \mathbf{R}_{v}^{-1} \\
\mathbf{R}_{x}-\mathbf{R}_{x} \mathbf{H}^{*}\left[\mathbf{H R}_{x} \mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} \mathbf{H} \mathbf{R}_{x} & =\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1}
\end{aligned}
$$

where

$$
\mathbf{H}=\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right], \mathbf{R}_{\mathbf{v}}=\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right], \mathbf{R}_{\mathbf{x}}=\sigma_{x}^{2}
$$

Prove that

$$
\begin{equation*}
P_{a}^{-1} \widehat{X}_{a}=\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}, \quad P_{b}^{-1} \widehat{X}_{b}=\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{a}^{-1}=\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}, \quad P_{b}^{-1}=\frac{1}{\sigma_{x}^{2}}+\frac{H_{b} H_{b}^{*}}{\sigma_{b}^{2}} . \tag{5}
\end{equation*}
$$

(c) Now we find the estimator $\widehat{X}$, given both observations $Y_{a}$ and $Y_{b}$, i.e.,

$$
\binom{Y_{a}}{Y_{b}}=\binom{H_{a}}{H_{b}} X+\binom{V_{a}}{V_{b}} .
$$

We want to find the linear MMSE estimate

$$
\widehat{X}=\left(\begin{array}{ll}
U_{a} & U_{b}
\end{array}\right)\binom{Y_{a}}{Y_{b}}
$$

where

$$
\left(\begin{array}{ll}
U_{a} & U_{b}
\end{array}\right)=\operatorname{argmin}_{\left(U_{a}, U_{b}\right)} \mathbb{E}\left[\|X-\widehat{X}\|^{2}\right]
$$

and define the corresponding error variance

$$
P=\mathbb{E}\left[(X-\widehat{X})(X-\widehat{X})^{*}\right] .
$$

Use (4), (5) to show that

$$
\begin{aligned}
P^{-1} \widehat{X} & =P_{a}^{-1} \widehat{X}_{a}+P_{b}^{-1} \widehat{X}_{b} \\
\text { and } P^{-1} & =P_{a}^{-1}+P_{b}^{-1}-\frac{1}{\sigma_{x}^{2}} .
\end{aligned}
$$

