ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15	Advanced Digital Communications
Homework 7	November 22, 2010

PROBLEM 1. Suppose we have a linear time invariant channel, i.e.,

$$Y(D) = Q(D)X(D) + Z(D);$$

with $Q(D) = Q^*(D^{-*})$. Also there is another process U(D) = H(D)X(D); which we want to estimate.

(a) Given observations $\{y_k\}$, find the linear estimator

$$\hat{U}(D) = W(D)Y(D)$$

which minimizes the mean-squared error, i.e.,

$$W(D) = \operatorname{argmin}_{W(D)} E||u_k - \hat{u}_k||^2$$

You can assume that $\{X_k\}$ and $\{Z_k\}$ are independent and that

$$S_x(D) = E_x$$

and

$$S_z(D) = N_0 Q(D).$$

(b) Given the optimum linear MMSE estimator given in part (a) we define the error as

$$e_k = u_k - \hat{u}_k$$

Find the power spectral density of $\{e_k\}$, $S_E(D)$.

(c) If H(D) = 1, can you comment on the operation performed in part (a)?

PROBLEM 2. Consider estimating the real zero-mean scalar x from:

$$\mathbf{y} = \mathbf{h}x + \mathbf{w}$$

where $\mathbf{w} \sim \mathcal{N}(0, \frac{N_0}{2}\mathbf{I})$ is uncorrelated with x and **h** is a fixed vector in \mathcal{R}^n .

(a) Consider the scaled linear estimate $\mathbf{c}^t \mathbf{y}$ (with the normalization $||\mathbf{c}|| = 1$):

$$\hat{x} = a\mathbf{c}^{t}\mathbf{y} = (a\mathbf{c}^{t}\mathbf{h})x + a\mathbf{c}^{t}\mathbf{z}$$
(1)

Show that the constant a that minimizes the mean square error $(x - \hat{x})^2$ is equal to

$$\frac{\mathbb{E}[x^2]|\mathbf{c}^t\mathbf{h}|}{\mathbb{E}[x^2]|\mathbf{c}^t\mathbf{h}|^2 + \frac{N_0}{2}}\tag{2}$$

(b) Calculate the minimal mean square error (denoted by MMSE) of the linear estimate in (1) (by using the value of a in (2)). Show that

$$\frac{\mathbb{E}[x^2]}{\text{MMSE}} = 1 + \text{SNR} = 1 + \frac{\mathbb{E}[x^2]|\mathbf{c}^t \mathbf{h}|^2}{\frac{N_0}{2}}$$
(3)

For every fixed linear estimator \mathbf{c} , this shows the relationship between the corresponding SNR and MMSE (of an appropriately scaled estimate).

(c) In particular, relation (3) holds when we optimize over all \mathbf{c} leading to the best linear estimator. Find the value of vector \mathbf{c} (with the normalization $||\mathbf{c}|| = 1$) by minimizing the MMSE derived in part (b). Compute optimal MMSE.

Hint. Use Cauchy-Schwarz inequality.

PROBLEM 3. (Linear Estimation) Consider the additive noise model given below,

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2$$

Let $X, Y_1, Y_2, Z_1, Z_2 \in \mathcal{C}$, i.e. they are complex random variables. Moreover, assume X, Z_1 and Z_2 are zero mean and Z_1 and Z_2 are independent of X.

- (a) Assume the following: $\mathbb{E}[|X|^2] = \mathcal{E}_x, \mathbb{E}[|Z_1|^2] = \mathbb{E}[|Z_2|^2] = 1$ and $\mathbb{E}[Z_1Z_2^*] = 0$. Given Y_1, Y_2 find the best minimum mean squared error linear estimator \hat{X} , where the optimization criterion is $\mathbb{E}[|X \hat{X}|^2]$.
- (b) If $\mathbb{E}[Z_1Z_2^*] = \frac{1}{\sqrt{2}}$, what is the best MMSE linear estimator of X?
- (c) If $\mathbb{E}[Z_1Z_2^*] = 1$, what is the best MMSE linear estimator of X?

PROBLEM 4. Let Y_a and Y_b be two separate observations of a zero mean random variable X such that

$$Y_a = H_a X + V_a$$

and
$$Y_b = H_b X + V_b,$$

where $\{V_a, V_b, X\}$ are mutually independent and zero-mean random variables, and $V_a, V_b, X, Y_a, Y_b \in C$.

(a) Let \widehat{X}_a and \widehat{X}_b denote the linear MMSE estimators for X given Y_a and Y_b respectively. That is

$$W_a = \operatorname{argmin}_{W_a} \mathbb{E}[||X - W_a Y_a||^2],$$

$$W_b = \operatorname{argmin}_{W_b} \mathbb{E}[||X - W_b Y_b||^2]$$

and

$$\widehat{X}_a = W_a Y_a$$
 and $\widehat{X}_b = W_b Y_b$.

Find \widehat{X}_a and \widehat{X}_b given that

$$\mathbb{E}[XX^*] = \sigma_x^2, \ \mathbb{E}[V_a V_a^*] = \sigma_a^2, \ \mathbb{E}[V_b V_b^*] = \sigma_b^2.$$

Also, find the error variances,

$$P_a = \mathbb{E}[(X - \hat{X}_a)(X - \hat{X}_a)^*]$$

$$P_b = \mathbb{E}[(X - \hat{X}_b)(X - \hat{X}_b)^*]$$

(b) We have the following identities,

$$\mathbf{R}_{x}\mathbf{H}^{*}\left[\mathbf{H}\mathbf{R}_{x}\mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} = \left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*}\mathbf{R}_{v}^{-1}\mathbf{H}\right]^{-1}\mathbf{H}^{*}\mathbf{R}_{v}^{-1}$$
$$\mathbf{R}_{x}-\mathbf{R}_{x}\mathbf{H}^{*}\left[\mathbf{H}\mathbf{R}_{x}\mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1}\mathbf{H}\mathbf{R}_{x} = \left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*}\mathbf{R}_{v}^{-1}\mathbf{H}\right]^{-1}$$

where

$$\mathbf{H} = \begin{bmatrix} H_a \\ H_b \end{bmatrix}, \mathbf{R}_{\mathbf{v}} = \begin{bmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{bmatrix}, \mathbf{R}_{\mathbf{x}} = \sigma_x^2.$$

Prove that

$$P_a^{-1}\widehat{X}_a = \frac{H_a^*}{\sigma_a^2} Y_a, \quad P_b^{-1}\widehat{X}_b = \frac{H_b^*}{\sigma_b^2} Y_b.$$
(4)

and

$$P_a^{-1} = \frac{1}{\sigma_x^2} + \frac{H_a H_a^*}{\sigma_a^2}, \quad P_b^{-1} = \frac{1}{\sigma_x^2} + \frac{H_b H_b^*}{\sigma_b^2}.$$
 (5)

(c) Now we find the estimator \widehat{X} , given both observations Y_a and Y_b , i.e.,

$$\left(\begin{array}{c} Y_a \\ Y_b \end{array}\right) = \left(\begin{array}{c} H_a \\ H_b \end{array}\right) X + \left(\begin{array}{c} V_a \\ V_b \end{array}\right).$$

We want to find the linear MMSE estimate

$$\widehat{X} = \left(\begin{array}{cc} U_a & U_b \end{array} \right) \left(\begin{array}{c} Y_a \\ Y_b \end{array} \right),$$

where

$$(U_a \ U_b) = \operatorname{argmin}_{(U_a, U_b)} \mathbb{E}[||X - \widehat{X}||^2]$$

and define the corresponding error variance

$$P = \mathbb{E}[(X - \widehat{X})(X - \widehat{X})^*].$$

Use (4), (5) to show that

$$P^{-1}\widehat{X} = P_a^{-1}\widehat{X}_a + P_b^{-1}\widehat{X}_b$$

and $P^{-1} = P_a^{-1} + P_b^{-1} - \frac{1}{\sigma_x^2}.$