ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 13
Homework 6

Problem 1.

In this exercise the receiver is not performing matched filtering. It is easy to see that the shifts of $g_{\mathrm{TX}}(t)$ are not suitable for such kind of approach.
a) First compute the fourier transform of $g_{\mathrm{TX}}(t)$:

$$
\begin{aligned}
G_{\mathrm{TX}}(f) & =T \cdot \operatorname{rect}(T f) *(2 T \operatorname{rect}(2 T f)) \\
& =2 T^{2} \cdot\left(\operatorname{rect}(2 T f) * \delta\left(f-\frac{1}{4 T}\right)+\operatorname{rect}(2 T f) * \delta\left(f+\frac{1}{4 T}\right)\right) * \operatorname{rect}(2 T f) \\
& =2 T^{2} \cdot\left(\frac{1}{2 T} \Lambda(2 T \cdot f) * \delta\left(f-\frac{1}{4 T}\right)+\frac{1}{2 T} \Lambda(2 T f) * \delta\left(f+\frac{1}{4 T}\right)\right) \\
& =T \cdot \Lambda\left(2 T \cdot f-\frac{1}{4 T}\right)+T \cdot \Lambda\left(2 T f+\frac{1}{4 T}\right)
\end{aligned}
$$

Figure 1: The Fourier transform of $g_{\mathrm{TX}}(f)$

Then we check if Nyquist condition (the first we studied in the lecture) applies for symbol rate $1 / T$:

$$
h(f)=\sum_{k=-\infty}^{\infty} G_{\mathrm{TX}}\left(f+\frac{k}{T}\right)=T
$$

Figure 2: Superposition of shifted versions of $G_{\mathrm{TX}}(f)$

Alternatively we can observe that the function is one at zero and is zero at every integer multiple of the period.
b) Since the bitrate is $6 \mathrm{Mbit} / \mathrm{s}$ and each symbol carried $\log _{2}(8)=3$ bits we have a symbol rate of $1 / T=2 \cdot 10^{6}$ symbols/s (Baud), therefore the minimum bandwidth is 3 MHz .
c) If we sample the input signal at $t=0.5+k T$ (without performing matched filtering) we easily see that $y_{n}=x_{n}-\frac{1}{2} x_{n-1}-\frac{1}{4} x_{n-2}$. This means that the channel has memory $l=2$ and therefore the number of states is $8^{2}=64$.

Problem 2.

The trellis for MLSE estimation is the following:

Figure 3: Trellis for MLSE estimate
where we used $\left|y_{n}-\left(s_{n+1}+s_{n}\right)\right|^{2}$ as edge metric. The decoded sequence is therefore $\{-1,-1,+1,+1,+1\}$.

When computing BCJR we have the following values for $\gamma_{n}(i, j)$ (edges) and $\alpha_{n}(i)$ (vertices):

Figure 4: Computation of $a_{n}(i)$
and the following values for $\beta_{n}(i)$ (vertices):

Figure 5: Computation of $\beta_{n}(i)$
where we use $\gamma_{n}(i, j)=\exp \left(-\left|y_{n}-(i+j)\right|^{2}\right)$.
By computing score $(x, n)=\beta_{n+1}(x) \cdot \gamma_{n}(-x, x) \cdot \alpha_{n}(-x)+\beta_{n+1}(x) \cdot \gamma_{n}(x, x) \cdot \alpha_{n}(x)$ we obtain the following result:

n	1	2	3	4	5
+1	0.023330	0.003895	0.090474	0.093155	
-1	0.069898	0.089333	0.002753	0.000073	
$\hat{x}(n)$	-1	-1	+1	+1	+1

Table 1: Score for each possible bit
We observe that the two algorithms give a different estimate for bits 2 and 3 .

Problem 3.

i. 1 .

$$
E[\hat{x} \mid x]=E\left[\boldsymbol{a}^{T} \boldsymbol{h} x+\boldsymbol{a}^{T} z \mid x\right]=E\left[\boldsymbol{a}^{T} \boldsymbol{h} x \mid x\right] \Leftrightarrow \boldsymbol{a}^{T} \boldsymbol{h} x=x \Leftrightarrow \boldsymbol{a}^{T} \boldsymbol{h}=1
$$

2. First observe that:

$$
\hat{x}=\boldsymbol{a}^{T} \boldsymbol{y}=x-\boldsymbol{a}^{T} \boldsymbol{z}
$$

then:

$$
x-\hat{x}=-\boldsymbol{a}^{T} \boldsymbol{z}
$$

Therefore:

$$
E\left[|x-\hat{x}|^{2}\right]=E\left[\left(\boldsymbol{a}^{T} \boldsymbol{z}\right)^{2}\right]=\boldsymbol{a}^{T} E\left[\boldsymbol{z} \boldsymbol{z}^{T}\right] \boldsymbol{a}=\boldsymbol{a}^{T} I \boldsymbol{a}=\boldsymbol{a}^{T} \boldsymbol{a}=\sigma_{\text {unbiased }}^{2}
$$

So we need to minimize $\boldsymbol{a}^{T} \boldsymbol{a}$ such that $\boldsymbol{a}^{T} \boldsymbol{h}=1$. The solution to the minimization problem is $\boldsymbol{a}=\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T}$. In this case $\sigma_{\text {unbiased }}^{2}=\boldsymbol{a}^{T} \boldsymbol{a}=\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1}$.
We can indeed verify the solution by observing that:

$$
\left(\boldsymbol{a}^{T} \boldsymbol{a}\right)\left(\boldsymbol{h}^{T} \boldsymbol{h}\right) \geqslant\left|\boldsymbol{a}^{T} \boldsymbol{h}\right|^{2}=1 \Rightarrow \boldsymbol{a}^{T} \boldsymbol{a} \geqslant\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1}
$$

with equality when \boldsymbol{a} is chosen as proposed.
ii. First observe that:

$$
\hat{x}=\boldsymbol{a}^{T} \boldsymbol{y}=c x-\boldsymbol{a}^{T} \boldsymbol{z}
$$

then:

$$
x-\hat{x}=(1-c) x-\boldsymbol{a}^{T} \boldsymbol{z}
$$

Therefore,

$$
E\left[|x-\hat{x}|^{2}\right]=E\left[\left[(1-c) x-\left(\boldsymbol{a}^{T} \boldsymbol{z}\right)\right]^{2}\right]=(1-c)^{2} \mathcal{E}+\boldsymbol{a}^{T} \boldsymbol{a}=\sigma_{\min }^{2}(c)
$$

Since $(1-c)^{2} \mathcal{E}$ is fixed we just need to minimize $\boldsymbol{a}^{T} \boldsymbol{a}$ such that $\boldsymbol{a}^{T} \boldsymbol{h}=c$. The solution to the minimization problem is $\boldsymbol{a}=c\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T}$. In this case:

$$
\sigma_{\min }^{2}(c)=\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} c^{2}+(c-1)^{2} \mathcal{E}
$$

We can find the c that minimizes $\sigma_{\min }^{2}(c)$ by finding the zero of the derivative. We obtain:

$$
c=\frac{\mathcal{E}}{\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1}+\mathcal{E}}
$$

The minimal $\sigma_{\text {min }}^{2}(c)$ is therefore:

$$
\sigma_{\min }^{2}=\frac{\mathcal{E}}{\boldsymbol{h}^{T} \boldsymbol{h} \mathcal{E}+1}
$$

iii. In the first case we have:

$$
\frac{\mathcal{E}}{\sigma_{\text {unbiased }}^{2}}=\mathcal{E} \boldsymbol{h}^{T} \boldsymbol{h}
$$

In the second case:

$$
\frac{\mathcal{E}}{\sigma_{\min }^{2}}=\mathcal{E} \boldsymbol{h}^{T} \boldsymbol{h}+1
$$

iv. We notice that in both cases $\boldsymbol{a}^{T}=c \cdot\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T}$ with $c=1$ for the first part. The probability of making an error is:

$$
\begin{aligned}
\operatorname{Pr}\{\hat{x}=k \mid x=-k\} & =\operatorname{Pr}\{\hat{x}=1 \mid x=-1\}=\operatorname{Pr}\left\{-\boldsymbol{a}^{T} \boldsymbol{h}+\boldsymbol{a}^{T} \boldsymbol{z}>0\right\} \\
& =\operatorname{Pr}\left\{\boldsymbol{a}^{T} \boldsymbol{z}>\boldsymbol{a}^{T} \boldsymbol{h}\right\}=\operatorname{Pr}\left\{c \cdot\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T} \boldsymbol{z}>c \cdot\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T} \boldsymbol{h}\right\}= \\
& =\operatorname{Pr}\left\{\left(\boldsymbol{h}^{T} \boldsymbol{h}\right)^{-1} \boldsymbol{h}^{T} \boldsymbol{z}>1\right\}
\end{aligned}
$$

which is independent of c. This means that both estimators have the same error probability.

