# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences

Problem 1. Suppose $Z$ is a complex random variable with density $p_{Z}$.
(a) Let $R=|Z|$. Show that the density $p_{R}$ of $R$ is given by

$$
p_{R}(r)=r \int_{0}^{2 \pi} p_{Z}(r \exp (j \theta)) d \theta
$$

Hint: Write $\operatorname{Pr}(R \leq r)$ as an integral over $x$ and $y$, then use polar coordinates.
(b) Let $U=R^{2}$. Show that its density is given by

$$
p_{U}(u)=\frac{1}{2} \int_{0}^{2 \pi} p_{Z}(\sqrt{u} \exp (i \theta)) d \theta
$$

(c) Suppose now that $Z$ is circularly symmetric. Show that

$$
p_{U}(u)=\pi p_{Z}(\sqrt{u}) .
$$

(d) Again suppose $Z$ is circularly symmetric. Let $X$ and $Y$ be its real imaginary parts. We know that $X$ and $Y$ are identically distributed, call the common density $p$. Suppose that $X$ and $Y$ are independent. Show that

$$
p_{U}\left(x^{2}+y^{2}\right)=\pi p(x) p(y) .
$$

(e) Under the assumptions of (d), conclude that

$$
p_{U}\left(x^{2}+y^{2}\right)=\frac{1}{\pi p(0)^{2}} p_{U}\left(x^{2}\right) p_{U}\left(y^{2}\right)
$$

Assuming that $p_{U}$ is continuous show that it must be given by

$$
p_{U}(u)=\alpha \exp (-\alpha u), \quad u \geq 0,
$$

where $\alpha=\pi p(0)^{2}$. Hint: The only continuous functions $f$ that satisfies $f(a+b)=$ $f(a) f(b)$ are those for which $f(a)=\exp (\beta a)$ for some $\beta$.
(f) Show that if $Z$ is circularly symmetric complex random variable with independent real and imaginary parts, then $Z$ must be Gaussian.

Problem 2. Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ be a vector of complex iid Gaussian rvs with iid real and imaginary parts, each $N\left(0, \frac{N_{0}}{2}\right)$. The input $\mathbf{U}$ is binary antipodal, taking on values $\mathbf{a}$ or $-\mathbf{a}$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$ is an arbitrary complex $n$-vector. The observation $\mathbf{V}$ is $\mathbf{U}+\mathbf{Z}$, and the probability density of $\mathbf{Z}$ is given by

$$
f_{Z}(z)=\frac{1}{\left(\pi N_{0}\right)^{n}} e^{\left(\sum_{j=1}^{n} \frac{-\left|z_{j}\right|^{2}}{N_{0}}\right)}=\frac{1}{\left(\pi N_{0}\right)^{n}} e^{\frac{-\|Z\| \|^{2}}{N_{0}}}
$$

(a) Give expressions for $f_{V \mid U}(\mathbf{v} \mid a)$ and $f_{V \mid U}(\mathbf{v} \mid-a)$.
(b) Show that the $\log$ likelihood ratio for the observation $\mathbf{v}$ is given by

$$
\operatorname{LLR}(\mathbf{v})=\frac{-\|\mathbf{v}-\mathbf{a}\|^{2}+\|\mathbf{v}+\mathbf{a}\|^{2}}{N_{0}}
$$

(c) Explain why this implies that ML detection is minimum distance detection (defining the distance between two complex vectors as the norm of their difference).
(d) Show that $\operatorname{LLR}(\mathbf{v})$ can also be written as $\frac{4 \operatorname{Re}(\langle\mathbf{v}, \mathbf{a} \mathbf{)})}{N_{0}}$.
(e) The appearance of the real part, $\operatorname{Re}(\langle\mathbf{v}, \mathbf{a}\rangle)$, in part (d) is surprising. Point out why $\log$ likelihood ratios must be real. Also explain why replacing $\operatorname{Re}(\langle\mathbf{v}, \mathbf{a}\rangle)$ by $|\langle\mathbf{v}, \mathbf{a}\rangle|$ in the above expression would give a non-sensical result in the ML test.
(f) Does the set of points $\{\mathbf{v}: \operatorname{LLR}(\mathbf{v})=0\}$ form a complex vector space?

Problem 3. (Amplitude-limited functions) Sometimes it is important to generate baseband waveforms with bounded amplitude. This problem explores pulse shapes that can accomplish this.
(a) Find the Fourier transform of $g(t)=\operatorname{sinc}^{2}(2 W t)$. Show that $g(t)$ is bandlimited to $f \leq W$ and sketch both $g(t)$ and $\hat{g}(f)$. [Hint. Recall that multiplication in the time domain corresponds to convolution in the frequency domain.]
(b) Let $u(t)$ be a continuous real $\mathcal{L}_{2}$ function baseband-limited to $f \leq W$ (i.e. a function such that $u(t)=\sum_{k} u(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right)$, where $T=\frac{1}{2 W}$. Let $v(t)=u(t) * g(t)$. Express $v(t)$ in terms of the samples $\{u(k T) ; k \in \mathcal{Z}\}$ of $u(t)$ and the shifts $\{g(t-k T) ; k \in \mathcal{Z}\}$ of $g(t)$. [Hint. Use your sketches in part (a) to evaluate $g(t) * \operatorname{sinc}\left(\frac{t}{T}\right)$.]
(c) Show that if the $T$-spaced samples of $u(t)$ are nonnegative, then $v(t) \geq 0$ for all $t$.
(d) Explain why $\sum_{k} \operatorname{sinc}\left(\frac{t}{T}-k\right)=1$ for all $t$.
(e) Using (d), show that $\sum_{k} g\left(\frac{t}{T}-k\right)=c$ for all $t$ and find the constant $c$. [Hint. Use the hint in (b) again.]
(f) Now assume that $u(t)$, as defined in part (b), also satisfies $u(k T) \leq 1$ for all $k \in \mathcal{Z}$. Show that $v(t) \leq 2$ for all $t$.
(g) Allow $u(t)$ to be complex now, with $|u(k T)| \leq 1$. Show that $v(t) \leq 2$ for all $t$.

Problem 4. (Orthogonal sets) The function $\operatorname{rect}\left(\frac{t}{T}\right)$ has the very special property that it, plus its time and frequency shifts, by $k T$ and $\frac{j}{T}$, respectively, form an orthogonal set. The function $\operatorname{sinc}\left(\frac{t}{T}\right)$ has the same property. We explore other functions that are generalizations of $\operatorname{rect}\left(\frac{t}{T}\right)$ and which, as you will show in parts (a)-(d), have this same interesting property. For simplicity, choose $T=1$. These functions take only the values 0 and 1 and are allowed to be nonzero only over $[-1 ; 1]$ rather than $\left[-\frac{1}{2}, \frac{1}{2}\right]$ as with $\operatorname{rect}\left(\frac{t}{T}\right)$. Explicitly, the functions considered here satisfy the following constraints:

$$
\begin{array}{lcc}
p(t)= & p^{2}(t) & \text { for all } t(0 / 1 \text { property }) \\
p(t)= & 0 & \text { for }|t|>1 ; \\
p(t)= & p(-t) & \text { for all } t \text { (symmetry) } \\
p(t)= & 1-p(t-1) & \text { for } 0 \leq t \leq 1 / 2
\end{array}
$$

Note: because of property (3), condition (4) also holds for $1 / 2<t \leq 1$. Note also that $p(t)$ at the single points $t= \pm \frac{1}{2}$ does not affects any orthogonality properties, so you are free to ignore these points in your arguments.
(a) Show that $p(t)$ is orthogonal to $p(t-1)$.

Hint. Evaluate $p(t) p(t-1)$ for each $t \in[0 ; 1]$ other than $t=\frac{1}{2}$.
(b) Show that $p(t)$ is orthogonal to $p(t-k)$ for all integer $k \neq 0$.
(c) Show that $p(t)$ is orthogonal to $p(t-k) e^{j 2 \pi m t}$ for integer $k \neq 0$ and $m \neq 0$.
(d) Show that $p(t)$ is orthogonal to $p(t) e^{j 2 \pi m t}$ for integer $m \neq 0$.

Hint. Evaluate $p(t) e^{j 2 \pi m t}+p(t-1) e^{j 2 \pi m(t-1)}$.
(e) Let $h(t)=\hat{p}(t)$ where $\hat{p}(f)$ is the Fourier transform of $p(t)$. If $p(t)$ satisfies properties (1)-(4), does it follow that $h(t)$ has the property that it is orthogonal to $h(t-k) e^{j 2 \pi m t}$ whenever either the integer $k$ or $m$ is nonzero?

Note: almost no calculation is required in this problem.

