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Problem 1.

R(H) =

∫
Y

∑
j

∑
i

πjCi;j Pr(Y ∈ Γi|Hj) (1)

=
∑

i

∫
Y ∈Γi

∑
j

πjCi;j Pr(Y ∈ Γi|Hj) (2)

Now suppose, the decoder wants to associate Y = y to one of the decision regions Γi so
that the risk R(H) is minimized. Therefore, the decoder chooses y to be in Γi, in which y
minimizes

∑
j πjCi;j Pr(y|Hj)

Y ∈ Γi : i = argmin
i

∑
j

πjCi;j · Pr(y|Hj)

For the binary case the problem of finding the minimum is turned into a simple inequal-
ity checking. Therefore, we have

1∑
j=0

πjC0;j Pr(y|Hj)
H1

≷
H0

1∑
j=0

πjC1;j Pr(y|Hj) (3)

π0C0;0 Pr(y|H0) + π1C0;1 Pr(y|H1)
H1

≷
H0

π0C1;0 Pr(y|H0) + π1C1;1 Pr(y|H1) (4)

(π1C0;1 − π1C1;1) Pr(y|H1)
H1

≷
H0

(π0C1;0 − π0C0;0) Pr(y|H0) (5)

Pr(y|H1)

Pr(y|H0)

H1

≷
H0

π0(C1;0 − C0;0)

π1(C0;1 − C1;1)
(6)

The decision making only depends on the ratio Pr(y|H1)/Pr(y|H0) and not the individual
values of Pr(y|H1) and Pr(y|H0), and likelihood ratio is a sufficient statistics for optimal
decision rule.

Now we have:

1√
2πσ2

exp(−(y − 1)2

2σ2
)π1γ

H1

≷
H0

1√
2π

exp(−y
2

2
)π0 (7)

Clearly, if γ goes to infinity, for any given value of π1 6= 0, and y and σ2 finite, decoder
chooses H1.

We will have the following decision regions:

(y − 1)2

2σ2
− y2

2

H0

≷
H1

ln
π1γ

π0σ
(8)

(1− σ2)y2 − 2y + 1
H0

≷
H1

2σ2 ln
π1γ

π0σ
(9)



Problem 2.

(a) Because of the additive nature of the channel, the error probability only depends on
PN(−→y −−→xi ). Now, if one shifts all −→xi ’s by a constant vector, by shifting all decision
regions by the same constant vector, one will design an equal error probability system
for the second signal set.

(b)

A′ = A−m(a) = {aj −m(a), 1 ≤ j ≤M} (10)

E(A′) =
1

M

∑
j

〈(aj −m(a)), (aj −m(a))〉 (11)

=
1

M

∑
j

〈aj, aj〉+
1

M

∑
j

〈m(a),m(a)〉 − 2

M

∑
j

〈aj,m(a)〉 (12)

=
1

M

∑
j

〈aj, aj〉+ 〈m(a),m(a)〉 − 2〈 1

M

∑
j

aj,m(a)〉 (13)

=
1

M

∑
j

〈aj, aj〉 − 〈m(a),m(a)〉 (14)

= E(A)− 〈m(a),m(a)〉 (15)

By part (a), adding a constant vector (−m(A)) does not change the error probability,
but it reduces the average transmitted energy, so it is good.

Problem 3.

(a) V (R) for n-cube is (2M)n, so number of signal points is (2M)n

2n = Mn.

E(R) =

∫
R

||x||2P (x)dx =

∫ M

−M

...

∫ M

−M

n∑
i=1

x2
i

1

(2M)n
dx1...dxn (16)

=
n∑

i=1

∫ M

−M

...

∫ M

−M

x2
i

1

(2M)n
dx1...dxn (17)

=
n∑

i=1

∫ M

−M

x2
i

(2M)n−1

(2M)n
dx1 (18)

=
n∑

i=1

1

2M

∫ M

−M

x2
1dx1 (19)

= n
1

2M

2M3

3
= n

M2

3
(20)

They are exact because a n-cube constellation of size 2M is the n-fold Cartesian
product of an M-PAM constellation of the set of all odd integers in the interval
[-M,M].

(b)

Number of points :
(πr2)

n
2

(n
2
)!2n

Average energy :
nr2

n+ 2

2



(c) For n = 2 and same number of signal points, we have:

M2 =
πr2

4
(21)

r2

M2
=

4

π
(22)

So

Esphere

Ecube

=
r2

2
2
3
M2

(23)

=
r2

M2
· 3

4
=

3

π
= −0.2dB (24)

(d)

M16 =
(πr2)8

8!216
(25)

⇒M2 =
πr2

(8!)
1
8 4

(26)

Esphere

Ecube

=
��16r2

18

��16M2

3

(27)

=
r2

6M2
=

(8!)
1
8 · 4

π · 6
≈ −1dB (28)

(e) We have

Mn =
(πr2)

n
2

n
2
!2n

(29)

⇒M2 =
πr2

4((n
2
!))

2
n

(30)

(31)

So

Esphere

Ecube

=
n

n+2
r2

nM2

3

=
3r2

(n+ 2)M2
(32)

=
3

n+ 2
·

4((n
2
)!)

2
n

π
(33)

=
12

(n+ 2)π
· (( n

2e
)

n
2 )

2
n · (

√
2π
n

2
)

2
n (34)

=
6

πe
· n

n+ 2
(πn)

1
n (35)

lim
n→∞

Esphere

Ecube

=
6

πe
= −1.53dB

Problem 4. (a) Given the observation (y1, y2), the maximum likelihood receiver com-
putes for each hypothesis x

score(x) = p((y1, y2)|x) = p(y1|x)p(y2|y1, x)
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and chooses the x with the highest score. If p(y2|y1, x) = p(y2|y1), then

score(x) = p(y1|x)p(y2|y1).

Since the factor p(y2|y1) is common to the score of each x, the ranking of the x’s will
not change if it is based on the modified score

score′(x) = p(y1|x).

As score′ can be computed from y1 alone, the receiver does not need y2 to make its
decision.

(b) (i). With Y1 = X+N1, Y2 = X+N2, Y3 = X+N1 +N2 with independent X,N1, N2,

Pr(Y3 ≤ y3|Y1 = y1, X = x) = Pr(X +N1 +N2 ≤ y3|Y1 = y1, X = x)

= Pr(N2 ≤ y3 − y1|Y1 = y1, X = x)

= Pr(N2 ≤ y3 − y1) (*)

= Pr(Y3 ≤ y3|Y1 = y1)

where (*) follows from the independence of N2 from X and N1. Thus, p(y3|y1, x) =
p(y3|y1) and we conclude that y3 is irrelevant given only y1.

(ii). Given Y1 and Y2, the knowledge of Y3 would let us determine X exactly as
X = Y1 + Y2 − Y3. Such exact determination is in general not possible from Y1 and
Y2 alone, so Y3 is not irrelevant.

Under special circumstances the pair Y1, Y2 may determine X exactly, and Y3 is
irrelevant. Some examples: (1) X is a constant; (2) N1 = 0 with probability 1;
or perhaps more interestingly, (3) X takes only values in {0, 1, 2, 3, 4, 5}, N1 takes
only values in even integers and N3 is always a multiple of 3, then, from Y1 we
know (X mod 2), from Y2 we know (X mod 3), so we can find (X mod 6) and thus
determine X.

(c) The conditional cumulative distribution of Y2,

Pr(Y2 ≤ y2|Y1 = y1, X = x) = Pr(N2 ≤ y2 − x)

is a function that depends on the value of x. If P (Y2 ≤ y2|Y1 = y1, X = x) were equal
to P (Y2 ≤ y2|Y1 = y1) this would not have been the case. So, Y2 is not irrelevant.

(d) Observe that

logP (y1, y2|x) = logPN1(y1 − x) + logPN2(y2 − x) = −
[
|y1 − x|+ |y2 − x|

]
− log 2.

Thus the optimum decision rule is
+1 |y1 − 1|+ |y2 − 1| < |y1 + 1|+ |y2 + 1|
−1 |y1 − 1|+ |y2 − 1| > |y1 + 1|+ |y2 + 1|
either |y1 − 1|+ |y2 − 1| = |y1 + 1|+ |y2 + 1|

=


+1 g(y1) + g(y2) > 0

−1 g(y1) + g(y2) < 0

either g(y1) + g(y2) = 0
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with

g(y) = |y + 1| − |y − 1|

=


−2 y < −1

2y −1 ≤ y ≤ 1

+2 y > 1.

The decision regions are shown in the figure
with the gray zones indicating the when the
decision is arbitrary.

(+1, +1)

(−1,−1)

Decide +1

Decide −1

(e) Since the rule agrees with the rule derived in part (d) it is optimum for the case of
equally likely messages. By symmetry, the probability of error can be computed as
P (error) = P (error|X = −1), with is the same as

Pr(Y1 + Y2 ≥ 0|X = −1) = Pr(N1 +N2 ≥ 2).

Writing the above as ∫
pN1(n1)P (N2 > 2− n1) dn1,

observing that

P (N2 > x) =

{
exp(−x)/2 x ≥ 0

1− exp(x)/2, x < 0,

and substituting pN1(x) = exp(−|x|)/2, we can compute the probability of error
(above integration) as follows:

∫ +2

−∞

e−|n1|

2

e−2+n1

2
dn1 +

∫ +∞

+2

e−|n1|

2
(1− e2−n1

2
)dn1 = 1/e2

(f) The MAP rule is given by decision = arg max
x∈{+1,−1}

P (y1, y2|x)p(x),

which, with q = Pr(X = +1), simplifies to
+1 g(y1) + g(y2) > log((1− q)/q)
−1 g(y1) + g(y2) < log((1− q)/q)
either g(y1) + g(y2) = log((1− q)/q)

With q > 1/2, this has the effect of eliminat-
ing the gray zone, and shrinking the decision
region for X = −1 as shown.

(+1, +1)

(−1,−1)

Decide +1

Decide −1

Problem 5. 1. [1, 1, 1, 1],
[1, 1,−1,−1],

5



[−1,−1, 1, 1],
[−1,−1,−1,−1],
[−1, 1,−1, 1],
[−1, 1, 1,−1],
[1,−1, 1,−1],
[1,−1,−1, 1].

2.
b = log2 8 = 3

b =
3

4
.

3.

Ex =
1

8

7∑
i=0

‖xi‖2 = 4

So Ex = 1.

4. For each point, we can find 6 points at equal minimum distance 2
√

2, so Ne = 6 and

Pe = NeQ

(
dmin

2σ

)

Pe = 6Q

(
2
√

2

2
√

0.1

)
= 6Q(

√
20)

Problem 6. 1. Here are the decision regions:

2. • Union bound with dmin = 2 and Ni = 4

Pe ≤ NiQ(
dmin

2σ
) = 4Q(

1

σ
)

• Nearest Neighbor Union Bound with dmin = 2 and Ne = 2+3+3+2+2
5

= 12
5

Pe ≤ NeQ(
dmin

2σ
) =

12

5
Q(

1

σ
)

Please note that you can get better (tighter) bounds if you use the exact distances
between neighboring points instead of dmin.
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