ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 2
Advanced Digital Communications
Homework 1

Problem 1. Let V and W be discrete random variables (rvs) defined with a joint pmf $p_{V W}(v, w)$.
(a) Prove that $E[V+W]=E[V]+E[W]$. Do not assume independence.
(b) Prove that if V and W are independent rvs, then $E[V \cdot W]=E[V] \cdot E[W]$.
(c) Find an example where $E[V \cdot W] \neq E[V] \cdot E[W]$ and another example of nonindependent V, W where $E[V \cdot W]=E[V] \cdot E[W]$.
(d) Assume that V and W are independent and let σ_{V}^{2} and σ_{W}^{2} be the variances of V and W, respectively. Show that the variance of $V+W$ is given by $\sigma_{V+W}^{2}=\sigma_{V}^{2}+\sigma_{W}^{2}$.

Problem 2.

(a) For a non-negative integer-valued rv N, show that

$$
E[N]=\sum_{n>0} \operatorname{Pr}(N \geq n)
$$

(b) Show, with whatever mathematical care you feel comfortable with, that for an arbitrary non-negative rv X,

$$
E[X]=\int_{0}^{\infty} \operatorname{Pr}(X \geq a) d a
$$

(c) Derive the Markov inequality, which says that for any $a>0$ and any non-negative rv X,

$$
\operatorname{Pr}(X \geq a) \leq \frac{E[X]}{a}
$$

Hint. Sketch $\operatorname{Pr}(X>a)$ as a function of a and compare the area of the rectangle with horizontal length a and vertical length $\operatorname{Pr}(X \geq a)$ in your sketch with the area corresponding to $E[X]$.
(d) Derive the Chebyshev inequality, which says that

$$
\operatorname{Pr}(|Y-E[Y]| \geq b) \leq \frac{\sigma_{Y}^{2}}{b^{2}}
$$

for any rv Y with finite mean $E[Y]$ and finite variance σ_{Y}^{2}.
Hint. Use part (c) with $(Y-E[Y])^{2}=X$.

Problem 3. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be a sequence of independent identically distributed (iid) rvs with the common probability density function $f_{X}(x)$. Note that $\operatorname{Pr}\left(X_{n}=\alpha\right)=0$ for all α and that $\operatorname{Pr}\left(X_{n}=X_{m}\right)=0$ for $m \neq n$.
(a) Find $\operatorname{Pr}\left(X_{1} \leq X_{2}\right)$. (Give a numerical answer, not an expression; no computation is required and a one- or two-line explanation should be adequate.)
(b) Find $\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3}\right)$; in other words, find the probability that X_{1} is the smallest of $\left\{X_{1}, X_{2}, X_{3}\right\}$. (Again, think - do not compute.)
(c) Let the rv N be the index of the first rv in the sequence to be less than X_{1}; i.e.,

$$
\{N=n\}=\left\{X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1} ; X_{1}>X_{n}\right\}
$$

Find $\operatorname{Pr}(N \geq n)$ as a function of n.
(d) Show that $E[N]=\infty$.
(e) Now assume that X_{1}, X_{2}, \ldots is a sequence of iid rvs each drawn from a finite set of values. Explain why you can not find $\operatorname{Pr}\left(X_{1} \leq X_{2}\right)$ without knowing the pmf. Explain why $E[N]=\infty$.

Problem 4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of n binary iid rvs. Assume that $\operatorname{Pr}\left(X_{m}=\right.$ $0)=\operatorname{Pr}\left(X_{m}=1\right)=\frac{1}{2}$. Let Z be the parity check on $X_{1}, X_{2}, \ldots, X_{n}$; i.e., $Z=X_{1} \oplus X_{2} \oplus$ $\cdots \oplus X_{n}$ (where $0 \oplus 0=1 \oplus 1=0$ and $0 \oplus 1=1 \oplus 0=1$).
(a) Is Z independent of X_{1} ? (Assume $n>1$.)
(b) Are $Z, X_{1}, \ldots, X_{n-1}$ independent?
(c) Are Z, X_{1}, \ldots, X_{n} independent?
(d) Is Z independent of X_{1} if $\operatorname{Pr}\left(X_{i}=1\right) \neq \frac{1}{2}$? (You may take $n=2$ here.)

Problem 5. Consider the binary hypothesis testing problem with MAP decision. Assume that priors are given by $\left(\pi_{0}, 1-\pi_{0}\right)$.
(1) Let $V\left(\pi_{0}\right)$ be the overall probability of error. Write the expression for $V\left(\pi_{0}\right)$.
(2) Show that $V\left(\pi_{0}\right)$ is a concave function of π_{0} i.e.

$$
V\left(\lambda \pi_{0}+(1-\lambda) \pi_{0}^{\prime}\right) \geq \lambda V\left(\pi_{0}\right)+(1-\lambda) V\left(\pi_{0}^{\prime}\right)
$$

for priors $\left(\pi_{0}, 1-\pi_{0}\right)$ and $\left(\pi_{0}^{\prime}, 1-\pi_{0}^{\prime}\right)$.
Problem 6. Consider Gaussian hypothesis testing with arbitrary priors. Prove that in this case, if y_{1} and y_{2} are elements of the decision region associated to hypothesis i then so is $\alpha y_{1}+(1-\alpha) y_{2}$, where $\alpha \in[0,1]$.

