ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 2	Advanced Digital Communications
Homework 1	September 24, 2010

PROBLEM 1. Let V and W be discrete random variables (rvs) defined with a joint pmf $p_{VW}(v, w)$.

- (a) Prove that E[V + W] = E[V] + E[W]. Do not assume independence.
- (b) Prove that if V and W are independent rvs, then $E[V \cdot W] = E[V] \cdot E[W]$.
- (c) Find an example where $E[V \cdot W] \neq E[V] \cdot E[W]$ and another example of nonindependent V, W where $E[V \cdot W] = E[V] \cdot E[W]$.
- (d) Assume that V and W are independent and let σ_V^2 and σ_W^2 be the variances of V and W, respectively. Show that the variance of V + W is given by $\sigma_{V+W}^2 = \sigma_V^2 + \sigma_W^2$.

Problem 2.

(a) For a non-negative integer-valued V, show that

$$E[N] = \sum_{n>0} \Pr(N \ge n)$$

(b) Show, with whatever mathematical care you feel comfortable with, that for an arbitrary non-negative rv X,

$$E[X] = \int_0^\infty \Pr(X \ge a) \, da.$$

(c) Derive the Markov inequality, which says that for any a > 0 and any non-negative rv X,

$$\Pr(X \ge a) \le \frac{E[X]}{a}.$$

Hint. Sketch Pr(X > a) as a function of a and compare the area of the rectangle with horizontal length a and vertical length $Pr(X \ge a)$ in your sketch with the area corresponding to E[X].

(d) Derive the Chebyshev inequality, which says that

$$\Pr(|Y - E[Y]| \ge b) \le \frac{\sigma_Y^2}{b^2}$$

for any rv Y with finite mean E[Y] and finite variance σ_Y^2 . Hint. Use part (c) with $(Y - E[Y])^2 = X$. PROBLEM 3. Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent identically distributed (iid) rvs with the common probability density function $f_X(x)$. Note that $\Pr(X_n = \alpha) = 0$ for all α and that $\Pr(X_n = X_m) = 0$ for $m \neq n$.

- (a) Find $Pr(X_1 \leq X_2)$. (Give a numerical answer, not an expression; no computation is required and a one- or two-line explanation should be adequate.)
- (b) Find $\Pr(X_1 \leq X_2; X_1 \leq X_3)$; in other words, find the probability that X_1 is the smallest of $\{X_1, X_2, X_3\}$. (Again, think do not compute.)
- (c) Let the rv N be the index of the first rv in the sequence to be less than X_1 ; i.e.,

$$\{N = n\} = \{X_1 \le X_2; X_1 \le X_3; \dots; X_1 \le X_{n-1}; X_1 > X_n\}$$

Find $\Pr(N \ge n)$ as a function of n.

- (d) Show that $E[N] = \infty$.
- (e) Now assume that X_1, X_2, \ldots is a sequence of iid rvs each drawn from a finite set of values. Explain why you can not find $\Pr(X_1 \leq X_2)$ without knowing the pmf. Explain why $E[N] = \infty$.

PROBLEM 4. Let X_1, X_2, \ldots, X_n be a sequence of n binary iid rvs. Assume that $\Pr(X_m = 0) = \Pr(X_m = 1) = \frac{1}{2}$. Let Z be the parity check on X_1, X_2, \ldots, X_n ; i.e., $Z = X_1 \oplus X_2 \oplus \cdots \oplus X_n$ (where $0 \oplus 0 = 1 \oplus 1 = 0$ and $0 \oplus 1 = 1 \oplus 0 = 1$).

- (a) Is Z independent of X_1 ? (Assume n > 1.)
- (b) Are Z, X_1, \ldots, X_{n-1} independent?
- (c) Are Z, X_1, \ldots, X_n independent?
- (d) Is Z independent of X_1 if $Pr(X_i = 1) \neq \frac{1}{2}$? (You may take n = 2 here.)

PROBLEM 5. Consider the binary hypothesis testing problem with MAP decision. Assume that priors are given by $(\pi_0, 1 - \pi_0)$.

- (1) Let $V(\pi_0)$ be the overall probability of error. Write the expression for $V(\pi_0)$.
- (2) Show that $V(\pi_0)$ is a concave function of π_0 i.e.

$$V(\lambda \pi_0 + (1 - \lambda)\pi'_0) \ge \lambda V(\pi_0) + (1 - \lambda)V(\pi'_0)$$

for priors $(\pi_0, 1 - \pi_0)$ and $(\pi'_0, 1 - \pi'_0)$.

PROBLEM 6. Consider Gaussian hypothesis testing with arbitrary priors. Prove that in this case, if y_1 and y_2 are elements of the decision region associated to hypothesis *i* then so is $\alpha y_1 + (1 - \alpha)y_2$, where $\alpha \in [0, 1]$.