kCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 11
Signal Processing for Communications
Homework 5 Solution
March 29, 2010

Problem 1.

$$
x[n]=u[n] \rightarrow y[n]=h[n] * x[n]=\sum_{k} h[k] x[n-k]=\sum_{k} a^{-k} u[-k] u[n-k]
$$

If we consider negative and positive n 's, we will have:
for $n<0$,

$$
y[n]=\sum_{k=-\infty}^{n} a^{-k}=\sum_{k=-n}^{\infty} a^{k}=\frac{a^{-n}}{1-a}
$$

and for $n \geq 0$

$$
y[n]=\sum_{k=-\infty}^{0} a^{-k}=\sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a}
$$

so, we can write the answer as follow:

$$
y[n]=\frac{1}{1-a}\left(u[n]+a^{-n} u[-n-1]\right)
$$

Problem 2. In order to find the correct answer for this question, let's take a look at how convolution works. For computing the output at point n i.e. $y[n]=\sum_{k} x[k] h[n-k]$ you just need to consider signals $x[k]$ and $h[k]$, flip one of them and shift it to the right by n, and then sum up the multiplication of the corresponding coefficients. If the supports of $x[k]$ and $h[k]$ are N and M respectively (for simplicity, assume that they are from 0 up to $N-1$ and $M-1$ respectively), the maximum value of n for which $y[n]$ may not be equal to zero would be $M+N-2$. In fact the support length of y would be $M+N-1$ which is equal to the length of $[0, \ldots, M+N-2]$.

Problem 3. (i)

$$
\text { causality } \rightarrow h[n]=0 \text { for } n<0
$$

(ii)

$$
H\left(e^{j \omega}\right)=H^{*}\left(e^{-j \omega}\right) \rightarrow h[n]=h^{*}[n] \rightarrow h[n] \text { is real }
$$

(iii)

$$
\begin{aligned}
\operatorname{DTFT}\{h[n+1]\} & =\operatorname{DTFT}^{*}\{h[n+1]\} \rightarrow H\left(e^{j \omega}\right) e^{j \omega}=H^{*}\left(e^{j \omega}\right) e^{-j \omega} \\
\rightarrow H^{*}\left(e^{j \omega}\right) & =H\left(e^{j \omega}\right) e^{2 j \omega} \rightarrow h^{*}[-n]=h[n+2] \\
\rightarrow h^{*}[-n] & =h[-n]=h[n+2]
\end{aligned}
$$

Where the last line is concluded from (ii). Now, we can say surely that $h[n]$ is equal to zero for $n \geq 3$ and $n<0$ which means the impulse response has finite duration.
(iv)

$$
\frac{1}{2} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega \rightarrow h[0]=2
$$

Considering the result of (iii), we can say that $h[2]=h[0]=2$ because $h[-n]=h[n+2]$ (just put $n=0$).
(v)

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=0}^{2} h[n] e^{-j \omega n} \\
& =2+h[1] e^{-j \omega}+2 e^{-2 j \omega} \\
\rightarrow H\left(e^{j \pi}\right) & =2+h[1] e^{-j \pi}+2 e^{-j 2 \pi}=4-h[1]=0 \\
\rightarrow h[1] & =4
\end{aligned}
$$

So, $h[n]$ is completely determined and it is equal to

$$
h[n]=2 \delta[n]+4 \delta[n-1]+2 \delta[n-2]
$$

Problem 4. (a) Using DTFT-properties in the book:

$$
\operatorname{DTFT}^{-1} Y^{*}\left(e^{j \omega}\right)=y^{*}[-n]
$$

$$
\mathrm{DTFT}^{-1} X\left(e^{j \omega}\right) Y^{*}\left(e^{j \omega}\right)=x[n] * y^{*}[-n]
$$

(b) Assume that $h[n]=x[n] * y^{*}[-n]$

$$
h[n]=\sum_{k=-\infty}^{+\infty} x[n-k] y^{*}[-k] \rightarrow h[0]=\sum_{k=-\infty}^{+\infty} x[-k] y^{*}[-k]=\sum_{k=-\infty}^{+\infty} x[k] y^{*}[k]
$$

On the other hand, we have:

$$
h[n]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega=\frac{1}{2 \pi} X\left(e^{j \omega}\right) Y^{*}\left(e^{j \omega}\right) e^{j \omega n} d \omega \rightarrow h[0]=\frac{1}{2 \pi} X\left(e^{j \omega}\right) Y^{*}\left(e^{j \omega}\right) d \omega
$$

So, we will have this equality:

$$
\sum_{k=-\infty}^{+\infty} x[k] y^{*}[k]=\frac{1}{2 \pi} X\left(e^{j \omega}\right) Y^{*}\left(e^{j \omega}\right) d \omega
$$

(c) We define $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$, So, we have:

$$
\begin{gathered}
x[n]=\frac{\sin \frac{\pi n}{4}}{2 \pi n}=\frac{1}{8} \operatorname{sinc}\left(\frac{\pi n}{4}\right) \\
y^{*}[n]=y[n]=\frac{\sin \frac{\pi n}{6}}{5 \pi n}=\frac{1}{30} \operatorname{sinc}\left(\frac{\pi n}{6}\right)
\end{gathered}
$$

hint

$$
\begin{gathered}
\text { DTFT } \frac{1}{N} \operatorname{sinc}\left(\frac{\pi n}{N}\right)=1 \text { for }|\omega|<\frac{1}{N} \\
\rightarrow X\left(e^{j \omega}\right)=\frac{1}{2} \text { for }|\omega|<\frac{\pi}{4} \\
\rightarrow Y\left(e^{j \omega}\right)=\frac{1}{5} \text { for }|\omega|<\frac{\pi}{6}
\end{gathered}
$$

Using the result of previous part:

$$
\sum_{n=-\infty}^{+\infty} \frac{\sin \frac{\pi n}{4}}{2 \pi n} \frac{\sin \frac{\pi n}{6}}{5 \pi n}=\frac{1}{2 \pi} \int_{-\frac{\pi}{6}}^{+\frac{\pi}{6}} \frac{1}{2} \cdot \frac{1}{5} d \omega=\frac{1}{60}
$$

Problem 5. (i)

$$
\begin{aligned}
X(z) & =\sum_{n} a^{n} u[n] z^{-n}+\sum_{n} b^{n} u[n] z^{-n}+\sum_{n} c^{n} u[-n-1] z^{-n} \\
& =\sum_{n=0}^{+\infty}\left(a z^{-1}\right)^{n}+\sum_{n=0}^{+\infty}\left(b z^{-1}\right)^{n}+\sum_{n=-\infty}^{-1}\left(c z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}+\frac{1}{1-b z^{-1}}+\sum_{n=1}^{+\infty}\left(c^{-1} z\right)^{n} \\
& =\frac{1}{1-a z^{-1}}+\frac{1}{1-b z^{-1}}+\frac{c^{-1} z}{1-c^{-1} z} \\
& =\frac{1}{1-a z^{-1}}+\frac{1}{1-b z^{-1}}-\frac{1}{1-c z^{-1}}
\end{aligned}
$$

$R O C=\bigcap\left[\left|a z^{-1}\right|<1,\left|b z^{-1}\right|<1,\left|c^{-1} z\right|<1\right]=\bigcap[|a|<|z|,|b|<|z|,|z|<|c|]$
where \bigcap means intersection. Since $|a|<|b|<|c| \rightarrow R O C=|b|<|z|<|c|$ which is a ring between $|b|$ and $|c|$.

There are 3 poles at $p_{1}=a, p_{2}=b, p_{3}=c$, and one triple-zero at $z=0$
(ii)

$$
\begin{gathered}
X(z)=\sum_{n} \frac{(-1)^{n}}{n!} z^{-n} u[n]=\sum_{n=0}^{+\infty} \frac{(-z)^{n}}{n!}=e^{-z} \\
R O C=z-\text { plane }
\end{gathered}
$$

There is just one zero at $+\infty$, because $\lim _{z \rightarrow+\infty} X(z)=0$
(iii)

$$
\begin{gathered}
X(z)=\sum_{n} \frac{-1}{n} z^{-n} u[n-1]=-\sum_{n=1}^{+\infty} \frac{\left(z^{-1}\right)^{n}}{n}=\ln \left(1-z^{-1}\right) \\
R O C=\left|z^{-1}\right|<1=|z|>1
\end{gathered}
$$

There is just one zero at $+\infty$, because $\lim _{z \rightarrow+\infty} X(z)=0$

Problem 6. (i)

$$
\begin{gathered}
y[n]+\frac{1}{15} y[n-1]-\frac{2}{5} y[n-2]=x[n] \\
H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{1}{1+\frac{1}{15} z^{-1}-\frac{2}{5} z^{-2}} \\
H\left(e^{j \omega}\right)=\frac{1}{\left(1+\frac{2}{3} z^{-1}\right)\left(1-\frac{9}{15} z^{-1}\right)}=\frac{\frac{10}{19}}{1+\frac{2}{3} z^{-1}}+\frac{\frac{9}{19}}{1-\frac{9}{15} z^{-1}}
\end{gathered}
$$

(ii)

This system has 2 poles in $p_{1}=-\frac{2}{3}, p_{2}=\frac{9}{15}$ and one double-zero at $z=0$. The system is causal so $R O C$ must be in form of $|z|>R$ where R is the radius correspond to the largest pole.

$$
R O C=\bigcap\left[|z|>\frac{2}{3},|z|>\frac{9}{15}\right]=|z|>\frac{2}{3} .
$$

This system is stable, because $R O C$ contains the unit circle.
(iii)

Yes, Since $H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=1}$ and the system is stable (which means $R O C$ contains the unit circle) we can conclude that the Fourier transform will converge.
(iv)

$$
h[n]=\left(\frac{10}{19}\left(-\frac{2}{3}\right)^{n}+\frac{9}{19}\left(\frac{9}{15}\right)^{n}\right) u[n]
$$

