kCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. 1. Show that the set of all ordered n-tuples $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with the natural definition for the sum:

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right]
$$

and the multiplication by a scalar:

$$
\alpha\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right]
$$

form a vector space. Give its dimension and find a basis.

We have to check the axioms for vector spaces. Addition must be associative

$$
\begin{gathered}
{\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right]+\left[c_{1}, c_{2}, \ldots, c_{n}\right]\right)=} \\
{\left[a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right), \ldots, a_{n}+\left(b_{n}+c_{n}\right)\right]=} \\
{\left[\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}, \ldots,\left(a_{n}+b_{n}\right)+c_{n}\right]=} \\
\quad\left(\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{n}\right]\right)+\left[c_{1}, c_{2}, \ldots, c_{n}\right]
\end{gathered}
$$

Addition must be commutative

$$
\begin{gathered}
{\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right]=} \\
{\left[b_{1}, b_{2}, \ldots, b_{n}\right]+\left[a_{1}, a_{2}, \ldots, a_{n}\right]}
\end{gathered}
$$

There is a zero vector $\overrightarrow{0}$ which satisfies $\vec{v}+\overrightarrow{0}=\vec{v}$ for all \vec{v}

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]+[0,0, \ldots, 0]=\left[a_{1}+0, a_{2}+0, \ldots, a_{n}+0\right]=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Additive inverses must be in the vector space

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[-a_{1},-a_{2}, \ldots,-a_{n}\right]=\overrightarrow{0}
$$

Finally, we must show that the vector space must be closed under addition and multiplication by a scalar

$$
\begin{gathered}
\alpha \cdot\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\beta \cdot\left[b_{1}, b_{2}, \ldots, b_{n}\right]= \\
{\left[\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right]+\left[\beta b_{1}, \beta b_{2}, \ldots, \beta b_{n}\right]=} \\
{\left[\alpha a_{1}+\beta b_{1}, \alpha a_{2}+\beta b_{2}, \ldots, \alpha a_{n}+\beta b_{n}\right]}
\end{gathered}
$$

which clearly is in the vector space
This proves that the set of all ordered n-tuples forms a vector space.
2. Show that the set of signals of the form $y(x)=a \cos (x)+b \sin (x)$ (for arbitrary a, b), with the usual addition and multiplication by a scalar, form a vector space. Give its dimension and find a basis.

As for the above question, you can show that the axioms for vector spaces hold for our kind of signals.

Associativity:

$$
\begin{gathered}
y_{1}(x)+\left(y_{2}(x)+y_{3}(x)\right)= \\
a_{1} \cos (x)+b_{1} \sin (x)+\left(a_{2} \cos (x)+b_{2} \sin (x)+a_{3} \cos (x)+b_{3} \sin (x)\right)= \\
\left(a_{1}+a_{2}+a_{3}\right) \cos (x)+\left(b_{1}+b_{2}+b_{3}\right) \sin (x)= \\
\left(a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (x)+b_{2} \sin (x)\right)+a_{3} \cos (x)+b_{3} \sin (x)= \\
\left(y_{1}(x)+y_{2}(x)\right)+y_{3}(x)
\end{gathered}
$$

Commutativity:

$$
\begin{gathered}
y_{1}(x)+y_{2}(x)=a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (x)+b_{2} \sin (x)= \\
y_{2}(x)+y_{1}(x)
\end{gathered}
$$

The function $0(x)=0 \cos (x)+0 \sin (x)$ satisfies the condition for the zero element Inverses :

$$
-y(x)=(-a) \cos (x)+(-b) \sin (x)
$$

Closure:

$$
\begin{gathered}
\alpha \cdot y_{1}(x)+\beta \cdot y_{2}(x)= \\
\alpha a_{1} \cos (x)+\alpha b_{1} \sin (x)+\beta a_{2} \cos (x)+\beta b_{2} \sin (x)= \\
\left(\alpha a_{1}+\beta a_{2}\right) \cos (x)+\left(\alpha b_{1}+\beta b_{2}\right) \sin (x)
\end{gathered}
$$

We will show that $\mathrm{B}=\{\cos (x), \sin (x)\}$ forms a basis. It must satisfy the following requirements :

- they span the whole space $a \cos (x)+b \sin (x)$;
- they are be independent, that is, you cannot write a function based on the other;
- they must be minimal, if you remove one of them, the remaining ones do not span the whole space.

To show that $\cos (x)$ and $\sin (x)$ are independent, you can proceed as follows : we want that

$$
a \cdot \cos (x)+b \cdot \sin (x)=0, \forall x \in \mathbb{R}
$$

implies that $a=0$ and $b=0$.
3. Are the four diagonals of a cube orthogonal?

There are four diagonals in a cube. If they were pairwise orthogonal, then they would form a basis of \mathbb{R}^{3}. But we know that the dimension of \mathbb{R}^{3} is three, and all bases have three vectors. Therefore, the diagonals cannot be orthogonal.
4. Express the discrete-time impulse $\delta[n]$ in terms of the discrete-time unit step $u[n]$ and conversely.

We can write down the relationship between the two signals as follows :

$$
\sum_{k=-\infty}^{n} \delta[k]=u[n]
$$

and

$$
u[n]-u[n-1]=\delta[n]
$$

Those two functions behave in a very similar manner to their continuous counterparts, where the sum is replaced by the integral, and the difference is replaced by the derivative.
5. Show that any function $f(t)$ can be written as the sum of an odd and an even function, i.e. $f(t)=f_{o}(t)+f_{e}(t)$ where $f_{o}(-t)=-f_{o}(t)$ and $f_{e}(-t)=f_{e}(t)$.

We can write the following equations :

$$
\left\{\begin{array}{l}
f(t)=f_{o}(t)+f_{e}(t) \\
f(-t)=-f_{o}(t)+f_{e}(t)
\end{array}\right.
$$

Summing the two equations, and dividing by 2 , we get :

$$
f_{e}(t)=\frac{f(t)+f(-t)}{2}
$$

And the difference, followed by division by 2 gives:

$$
f_{o}(t)=\frac{f(t)-f(-t)}{2}
$$

Problem 2. Let $\{x(k)\}, k=0, \ldots, N-1$, be a basis for a space S. Prove that any vector $z \in S$ is uniquely represented in this basis.

Hint. Prove by contradiction.
The fact that any vector \vec{z} can be represented in the basis $\left\{\vec{x}^{(k)}\right\}_{\{k=0, \ldots, N-1\}}$ follows by the definition of a basis. We need to prove that the representation is unique: Suppose that \vec{z} has two distinct representations $\left\{\alpha_{k}\right\}_{\{k=0, \ldots, N-1\}} \neq\left\{\beta_{k}\right\}_{\{k=0, \ldots, N-1\}}$. That is,

$$
\vec{z}=\sum_{k=0}^{N-1} \alpha_{k} \vec{x}^{(k)}, \vec{z}=\sum_{k=0}^{N-1} \beta_{k} \vec{x}^{(k)}
$$

We can thus write

$$
\overrightarrow{0}=\vec{z}-\vec{z}=\vec{z}=\sum_{k=0}^{N-1}\left(\alpha_{k}-\beta_{k}\right) \vec{x}^{(k)} \neq \overrightarrow{0}
$$

a contradiction. Therefore, \vec{z} is uniquely represented in the basis.

Problem 3. Assume v and w are two vectors in the vector space. Prove the triangular inequality for each v and w.

$$
\|v+w\| \leq\|v\|+\|w\| .
$$

Hint. Expand $\|v+w\|^{2}$ and use Cauchy-Schwarz inequality.

$$
\begin{gathered}
\|v+w\|^{2}=\langle v+w, v+w\rangle \\
=|v|^{2}+\langle v, w\rangle+\langle w, v\rangle+|w|^{2} \\
\leq|v|^{2}+2|\langle v, w\rangle|+|w|^{2} \\
\leq|v|^{2}+2|v||w|+|w|^{2}
\end{gathered}
$$

(by the Cauchy-Schwarz Inequality)

$$
=(\|v\|+\|w\|)^{2}
$$

Then take the square root of the final result.

Problem 4. Consider the following signal

$$
x[n]=(5-|n|) \cdot(u[n+5]-u[n-6]) .
$$

Draw the following signals:

- $x[n]$.

- $x[-2 n+3]$.

- $\sum_{k=-\infty}^{n} x[2 k]$.

Problem 5. Find the inverse z-transform of following series.
(a) $X(z)=\frac{1}{\left(1-1 / 4 z^{-1}\right)\left(1-1 / 2 z^{-1}\right)},|z|>1 / 2$.
(b) $X(z)=\frac{1}{\left(1-1 / 5 z^{-1}\right)\left(1+3 z^{-1}\right)}, 3>|z|>1 / 5$.
(a) $X(z)=\frac{1}{\left(1-1 / 4 z^{-1}\right)\left(1-1 / 2 z^{-1}\right)},|z|>1 / 2$.
$X(z)=-\frac{1}{1-\frac{1}{4} z^{-1}}+\frac{2}{1-\frac{1}{2} z^{-1}}$. Both parts of $\mathrm{X}(\mathrm{z})$ are causal since the ROC is the region outside the farest pole $\left(\frac{1}{2}\right)$, therefore $x[n]=-\left(\frac{1}{4}\right)^{n} u[n]+2\left(\frac{1}{2}\right)^{n} u[n]$.
(b) $X(z)=\frac{1}{\left(1-1 / 5 z^{-1}\right)\left(1+3 z^{-1}\right)}, 3>|z|>1 / 5$.
$X(z)=\frac{1 / 16}{1-\frac{1}{5} z^{-1}}+\frac{15 / 16}{1+3 z^{-1}}$. The first part of $X(z)$ is causal and the second is anticausal, therefore $x[n]=\frac{1}{16}\left(\frac{1}{5}\right)^{n} u[n]-\frac{15}{16}(-3)^{n} u[-n-1]$.

