ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 2	Signal Processing for Communications
Homework 1	March 1, 2010

PROBLEM 1. Decide whether the following signals are periodic, and if so, find the period.

(a) $x[n] = e^{j\frac{\pi}{\sqrt{2}}n}$.

A complex exponential of the form $e^{j\frac{2\pi M}{N}n}$ is periodic only if $M, N \in \mathbb{Z}$. Here M=1and N= $2\sqrt{2}$, N $\notin \mathbb{Z}$ therefore x[n] is not periodic.

- (b) $x[n] = \frac{\sin(\pi n)}{\pi n}$. $x[n] = \operatorname{sinc}(n)$ which is not a periodic function.
- (c) $x[n] = \sin(n)$.

 $\sin(n) = 0$ only for n = 0 so the function has only one zero, and in order for this function to be periodic it has to come back to 0 if it has left it after some number of steps (period) therefore $\sin(n)$ is not periodic for $n \in \mathbb{Z}$.

(d) $x[n] = 1 + \sin^2(\pi n)$.

Constant 1 does not affect periodicity, power 2 only tights the function and does not affect periodicity either. $\sin(\pi n)$ is 0 for every $n \in \mathbb{Z}$ so the period of $\sin(\pi n)$ is 1 therefore the period of x[n] is 1 to.

(e) $x[n] = e^{j\frac{5\pi}{7}n} + e^{j\frac{3\pi}{4}n}$.

The reasoning is the same as in part a). $e^{j\frac{5\pi}{7}n} = e^{j\frac{2\pi5}{14}n}$ is periodic since $5,14 \in \mathbb{Z}$ of period $T_1 = 14$. $e^{j\frac{3\pi}{4}n} = e^{j\frac{2\pi 3}{8}n}$ is periodic since $3,8 \in \mathbb{Z}$ of period $T_2 = 8$. We know that the sum of two periodic functions is periodic of period = $lcm(T_1,T_2)$. Therefore x[n] is periodic of period 56.

PROBLEM 2. Compute the following sums.

- (a) $S = \sum_{n=i}^{j} a^{n}$. The sum is finite and $S = \sum_{n=0}^{j} a^n - \sum_{n=0}^{i-1} a^n = \frac{1-a^{j+1}}{1-a} - \frac{1-a^i}{1-a} = \frac{a^i - a^{j+1}}{1-a}.$
- (b) $\sum_{n=1}^{\infty} (\frac{1}{2} + j\frac{\sqrt{3}}{2})^n$.

Such a sum converges if and only if the absolute value of the common ratio is less than one (|r| < 1). Its value can then be computed from the finite sum formulae $\sum_{k=0}^{\infty} r^k = \lim_{n \to \infty} \sum_{k=0}^n r^k = \lim_{n \to \infty} \frac{(1-r^{n+1})}{1-r} = \lim_{n \to \infty} \frac{1}{1-r} - \lim_{n \to \infty} \frac{r^{n+1}}{1-r}$. Since $r^{n+1} \to 0$ as $n \to \infty$ when |r| < 1 then $\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$. The sum is infinite since $\left|\frac{1}{2} + j\frac{\sqrt{3}}{2}\right| = 1 \ge 1$.

(c)
$$S = \sum_{k=1}^{n} \sin(2\pi \frac{k}{N}), n \leq N.$$

$$S = \sum_{k=1}^{n} \frac{e^{2\pi \frac{k}{N}} - e^{-2\pi \frac{k}{N}}}{2j} = \sum_{k=1}^{n} \frac{1}{2j} \left(\frac{1 - e^{2\pi \frac{n}{N}}}{1 - e^{\frac{2\pi}{N}}} - 1 - \frac{1 - e^{-2\pi \frac{n}{N}}}{1 - e^{\frac{-2\pi}{N}}} + 1\right) = \frac{\sin(\frac{2\pi}{N}) - (\sin\frac{2\pi n}{N}) + \sin(\frac{2\pi(n-1)}{N})}{2 - 2\cos(\frac{2\pi}{N})}.$$

(d) $\sum_{n=1}^{\infty} e^{(1/2+j3/4)n}$. The reasoning is the same as in b). The sum is infinite since $|e^{(1/2+j3/4)}| = e^{1/2} \ge 1$.

PROBLEM 3. Compute the following integrals.

(a)
$$\int_0^\infty \frac{1}{1+x^4} dx$$
.
 $\int_0^\infty \frac{1}{1+x^4} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{1+x^4} dx$ since $f(x) = \frac{1}{1+x^4}$ is pair.
 $I = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{1+x^4} dx = \frac{1}{2} \oint_C \frac{1}{1+z^4} dz$.

I is calculated using the residue theorem. The poles of $f(z) = \frac{1}{1+z^4}$ are $z_1 = e^{j\frac{\pi}{4}}, z_2 = e^{j\frac{3\pi}{4}}, z_3 = e^{j\frac{5\pi}{4}}, z_4 = e^{j\frac{7\pi}{4}}$. Only z_1 and z_2 are inside *C* and the integral over *C*1 is close to zero (it can be shown that the integral over *C*1 tends to zero as the radius of the arc tends to infinity) so $I = 2\pi j \sum_{z_1, z_2} Res\left[\frac{1}{1+z^4}\right]$.

$$Resz_1 f(z) = \left| \frac{1}{\frac{d}{dz}(1+z^4)} \right| z_1 = \left| \frac{1}{4z^3} \right| z_1 = \frac{1}{4} e^{-j\frac{3\pi}{4}}$$
$$Resz_2 f(z) = \left| \frac{1}{4z^3} \right| z_2 = \frac{1}{4} e^{-j\frac{9\pi}{4}}$$
$$I = \frac{1}{2} 2\pi j \frac{1}{4} (e^{-j\frac{3\pi}{4}} + e^{-j\frac{9\pi}{4}}) = \frac{\pi\sqrt{2}}{4}$$

(b) $I = \int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx$. $I = \int_{-\infty}^{\infty} \frac{\cos sx + j \sin sx}{k^2 + x^2} dx$ since $\int_{-\infty}^{\infty} \frac{j \sin sx}{k^2 + x^2} dx = 0$ as $\sin sx$ is symmetric according to the origin. $I = \int_{-\infty}^{\infty} \frac{e^{jsx}}{k^2 + x^2} dx = \oint_C \frac{e^{jsz}}{k^2 + z^2} dz$. *I* is calculated using the residue theorem. The poles of $f(z) = \frac{e^{jsz}}{k^2 + z^2}$ are $z_1 = jk$ and $z_2 = -jk$. Only z_1 is inside *C* the integral over *C*1 is close to zero (it can be shown that the integral over *C*1 tends to zero as the radius

of the arc tends to infinity) so
$$I = 2\pi j Resz_1 f(z)$$
.
 $Resz_1 f(z) = \left| \frac{e^{jsz}}{\frac{d}{dz}(k^2 + z^2)} \right| z_1 = \frac{e^{-sk}}{2jk}$.
 $I = \int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx = 2\pi j \frac{e^{-sk}}{2jk} = \frac{\pi}{k} e^{-sk}$.

(c)
$$I = \int_0^{2\pi} \frac{\sin\theta}{36 - 16\sin\theta} d\theta$$
.
 $I = \int_0^{2\pi} \frac{1}{2j} \frac{(e^{j\theta} - e^{-j\theta})}{34 - 16\frac{(e^{j\theta} - e^{-j\theta})}{2j}} d\theta = \oint_C \frac{z - z^{-1}}{68j - 16z + 16z^{-1}} \frac{dz}{jz} = \oint_C \frac{z^2 - 1}{-16z^2 + 68jz + 16} \frac{dz}{jz}$, change of variable $z = e^{j\theta}$ was used. C is $|z| = 1$.

I is calculated using the residue theorem. The poles of $f(z) = \frac{z^2 - 1}{-16jz^3 - 68z^2 + 16jz}$ are $z_1 = 0, z_2 = \frac{1}{4}j, z_3 = 4j$. Only z_1 and z_2 are inside *C* so $I = 2\pi j \sum_{z_1, z_2} \operatorname{Res}[f(z)]$.

$$Resz_{1}f(z) = \left| \frac{z^{2}-1}{\frac{d}{dz}(-16jz^{3}-68z^{2}+16jz)} \right| z_{1} = \left| \frac{z^{2}-1}{-48jz^{2}-136z+16j} \right| z_{1} = -\frac{1}{16j} = \frac{j}{16}.$$

$$Resz_{2}f(z) = \left| \frac{z^{2}-1}{-48jz^{2}-136z+16j} \right| z_{2} = \frac{-\frac{1}{16}-1}{-15j} = -\frac{17j}{240}.$$

$$I = \int_{0}^{2\pi} \frac{\sin\theta}{36-16\sin\theta} d\theta = 2\pi j (\frac{j}{16} - \frac{17j}{240}) = \frac{\pi}{60}.$$

PROBLEM 4. Find the z-transform OF following series.

(a)
$$x[n] = a^n u[n].$$

 $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} = \sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1-az^{-1}}.$
ROC: $|az^{-1}| < 1, |z| > |a|.$

(b)
$$x[n] = na^{n}u[n]$$
.
 $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} na^{n}z^{-n} = z \sum_{n=0}^{\infty} na^{n}z^{-n-1} = z \sum_{n=0}^{\infty} -\frac{d}{dz}(a^{n}z^{-n}) = -z \frac{d}{dz} (\sum_{n=0}^{\infty} a^{n}z^{-n}) = -z \frac{d}{dz} (\frac{1}{1-az^{-1}}) = \frac{az^{-1}}{(1-az^{-1})^{2}}.$
ROC: $|z| > |a|.$

PROBLEM 5. Find the inverse z-transform of following series.

- (a) $X(z) = \frac{1}{(1-1/4z^{-1})(1-1/2z^{-1})}$, |z| > 1/2. $X(z) = -\frac{1}{1-\frac{1}{4}z^{-1}} + \frac{2}{1-\frac{1}{2}z^{-1}}$. Both parts of X(z) are causal since the ROC is the region outside the farest pole $(\frac{1}{2})$, therefore $x[n] = -(\frac{1}{4})^n u[n] + 2(\frac{1}{2})^n u[n]$.
- (b) $X(z) = \frac{1}{(1-1/5z^{-1})(1+3z^{-1})}$, 3 > |z| > 1/5. $X(z) = \frac{1/16}{1-\frac{1}{5}z^{-1}} + \frac{15/16}{1+3z^{-1}}$. The first part of X(z) is causal and the second is anticausal, therefore $x[n] = \frac{1}{16}(\frac{1}{5})^n u[n] - \frac{15}{16}(-3)^n u[-n-1]$.