ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 2
Signal Processing for Communications
Homework 1
March 1, 2010

Problem 1. Decide whether the following signals are periodic, and if so, find the period.
(a) $x[n]=e^{j \frac{\pi}{\sqrt{2}} n}$.

A complex exponential of the form $e^{j \frac{2 \pi M}{N} n}$ is periodic only if $\mathrm{M}, \mathrm{N} \in \mathbb{Z}$. Here $\mathrm{M}=1$ and $\mathrm{N}=2 \sqrt{2}, \mathrm{~N} \notin \mathbb{Z}$ therefore $x[n]$ is not periodic.
(b) $x[n]=\frac{\sin (\pi n)}{\pi n}$.
$x[n]=\operatorname{sinc}(n)$ which is not a periodic function.
(c) $x[n]=\sin (n)$.
$\sin (n)=0$ only for $n=0$ so the function has only one zero, and in order for this function to be periodic it has to come back to 0 if it has left it after some number of steps (period) therefore $\sin (n)$ is not periodic for $\mathrm{n} \in \mathbb{Z}$. .
(d) $x[n]=1+\sin ^{2}(\pi n)$.

Constant 1 does not affect periodicity, power 2 only tights the function and does not affect periodicity either. $\sin (\pi n)$ is 0 for every $\mathrm{n} \in \mathbb{Z}$ so the period of $\sin (\pi n)$ is 1 therefore the period of $x[n]$ is 1 to.
(e) $x[n]=e^{j \frac{5 \pi}{7} n}+e^{j \frac{3 \pi}{4} n}$.

The reasoning is the same as in part a). $e^{j \frac{5 \pi}{7} n}=e^{j \frac{2 \pi 5}{14} n}$ is periodic since $5,14 \in \mathbb{Z}$ of period $T_{1}=14 . e^{j \frac{3 \pi}{4} n}=e^{j \frac{2 \pi 3}{8} n}$ is periodic since $3,8 \in \mathbb{Z}$ of period $T_{2}=8$. We know that the sum of two periodic functions is periodic of period $=\operatorname{lcm}\left(T_{1}, T_{2}\right)$. Therefore $x[n]$ is periodic of period 56 .

Problem 2. Compute the following sums.
(a) $S=\sum_{n=i}^{j} a^{n}$.

The sum is finite and $S=\sum_{n=0}^{j} a^{n}-\sum_{n=0}^{i-1} a^{n}=\frac{1-a^{j+1}}{1-a}-\frac{1-a^{i}}{1-a}=\frac{a^{i}-a^{j+1}}{1-a}$.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)^{n}$.

Such a sum converges if and only if the absolute value of the common ratio is less than one $(|r|<1)$. Its value can then be computed from the finite sum formulae $\sum_{k=0}^{\infty} r^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} r^{k}=\lim _{n \rightarrow \infty} \frac{\left(1-r^{n+1}\right)}{1-r}=\lim _{n \rightarrow \infty} \frac{1}{1-r}-\lim _{n \rightarrow \infty} \frac{r^{n+1}}{1-r}$. Since $r^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ when $|r|<1$ then $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$.
The sum is infinite since $\left|\frac{1}{2}+j \frac{\sqrt{3}}{2}\right|=1 \geq 1$.
(c) $S=\sum_{k=1}^{n} \sin \left(2 \pi \frac{k}{N}\right), n \leq N$.
$S=\sum_{k=1}^{n} \frac{e^{2 \pi \frac{k}{N}}-e^{-2 \pi \frac{k}{N}}}{2 j}=\sum_{k=1}^{n} \frac{1}{2 j}\left(\frac{1-e^{2 \pi \frac{n}{N}}}{1-e^{\frac{2 \pi}{N}}}-1-\frac{1-e^{-2 \pi \frac{n}{N}}}{1-e^{\frac{-2 \pi}{N}}}+1\right)=$ $\frac{\sin \left(\frac{2 \pi}{N}\right)-\left(\sin \frac{2 \pi n}{N}\right)+\sin \left(\frac{2 \pi(n-1)}{N}\right)}{2-2 \cos \left(\frac{2 \pi}{N}\right)}$.
(d) $\sum_{n=1}^{\infty} e^{(1 / 2+j 3 / 4) n}$.

The reasoning is the same as in b). The sum is infinite since $\left|e^{(1 / 2+j 3 / 4)}\right|=e^{1 / 2} \geq 1$.

Problem 3. Compute the following integrals.
(a) $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$.
$\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x$ since $f(x)=\frac{1}{1+x^{4}}$ is pair.
$I=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x=\frac{1}{2} \oint_{C} \frac{1}{1+z^{4}} d z$.
I is calculated using the residue theorem. The poles of $f(z)=\frac{1}{1+z^{4}}$ are $z_{1}=e^{j \frac{\pi}{4}}, z_{2}=$ $e^{j \frac{3 \pi}{4}}, z_{3}=e^{j \frac{5 \pi}{4}}, z_{4}=e^{j \frac{7 \pi}{4}}$. Only z_{1} and z_{2} are inside C and the integral over $C 1$ is close to zero (it can be shown that the integral over $C 1$ tends to zero as the radius of the arc tends to infinity) so $I=2 \pi j \sum_{z_{1}, z_{2}} \operatorname{Res}\left[\frac{1}{1+z^{4}}\right]$.
$\operatorname{Res} z_{1} f(z)=\left|\frac{1}{\frac{d}{d z}\left(1+z^{4}\right)}\right| z_{1}=\left|\frac{1}{4 z^{3}}\right| z_{1}=\frac{1}{4} e^{-j \frac{3 \pi}{4}}$
$\operatorname{Res} z_{2} f(z)=\left|\frac{1}{4 z^{3}}\right| z_{2}=\frac{1}{4} e^{-j \frac{9 \pi}{4}}$
$I=\frac{1}{2} 2 \pi j \frac{1}{4}\left(e^{-j \frac{3 \pi}{4}}+e^{-j \frac{9 \pi}{4}}\right)=\frac{\pi \sqrt{2}}{4}$
(b) $I=\int_{-\infty}^{\infty} \frac{\cos s x}{k^{2}+x^{2}} d x$.
$I=\int_{-\infty}^{\infty} \frac{\cos s x+j \sin s x}{k^{2}+x^{2}} d x$ since $\int_{-\infty}^{\infty} \frac{j \sin s x}{k^{2}+x^{2}} d x=0$ as $\sin s x$ is symmetric according to the origin.
$I=\int_{-\infty}^{\infty} \frac{e^{j s x}}{k^{2}+x^{2}} d x=\oint_{C} \frac{e^{j s z}}{k^{2}+z^{2}} d z$. I is calculated using the residue theorem. The poles of $f(z)=\frac{e^{j s z}}{k^{2}+z^{2}}$ are $z_{1}=j k$ and $z_{2}=-j k$. Only z_{1} is inside C the integral over $C 1$ is close to zero (it can be shown that the integral over $C 1$ tends to zero as the radius of the arc tends to infinity) so $I=2 \pi j \operatorname{Res} z_{1} f(z)$.
$\operatorname{Res} z_{1} f(z)=\left|\frac{e^{j s z}}{\frac{d}{d z}\left(k^{2}+z^{2}\right)}\right| z_{1}=\frac{e^{-s k}}{2 j k}$.
$I=\int_{-\infty}^{\infty} \frac{\cos s x}{k^{2}+x^{2}} d x=2 \pi j \frac{e^{-s k}}{2 j k}=\frac{\pi}{k} e^{-s k}$.
(c) $I=\int_{0}^{2 \pi} \frac{\sin \theta}{36-16 \sin \theta} d \theta$.
$I=\int_{0}^{2 \pi} \frac{1}{2 j} \frac{\left(e^{j \theta}-e^{-j \theta}\right)}{34-16 \frac{\left(e e^{\theta}-e^{-j \theta}\right)}{2 j}} d \theta=\oint_{C} \frac{z-z^{-1}}{68 j-16 z+16 z^{-1}} \frac{d z}{j z}=\oint_{C} \frac{z^{2}-1}{-16 z^{2}+68 j z+16} \frac{d z}{j z}$, change of variable $z=e^{j \theta}$ was used. C is $|z|=1$.
I is calculated using the residue theorem. The poles of $f(z)=\frac{z^{2}-1}{-16 j z^{3}-68 z^{2}+16 j z}$ are $z_{1}=0, z_{2}=\frac{1}{4} j, z_{3}=4 j$. Only z_{1} and z_{2} are inside C so $I=2 \pi j \sum_{z_{1}, z_{2}} \operatorname{Res}[f(z)]$.
$\operatorname{Res} z_{1} f(z)=\left|\frac{z^{2}-1}{\frac{d}{d z}\left(-16 j z^{3}-68 z^{2}+16 j z\right)}\right| z_{1}=\left|\frac{z^{2}-1}{-48 j z^{2}-136 z+16 j}\right| z_{1}=-\frac{1}{16 j}=\frac{j}{16}$.
$\operatorname{Res} z_{2} f(z)=\left|\frac{z^{2}-1}{-48 j z^{2}-136 z+16 j}\right| z_{2}=\frac{-\frac{1}{16}-1}{-15 j}=-\frac{17 j}{240}$.
$I=\int_{0}^{2 \pi} \frac{\sin \theta}{36-16 \sin \theta} d \theta=2 \pi j\left(\frac{j}{16}-\frac{17 j}{240}\right)=\frac{\pi}{60}$.
Problem 4. Find the z-transform OF following series.
(a) $x[n]=a^{n} u[n]$.
$X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\frac{1}{1-a z^{-1}}$.
ROC: $\left|a z^{-1}\right|<1,|z|>|a|$.
(b) $x[n]=n a^{n} u[n]$.
$X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} n a^{n} z^{-n}=z \sum_{n=0}^{\infty} n a^{n} z^{-n-1}=z \sum_{n=0}^{\infty}-\frac{d}{d z}\left(a^{n} z^{-n}\right)=$ $-z \frac{d}{d z}\left(\sum_{n=0}^{\infty} a^{n} z^{-n}\right)=-z \frac{d}{d z}\left(\frac{1}{1-a z^{-1}}\right)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$.
ROC: $|z|>|a|$.

Problem 5. Find the inverse z-transform of following series.
(a) $X(z)=\frac{1}{\left(1-1 / 4 z^{-1}\right)\left(1-1 / 2 z^{-1}\right)},|z|>1 / 2$. $X(z)=-\frac{1}{1-\frac{1}{4} z^{-1}}+\frac{2}{1-\frac{1}{2} z^{-1}}$. Both parts of $\mathrm{X}(\mathrm{z})$ are causal since the ROC is the region outside the farest pole $\left(\frac{1}{2}\right)$, therefore $x[n]=-\left(\frac{1}{4}\right)^{n} u[n]+2\left(\frac{1}{2}\right)^{n} u[n]$.
(b) $X(z)=\frac{1}{\left(1-1 / 5 z^{-1}\right)\left(1+3 z^{-1}\right)}, 3>|z|>1 / 5$. $X(z)=\frac{1 / 16}{1-\frac{1}{5} z^{-1}}+\frac{15 / 16}{1+3 z^{-1}}$. The first part of $X(z)$ is causal and the second is anticausal, therefore $x[n]=\frac{1}{16}\left(\frac{1}{5}\right)^{n} u[n]-\frac{15}{16}(-3)^{n} u[-n-1]$.

