Problem 1. Consider the two signals $x[n]$ and $y[n]$ defined as follows:

$$
\begin{aligned}
& x[n]= \begin{cases}\sin \left(\frac{n \pi}{5}\right) & 0 \leq n \leq 9 \\
0 & \text { otherwise }\end{cases} \\
& y[n]= \begin{cases}n & 0 \leq n \leq 9 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Use MATLAB to:

1. Plot $z[n]=x[n]+y[n]$.
2. Compute and plot $z[n]=x[n] \star y[n]$.
3. Compute the energy of $x[n]$.
4. Using the MATLAB function fft, verify Parseval's identity between $x[n]$ and its DFT.

Problem 2. Write a Matlab function that takes as input a sequence $x[n]$ of length N, returns the DFT of $x[n]$, and plots both $x[n]$ and its DFT (magnitude and phase).

1. Try your function for the input signal $x[n]=\delta[n-3]$.
2. Use Matlab's fft function to verify your answer to part (1).

Problem 3.

1. Write a Matlab function that takes as input N and plots the following signal for $N=5,8$.

$$
x_{N}[n]= \begin{cases}1 & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

2. Derive analytically the $2 N$ point DFT of the above defined step function for an arbitary N and plot it for $N=5,8$.
3. Modify the DFT function you wrote for problem 2 to compute and plot (both the phases and the magnitudes of) the $2 N$ point DFT of $x_{N}(n)$ for $N=5,8$.
4. Use the Matlab function subplot to display your answer to parts (2) and (3) in one window.
