ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 3
Signal Processing for Communications
Homework 2
March 1, 2010

Problem 1. 1. Show that the set of all ordered n-tuples $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with the natural definition for the sum:

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right]
$$

and the multiplication by a scalar:

$$
\alpha\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right]
$$

form a vector space. Give its dimension and find a basis.
2. Show that the set of signals of the form $y(x)=a \cos (x)+b \sin (x)$ (for arbitrary a, b), with the usual addition and multiplication by a scalar, form a vector space. Give its dimension and find a basis.
3. Are the four diagonals of a cube orthogonal?
4. Express the discrete-time impulse $\delta[n]$ in terms of the discrete-time unit step $u[n]$ and conversely.
5. Show that any function $f(t)$ can be written as the sum of an odd and an even function, i.e. $f(t)=f_{o}(t)+f_{e}(t)$ where $f_{o}(-t)=-f_{o}(t)$ and $f_{e}(-t)=f_{e}(t)$.

Problem 2. Let $\{x(k)\}, k=0, \ldots, N-1$, be a basis for a space S. Prove that any vector $z \in S$ is uniquely represented in this basis.

Hint. Prove by contradiction.
Problem 3. Assume v and w are two vectors in the vector space. Prove the triangular inequality for each v and w.

$$
\|v+w\| \leq\|v\|+\|w\|
$$

Hint. Expand $\|v+w\|^{2}$ and use Cauchy-Schwarz inequality.
Problem 4. Consider the following signal

$$
x[n]=(5-|n|) \cdot(u[n+5]-u[n-6]) .
$$

Draw the following signals:

- $x[n]$.
- $x[-2 n+3]$.
- $\sum_{k=-\infty}^{n} x[2 k]$.

Problem 5. Find the inverse z-transform of following series.
(a) $X(z)=\frac{1}{\left(1-1 / 4 z^{-1}\right)\left(1-1 / 2 z^{-1}\right)},|z|>1 / 2$.
(b) $X(z)=\frac{1}{\left(1-1 / 5 z^{-1}\right)\left(1+3 z^{-1}\right)}, 3>|z|>1 / 5$.

