ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 26	Signal Processing for Communications
Homework 11	May 10, 2010

PROBLEM 1. Consider a zero-mean white random process X[n] with autocorrelation function $r_x[m] = \sigma^2 \delta[m]$. The process is filtered with a 2-tap FIR filter whose impulse response is h[0] = h[1] = 1. Compute the values of the autocorrelation for the output random process Y[n] = X[n] * h[n] from n = -3 to n = 3.

PROBLEM 2. Consider the stochastic process defined by

$$Y[n] = X[n] + \beta X[n-1],$$

where $\beta \in \mathbb{R}$ and X[n] is a zero-mean wide-sense stationary process with autocorrelation function given by

$$R_x[k] = \delta^2 a^{|k|}$$

for |a| < 1.

- (a) Compute the power spectral density $P_Y(e^{jw})$ of Y[n].
- (b) For which values of β does Y[n] corresponds to a white noise? Explain.

PROBLEM 3. Consider a stationary i.i.d. random process x[n] whose samples are uniformly distributed over the [-1, 2] interval. The process is quantized with a 1-bit quantizer $\mathcal{Q}\{\}$ with the following characteristic:

$$\mathcal{Q}\{x\} = \begin{cases} -1 & \text{if } x < 0\\ +1 & \text{if } x \ge 0 \end{cases}$$

Compute the signal to noise ratio at the output of the quantizer.

PROBLEM 4. Consider the quantizer \mathcal{Q} which takes X that has a value in the interval [0,1] and outputs \hat{X} , the first r bits of its binary expansion. Assume we feed X with the following density function into the quantizer:

$$f_X(x) = \frac{1}{2} + bx.$$

(a) Find b.

- (b) Find $Pr(\hat{X} = \hat{x})$.
- (c) Around a point y, i.e., in a small interval $[y, y + \delta]$ what fraction of points out of the $K = 2^r$ should there be in this interval approximately; in particular how does this relate to f(x).