ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 1	Signal Processing for Communications
Homework 1	February 22, 2010

PROBLEM 1. Decide whether the following signals are periodic, and if so, find the period.

(a) $x[n] = e^{j\frac{\pi}{\sqrt{2}}n}$.

(b)
$$x[n] = \frac{\sin(\pi n)}{\pi n}$$
.

(c)
$$x[n] = \sin(n)$$
.

(d) $x[n] = 1 + \sin^2(\pi n)$.

(e)
$$x[n] = e^{j\frac{5\pi}{7}n} + e^{j\frac{3\pi}{4}n}$$
.

PROBLEM 2. Compute the following sums.

(a)
$$\sum_{n=i}^{j} a^n$$
.

(b)
$$\sum_{n=1}^{\infty} (\frac{1}{2} + j\frac{\sqrt{3}}{2})^n$$
.

(c)
$$\sum_{k=1}^{n} \sin(2\pi \frac{k}{N}), \qquad n < N$$

(d) $\sum_{n=1}^{\infty} e^{(1/2+j3/4)n}$.

Hint. Just a simple explanation is enough. Remember to check first if the sum is finite and then try to compute it.

PROBLEM 3. Compute the following integrals.

(a)
$$\int_0^\infty \frac{1}{1+x^4} dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx.$$

Hint. Relate this integral to $\oint_C \frac{e^{jsz}}{k^2+z^2} dz$, and find the proper C.

(c) $\int_0^{2\pi} \frac{\sin\theta}{34 - 16\sin\theta} d\theta$.

Hint. Euler once said " $\sin \theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$ ". Relate this integral to $\oint_C f(z) \frac{dz}{jz}$, so that as θ ranges from 0 to 2π , the variable $z = e^{j\theta}$ ranges counterclockwise once around the unit circule |z| = 1.

Hint. Use the residue integration method.

http://en.wikipedia.org/wiki/Methods_of_contour_integration

PROBLEM 4. Find the z-transform OF following series.

(a)
$$x[n] = a^n u[n]$$
.

(b)
$$x[n] = na^n u[n].$$

Hint. Do not forget to provide the region of convergence.

PROBLEM 5. Find the inverse z-transform of following series.

(a)
$$X(z) = \frac{1}{(1-1/4z^{-1})(1-1/2z^{-1})}$$
, $|z| > 1/2$.
(b) $X(z) = \frac{1}{(1-1/5z^{-1})(1+3z^{-1})}$, $3 > |z| > 1/5$.