ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 1
Homework 1
Signal Processing for Communications
February 22, 2010
Problem 1. Decide whether the following signals are periodic, and if so, find the period.
(a) $x[n]=e^{j \frac{\pi}{\sqrt{2}} n}$.
(b) $x[n]=\frac{\sin (\pi n)}{\pi n}$.
(c) $x[n]=\sin (n)$.
(d) $x[n]=1+\sin ^{2}(\pi n)$.
(e) $x[n]=e^{j \frac{5 \pi}{7} n}+e^{j \frac{3 \pi}{4} n}$.

Problem 2. Compute the following sums.
(a) $\sum_{n=i}^{j} a^{n}$.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)^{n}$.
(c) $\sum_{k=1}^{n} \sin \left(2 \pi \frac{k}{N}\right), \quad n<N$.
(d) $\sum_{n=1}^{\infty} e^{(1 / 2+j 3 / 4) n}$.

Hint. Just a simple explanation is enough. Remember to check first if the sum is finite and then try to compute it.
Problem 3. Compute the following integrals.
(a) $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$.
(b) $\int_{-\infty}^{\infty} \frac{\cos s x}{k^{2}+x^{2}} d x$.

Hint. Relate this integral to $\oint_{C} \frac{e^{j s z}}{k^{2}+z^{2}} d z$, and find the proper C.
(c) $\int_{0}^{2 \pi} \frac{\sin \theta}{34-16 \sin \theta} d \theta$.

Hint. Euler once said " $\sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)$ ". Relate this integral to $\oint_{C} f(z) \frac{d z}{j z}$, so that as θ ranges from 0 to 2π, the variable $z=e^{j \theta}$ ranges counterclockwise once around the unit circule $|z|=1$.
Hint. Use the residue integration method.
http://en.wikipedia.org/wiki/Methods_of_contour_integration
Problem 4. Find the z-transform OF following series.
(a) $x[n]=a^{n} u[n]$.
(b) $x[n]=n a^{n} u[n]$.

Hint. Do not forget to provide the region of convergence.
Problem 5. Find the inverse z-transform of following series.
(a) $X(z)=\frac{1}{\left(1-1 / 4 z^{-1}\right)\left(1-1 / 2 z^{-1}\right)},|z|>1 / 2$.
(b) $X(z)=\frac{1}{\left(1-1 / 5 z^{-1}\right)\left(1+3 z^{-1}\right)}, 3>|z|>1 / 5$.

