Problem 1.

(a) We have

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
4 & 4 & 4 \\
3 & 1 & 3
\end{array}\right]
$$

and $u=(2,2,0)$.
(b) It is -1 .
(c) Since the determinant is non-zero, the system can be solved uniquely.
(d),(e) The complexity of the Gaussian elimination is $O\left(n^{3}\right)$.

Problem 2.

(a) Note that the first 4 entries of a codeword are the information bits. Thus the information vector used has been $u=(1,0,1,0)$ and the corresponding codeword to this information vector is $(1,0,1,0,1,0,0)$. Thus the vector given in the question is not a codeword.
(b) There are 16 codewords. A list can be given by multiplying the matrix G with all the possible 4 dimensional information vectors u in the form of $X=u G$.
(c) As mentioned in part (a), the first 4 bits of a codeword are the information bits. As a result, assuming $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ has been the information vector used, we have $u_{3}=0, u_{4}=1$. To find u_{1} and u_{2} We should solve the system of equations $\bar{u} \bar{G}=X^{T}$, where $\bar{u}=\left(u_{1}, u_{2}, 0,1\right), \bar{X}=(0,1,0,1)$ and \bar{G} is the matrix formed by deleting the first 4 columns of G.
(d) C is the row space of the parity check matrix H corresponding to G (i.e., the matrix which has the property $\left.H G^{T}=0\right)$. H can is found to be

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) The space generated by the 3 rows of the matrix H given above is C^{T}.

Problem 3.
(a) $r \times\left(2^{r}-1\right)$
(b) Note that

$$
\left(\begin{array}{c}
1 \tag{1}\\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
1
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)=\mathbf{0}
$$

So, $d_{\text {min }} \leq 3$.

Furthermore, if $\exists i, j$ such that $V_{i} \oplus V_{j}=0$, necessarily $V_{i}=V_{j}$, which is not possible by construction of H. Thus $d_{\text {min }}>2$. Hence $d_{\min }=3$.
(c) $H_{r} X=0$, and we are interested in the dimension of the kernel H.
H_{r} is a $r \times\left(2^{r}-1\right)$ matrix and it is full rank. Thus we can set any $2^{r}-1-r$ elements of the vector X as desired and the rest of the elements will be determined by the system of equations $H_{r} X=0$.

So, there are $2^{2^{r}-r-1}$ such vectors in the kernel of H_{r} and thus its dimension is $2^{r}-r-1$.
(d) To show that the code is linear, we should verify that

$$
\text { if } X_{1} \in C \text { and } X_{2} \in C \Rightarrow X_{1}+X_{2} \in C
$$

This is true because

$$
\begin{aligned}
& \text { if } X_{1} \in C \text { and } X_{2} \in C \\
& \Rightarrow H_{r} X_{1}=0 \text { and } H_{r} X_{2}=0 \\
& \Rightarrow H_{r}\left(X_{1}+X_{2}\right)=H_{r} X_{1}+H_{r} X_{2}=0 \\
& \Rightarrow X_{1}+X_{2} \in C .
\end{aligned}
$$

So the code is linear.

Codeword length: $2^{r}-1$.
Dimension of the code: $2^{r}-r-1$.
$d_{\min }=3$.
Rate of the code $=\frac{k}{n}=\frac{2^{r}-r-1}{2^{r}-1}$.

Note that the rate of this code approaches 1 as $r \rightarrow \infty$.

