Solutions 7

1. a) We have:

$$
\operatorname{Re} g_{\mu}(u+i v)=\int_{\mathbb{R}} \frac{x-u}{(x-u)^{2}+v^{2}} d \mu(x) \quad \text { and } \quad \operatorname{Im} g_{\mu}(u+i v)=\int_{\mathbb{R}} \frac{v}{(x-u)^{2}+v^{2}} d \mu(x) .
$$

b) No proof required: the analyticity of g_{μ} on $\mathbb{C} \backslash \mathbb{R}$ follows from the analyticity of $z \mapsto \frac{1}{x-z}$ on $\mathbb{C} \backslash \mathbb{R}$ and the use of the dominated convergence theorem.
c) If $v>0$, then $\operatorname{Im} g_{\mu}(u+i v)$ is clearly positive by the above formula.
d) We have:

$$
v^{2}\left|g_{\mu}(i v)\right|^{2}=\left(\int_{\mathbb{R}} \frac{v(x-u)}{(x-u)^{2}+v^{2}} d \mu(x)\right)^{2}+\left(\int_{\mathbb{R}} \frac{v^{2}}{(x-u)^{2}+v^{2}} d \mu(x)\right)^{2}
$$

By the dominated convergence theorem, the first term on the right-hand side converges to 0 as $v \rightarrow+\infty$ and the second term converges to 1 .
e) This is a straightforward computation.
2. a) We have

$$
\begin{aligned}
\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{\mu}(x+i \varepsilon) d x & =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b}\left(\int_{\mathbb{R}} \frac{\varepsilon}{(y-x)^{2}+\varepsilon^{2}} d \mu(y)\right) d x \\
& =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}}\left(\int_{a}^{b} \frac{\varepsilon}{(y-x)^{2}+\varepsilon^{2}} d x\right) d \mu(y) \\
& =\left.\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}} \operatorname{arctg}\left(\frac{y-x}{\varepsilon}\right)\right|_{x=a} ^{x=b} d \mu(y) .
\end{aligned}
$$

Since

$$
\left.\lim _{\varepsilon \downarrow 0} \operatorname{arctg}\left(\frac{y-x}{\varepsilon}\right)\right|_{x=a} ^{x=b}=\left\{\begin{array}{ll}
\pi, & \text { if } a<y<b, \\
\frac{\pi}{2}, & \text { if } y=a \text { or } b \\
0, & \text { otherwise }
\end{array}=\pi\left(1_{] a, b[}(y)+\frac{1}{2} 1_{\{a, b\}}(y)\right),\right.
$$

we conclude by the dominated convergence theorem that

$$
\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{\mu}(x+i \varepsilon) d x=\mu(] a, b[),
$$

at any $a<b$ continuity points of F_{μ}.
b) Assuming that μ has a pdf p_{μ}, the very same computation as above leads to

$$
\begin{aligned}
\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{\mu}(x+i \varepsilon) d x & =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b}\left(\int_{\mathbb{R}} \frac{\varepsilon}{(y-x)^{2}+\varepsilon^{2}} p_{\mu}(y) d y\right) d x \\
& =\int_{\mathbb{R}}\left(1_{] a, b}(y)+\frac{1}{2} 1_{\{a, b\}}(y)\right) p_{\mu}(y) d y=\int_{a}^{b} p_{\mu}(y) d y
\end{aligned}
$$

3. a) We have for $z=x+i y$,

$$
g_{0}(z)=\frac{1}{x_{0}-i y_{0}-x-i y}=\frac{x_{0}-x+i\left(y_{0}+y\right)}{\left(x_{0}-x\right)^{2}+\left(y_{0}+y\right)^{2}},
$$

so

$$
\operatorname{Im}\left(g_{0}(z)\right)=\frac{\left(y_{0}+y\right)}{\left(x_{0}-x\right)^{2}+\left(y_{0}+y\right)^{2}} .
$$

Let us first consider the case where $y_{0}=0$. Then the result of Exercise 2, part a), tells us that for any $a<x_{0}<b$,

$$
\begin{aligned}
\mu(] a, b[) & =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b} \frac{\varepsilon}{\left(x_{0}-x\right)^{2}+\varepsilon^{2}} d x \\
& =\left.\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \operatorname{arctg}\left(\frac{x-x_{0}}{\varepsilon}\right)\right|_{x=a} ^{x=b}=\frac{1}{\pi}\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=1 .
\end{aligned}
$$

So that $\mu(] a, b[)=1$ for all $a<x_{0}<b$, i.e. $\mu=\delta_{x_{0}}$ and the moments of μ are $m_{k}=x_{0}^{k}$.
For the case $y_{0}>0$, we have

$$
p_{\mu}(x)=\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \frac{y_{0}+\varepsilon}{\left(x_{0}-x\right)^{2}+\left(y_{0}+\varepsilon\right)^{2}}=\frac{1}{\pi} \frac{y_{0}}{\left(x_{0}-x\right)^{2}+y_{0}^{2}},
$$

which is the Cauchy distribution with parameters x_{0} and y_{0}. This distribution has no finite moments, but notice that x_{0} is closely related to its "mean" and that $1 / y_{0}$ is a measure of how spread the distribution is.
b) The solution of the equation is

$$
g_{ \pm}(z)=-\frac{z}{2} \pm \sqrt{\frac{z^{2}}{4}-1}
$$

and for $\operatorname{Im} z>0$, only g_{+}satsifies $\operatorname{Im} g_{+}(z)>0$. Therefore, by Exercise 2, part b), we have

$$
\begin{aligned}
p_{\mu}(x) & =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \operatorname{Im}\left(g_{+}(z)\right)=\frac{1}{\pi} \lim _{\varepsilon \downarrow 0}\left(-\frac{\varepsilon}{2}+\operatorname{Im}\left(\sqrt{\frac{(x+i \varepsilon)^{2}}{4}-1}\right)\right) \\
& =\frac{1}{\pi} \operatorname{Im}\left(\sqrt{\frac{x^{2}}{4}-1}\right)=\frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{\{|x| \leq 2\}} .
\end{aligned}
$$

c) The solution of the equation is

$$
g_{ \pm}(z)=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-\frac{1}{z}}
$$

and for $\operatorname{Im} z>0$, only g_{+}satsifies $\operatorname{Im} g_{+}(z)>0$. Therefore,

$$
\begin{aligned}
p_{\mu}(x) & =\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \operatorname{Im}\left(g_{+}(z)\right)=\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \operatorname{Im}\left(\sqrt{\frac{1}{4}-\frac{1}{x+i \varepsilon}}\right) \\
& =\frac{1}{\pi} \operatorname{Im}\left(\sqrt{\frac{1}{4}-\frac{1}{x}}\right)=\frac{1}{\pi} \sqrt{\frac{1}{x}-\frac{1}{4}} 1_{\{0<x \leq 4\}} .
\end{aligned}
$$

4. Let us first mention that if $|\rho|=1$, the series

$$
\begin{equation*}
\sum_{l \in \mathbb{Z}}|\rho|^{|l|} \tag{1}
\end{equation*}
$$

is infinite, so the Grenander-Szegö theorem does not apply. We therefore have to perform a separate analysis in this case.

If $\rho=+1$, then the matrix $T^{(n)}$ is the all-one matrix; it therefore has one eigenvalue equal to n (corresponding to the all-one eigenvector) and all others equal to zero (corresponding to the remaining $n-1$ eigenvectors, orthogonal to the all-one vector). We therefore have for any bounded continuous function f :

$$
\frac{1}{n} \sum_{j=1}^{n} f\left(\lambda_{j}^{(n)}\right)=\frac{1}{n} f(n)+\frac{n-1}{n} f(0) \underset{n \rightarrow \infty}{\rightarrow} f(0)
$$

i.e., the empirical eigenvalue distribution of $T^{(n)}$ converges weakly to the Dirac mass δ_{0} at point $x=0$. If $\rho=-1$, then $T^{(n)}$ is the matrix with alternating ± 1; it also has one eigenvalue equal to n (corresponding to the alternating ± 1 eigenvector), all other eigenvalues being 0 . So the empirical eigenvalue distribution of $T^{(n)}$ converges weakly to δ_{0} also in this case.

In the case where $\rho \in]-1,+1[$, the series (1) is finite, so the Grenander-Szegö theorem applies. Let us compute the function g :

$$
\begin{aligned}
g(x) & =\sum_{l \in \mathbb{Z}} \rho^{|l|} e^{i l x}=1+\sum_{l=1}^{\infty} \rho^{l}\left(e^{i l x}+e^{-i l x}\right) \\
& =1+\sum_{l=1}^{\infty}\left(\left(\rho e^{i x}\right)^{l}+\left(\rho e^{-i x}\right)^{l}\right)=\frac{1}{1-\rho e^{i x}}+\frac{1}{1-\rho e^{-i x}}-1 \\
& =\frac{2\left(1-\operatorname{Re}\left(\rho e^{i x}\right)\right)}{\left|1-\rho e^{i x}\right|^{2}}-1=\frac{1-\rho^{2}}{1+\rho^{2}-2 \rho \cos x} .
\end{aligned}
$$

By the theorem, we have for any bounded continuous function f :

$$
\frac{1}{n} \sum_{j=1}^{n} f\left(\lambda_{j}^{(n)}\right) \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{\pi} \int_{0}^{\pi} f(g(x)) d x .
$$

Note that

$$
\frac{1-|\rho|}{1+|\rho|} \leq g(x) \leq \frac{1+|\rho|}{1-|\rho|}
$$

and that these two bounds are those of the limiting spectrum of $T^{(n)}$. We now make the change of variable $y=g(x)$, so that

$$
d y=-\frac{1-\rho^{2}}{\left(1+\rho^{2}-2 \rho \cos x\right)^{2}} 2 \rho \sin x d x
$$

Inverting this relation (using the fact that $\sin x=\sqrt{1-\cos ^{2} x}$), we obtain:

$$
d x=-\frac{1-\rho^{2}}{y^{2} 2 \rho \sin x} d x=-\frac{\sqrt{1-\rho^{2}}}{y \sqrt{\rho^{2}(y+1)^{2}-(y-1)^{2}}} d y
$$

so that

$$
\frac{1}{n} \sum_{j=1}^{n} f\left(\lambda_{j}^{(n)}\right) \underset{n \rightarrow \infty}{\rightarrow} \int_{\frac{1-|\rho|}{1+|\rho|}}^{\frac{1+|\rho|}{1-| |}} f(y) \frac{\sqrt{1-\rho^{2}}}{\pi y \sqrt{\rho^{2}(y+1)^{2}-(y-1)^{2}}} d y .
$$

