Random matrices and communication systems

COM-612, Summer Semester 2009-2010

Solutions 7

1. a) We have:

Reg,(u+iv) = /R % du(z) and Img,(u+iv) = /R m du(x).
b) No proof required: the analyticity of g, on C\R follows from the analyticity of z — xiz on C\R
and the use of the dominated convergence theorem.
c) If v > 0, then Im g, (u + iv) is clearly positive by the above formula.
d) We have:
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By the dominated convergence theorem, the first term on the right-hand side converges to 0 as v — +00
and the second term converges to 1.
e) This is a straightforward computation.
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we conclude by the dominated convergence theorem that
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b) Assuming that p has a pdf p,, the very same computation as above leads to



3. a) We have for z = = + iy,
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Let us first consider the case where yg = 0. Then the result of Exercise 2, part a), tells us that for
any a < xg < b,
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So that u(]a,b[) =1 for all a < 29 < b, i.e. = &y, and the moments of u are my, = x§.

For the case yg > 0, we have
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which is the Cauchy distribution with parameters xy and yg. This distribution has no finite moments,
but notice that xg is closely related to its “mean” and that 1/yp is a measure of how spread the
distribution is.

b) The solution of the equation is
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and for Imz > 0, only g satsifies Img, (z) > 0. Therefore, by Exercise 2, part b), we have
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c¢) The solution of the equation is
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and for Imz > 0, only g satsifies Img, (z) > 0. Therefore,
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4. Let us first mention that if [p| = 1, the series
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is infinite, so the Grenander-Szeg6 theorem does not apply. We therefore have to perform a separate
analysis in this case.

If p = +1, then the matrix T is the all-one matrix; it therefore has one eigenvalue equal to n
(corresponding to the all-one eigenvector) and all others equal to zero (corresponding to the remaining
n — 1 eigenvectors, orthogonal to the all-one vector). We therefore have for any bounded continuous
function f:
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i.e., the empirical eigenvalue distribution of 7™ converges weakly to the Dirac mass &g at point = = 0.

If p = —1, then T is the matrix with alternating +1; it also has one eigenvalue equal to n (corre-
sponding to the alternating +1 eigenvector), all other eigenvalues being 0. So the empirical eigenvalue
distribution of T converges weakly to dy also in this case.

In the case where p € | — 1, +1], the series (1) is finite, so the Grenander-Szegd theorem applies. Let
us compute the function g:
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By the theorem, we have for any bounded continuous function f:
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Note that
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and that these two bounds are those of the limiting spectrum of 7). We now make the change of
variable y = g(x), so that
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Inverting this relation (using the fact that sinz = v/1 — cos? ), we obtain:
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