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1. a) Using Cauchy-Schwartz inequality, we obtain

|m2k+1|2 =
∣∣∣∣∫

R
dµ(x)xk xk+1

∣∣∣∣2 ≤ (∫
R
dµ(x)x2k

) (∫
R
dµ(x)x2k+2

)
= m2km2k+2,

so a condition on the growth of the even moments of µ ensures the same growth for the odd moments.

b) If |mk| ≤ Ck, then m
1/2k
2k ≤ C, so

lim sup
k→∞

1
2k

(m2k)
1
2k = 0 <∞.

If in turn the above lim sup is finite, then this means that there exists C > 0 such that

(m2k)
1
2k ≤ C 2k, ∀k ≥ k0 sufficiently large,

so
∞∑
k=0

m
− 1

2k
2k ≥

∞∑
k=k0

1
C 2k

=∞.

2. a) First observe that the odd moments of µ vanish, since the distribution is symmetric (i.e.
pµ(−x) = pµ(x) for all x ∈ R). By the indicated change of variable, we have for m2k:

m2k =
∫ 2

−2
x2k 1

2π

√
4− x2 dx =

1
π

∫ π/2

0
(2 sin(t))2k

√
4− 4 sin(t)2 2 cos(t) dt

=
22k+2

π

∫ π/2

0
sin(t)2k cos(t)2 dt =

22k+2

π

(∫ π/2

0
sin(t)2k dt−

∫ π/2

0
sin(t)2(k+1) dt

)
.

By integration by parts (with u(t) = sin2k−1(t) and v(t) = sin(t)), we have

ak+1 :=
∫ π/2

0
sin(t)2(k+1) dt = (2k + 1)

∫ π/2

0
sin(t)2k cos2(t) dt = (2k + 1) (ak − ak+1),

so

ak+1 =
2k + 1
2k + 2

ak = . . . =
(2k + 1) · · · 3 · 1
(2k + 2) · · · 4 · 2

a0 =
(2k + 1)!/(2k k!)

2k+1 (k + 1)!
a0 =

(2k + 1)!
22k+1 k!(k + 1)!

a0.

Since a0 = π
2 , we finally obtain

m2k =
22k+2

π

ak+1

2k + 1
=

(2k)!
k!(k + 1)!

=
1

k + 1

(
2k
k

)
,

Since

m2k ≤
(2k)!
(k!)2

≤ ((2k)(2k − 2) · · · 2)2

(k!)2
=

(2k k!)2

(k!)2
≤ 4k,
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Carleman’s condition is satisfied. An easier way to see this is to notice that µ has bounded support
([−2, 2]).

b) The density of N (0, 1) is pµ(x) = 1√
2π

exp
(
−x2

2

)
. Therefore p′µ(x) = −x pµ(x) and we have by

integration by parts:∫
R
x f(x) pµ(x) dx = −

∫
R
f(x) p′µ(x) dx =

∫
R
f ′(x) pµ(x) dx,

where we have used the fact that the boundary term vanishes to zero as n → ∞ (since f(x) is by
assumption growing polynomially at infinity and pµ(x), p′µ(x) ' exp(−x2/2)) .

Notice that m1 = 0 and m2 = 1. We then have, by application of part the preceding formula,

mk+2 =
∫

R
dx pµ(x)xxk+1 = (k + 1)

∫
R
dx pµ(x)xk+1 = (k + 1)mk.

From this, we deduce by induction that m2k+1 = 0 for all k ≥ 0 (but this could have also been deduced
from the fact the µ is symmetric) and that

m2k = (2k − 1) · · · 3 · 1 =
(2k)!

2k (k!)
, for all k ≥ 0.

This moments satisfy Carleman’s condition, since as before,

m2k ≤
((2k)(2k − 2) · · · 2)2

2k k!
= 2k k!

and k! ≤ kk+1/2 by Stirling’s formula.

c) Using the change of variable x = ey, we obtain

mk =
∫ ∞

0
xk pµ(x) dx =

∫
R
eky pµ(ey) ey dy.

Noticing that pµ(ey) ey = 1√
2π

exp
(
−y2

2

)
, we further obtain

mk =
1√
2π

ek
2/2

∫
R
e−(y−k)2/2 dy = ek

2/2.

These moments do not satisfy Carleman’s condition, since

∞∑
k=0

m
− 1

2k
2k =

∞∑
k=0

e−k <∞.

d) In order to satisfy µ(R) = 1, we must have C = 1/
∑

j∈Z e
−j2/2. Let us compute the moments of µ:

mk = C
∑
j∈Z

ejk e−j
2/2 = C ek

2/2
∑
j∈Z

e−(j−k)2/2 = ek
2/2.

Notice that the moments of this distribution and the preceding are the same, even though the distri-
butions are different.

e) By the change of variable y = xλ, we have∫
R
xk dµ(x) = cλ

∫ ∞
0

xk exp(−xλ) dx = cλ λ

∫ ∞
0

yk/λ e−y y1/λ−1 dy = cλ λΓ((k + 1)/λ),
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where Γ is the Euler Gamma function. Using the approximation Γ(x+ 1) ∼ [x]!, we see that

mk =
∫

R
xk dµ(x) ∼ [ kλ ]!

so by Stirling’s formula (log(k!) ∼ k log k),

lim sup
k→∞

1
2k

(m2k)
1
2k ∼ lim sup

k→∞

1
2k

e
1
λ

log(2k/λ) ∼ lim sup
k→∞

1
2k

(2k/λ)
1
λ <∞

if and only if λ ≥ 1. We can deduce the following rule of thumb from the preceding argument: a distri-
bution is uniquely determined by its moments as long as its tail is not heavier than the exponential e−x.

3. By ex. 2.b), we only need to check that for any k ≥ 0,∫
R
xk dFn(x) →

n→∞
mk,

where m2k+1 = 0 and m2k =
(2k)!

2k (k!)
. Let us therefore compute

∫
R
xk dFn(x) = E(Xk

n) =
1

nk/2
E
(

(Y1 + ...+ Yn)k
)

Using the multinomial expansion, we obtain

E(Xk
n) =

1
nk/2

∑
j1,...jn≥0
j1+...+jn=k

(
k

j1, ..., jn

)
E(Y j1

1 · · ·Y
jn
n ).

Since the Yj are i.i.d. and E(Y 2l+1
j ) = 0 for all l ≥ 0, it is easy to see that the above sum is zero if k

is odd. Let us therefore consider

E(X2k
n ) =

1
nk

∑
j1,...jn≥0

j1+...+jn=2k

(
2k

j1, ..., jn

)
E(Y j1

1 · · ·Y
jn
n )

=
1
nk

∑
l1,...ln≥0
l1+...+ln=k

(
2k

2l1, ..., 2ln

)
E(Y 2l1

1 ) · · ·E(Y 2ln
n ).

Let us divide this sum in two parts:

E(X2k
n ) =

1
nk

∑
l1,...ln∈{0,1}
l1+...+ln=k

(
2k

2l1, ..., 2ln

)
E(Y 2l1

1 ) · · ·E(Y 2ln
n )

+
1
nk

∑
∃1≤i≤n : li≥2
l1+...+ln=k

(
2k

2l1, ..., 2ln

)
E(Y 2l1

1 ) · · ·E(Y 2ln
n ).

We see that the first term on the right-hand side is equal to

1
nk

(
n
k

)
(2k)!

2k
1 =

n(n− 1) · · · (n− k + 1)
nk

(2k)!
2k k!

→
n→∞

(2k)!
2k k!

.
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The theorem will therefore be proved if we check that the second term on the right-hand side goes to
zero as n→∞:

1
nk

∑
∃1≤i≤n : li≥2
l1+...+ln=k

(
2k

2l1, ..., 2ln

)
E(Y 2l1

1 ) · · ·E(Y 2ln
n ) ≤ C2k

nk

∑
∃1≤i≤n : li≥2
l1+...+ln=k

(2k)!
(2l1)! · · · (2ln)!

≤ C2k

nk
n

k∑
m=2

∑
l1,...,ln−1≥0

l1+...+ln−1=k−m

(2k)!
(2l1)! · · · (2ln−1)!(2m)!

≤ C2k (2k)!
nk−1

k∑
m=2

∑
l1,...,ln−1≥0

l1+...+ln−1=k−m

1 =
C2k (2k)!
nk−1

k∑
m=2

(
n+ k −m− 2

k −m

)

≤ C2k (2k)!
nk−1

k∑
m=2

(n+ k −m− 2)k−m ≤ C2k (2k)! k
nk−1

(n+ k)k−2 ≤ Ck
n
→

n→∞
0. �
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