Random matrices and communication systems COM-612, Summer Semester 2009-2010

Solutions 6

1. a) Using Cauchy-Schwartz inequality, we obtain
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so a condition on the growth of the even moments of y ensures the same growth for the odd moments.
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b) If |my| < C¥, then m%% <, so
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If in turn the above limsup is finite, then this means that there exists C' > 0 such that

(m2l~c)i < C2k, Vk> ko sufficiently large,
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2. a) First observe that the odd moments of p vanish, since the distribution is symmetric (i.e.
pu(—x) = pu(z) for all z € R). By the indicated change of variable, we have for mgy:
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By integration by parts (with u(t) = sin?*~1(¢) and v(t) = sin(t)), we have

m/2 w/2
Gt = / sin(£)20+D) gr = (2% + 1) / sin(t)2* cos(t) di = (2K + 1) (ag — ags1),
0 0

SO

ok + 1 (2k+1)-
a = —ar=...=
kL= o ok

3-1  k+DY/EFEY)  (2k+1)!
2k +2) 42707 oM (1)l 0T 9 RI(k 4 1)

Since ap = 5, we finally obtain
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Carleman’s condition is satisfied. An easier way to see this is to notice that p has bounded support
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b) The density of N(0,1) is pu(z) = \/% exp (—%) Therefore p,(z) = —rp,(x) and we have by

integration by parts:
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where we have used the fact that the boundary term vanishes to zero as n — oo (since f(z) is by
assumption growing polynomially at infinity and p,(z),p),(z) ~ exp(—z?/2)) .

Notice that m; = 0 and my = 1. We then have, by application of part the preceding formula,
Miyo = / depy(z)z 2" = (k+1) / dr py(z) 2" = (k4 1) my.
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From this, we deduce by induction that mgy1 = 0 for all £ > 0 (but this could have also been deduced
from the fact the u is symmetric) and that
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This moments satisfy Carleman’s condition, since as before,
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and k! < kF*1/2 by Stirling’s formula.

¢) Using the change of variable x = e¥, we obtain
oo
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Noticing that p,(e¥)e¥ = \/% exp (—%), we further obtain
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These moments do not satisfy Carleman’s condition, since
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d) In order to satisfy u(R) =1, we must have C' =1/% . e~9*/2. Let us compute the moments of yu:
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Notice that the moments of this distribution and the preceding are the same, even though the distri-
butions are different.

A we have

e) By the change of variable y = z
/ 2 dp(z) = C)\/ 2F exp(—2) dz = ¢, )\/ Y eV y A dy = ex AT((k +1)/N),
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where I is the Euler Gamma function. Using the approximation I'(z + 1) ~ [z]!, we see that
mi = [ o duta) ~ (5]
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so by Stirling’s formula (log(k!) ~ klogk),
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if and only if A > 1. We can deduce the following rule of thumb from the preceding argument: a distri-

bution is uniquely determined by its moments as long as its tail is not heavier than the exponential e™7.

3. By ex. 2.b), we only need to check that for any k > 0,
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where mop4+1 = 0 and moy, = m Let us therefore compute
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Using the multinomial expansion, we obtain
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Since the Yj; are i.i.d. and IE(YJ-QZH) =0 for all [ > 0, it is easy to see that the above sum is zero if k
is odd. Let us therefore consider
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Let us divide this sum in two parts:
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We see that the first term on the right-hand side is equal to
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The theorem will therefore be proved if we check that the second term on the right-hand side goes to
Zero as n — oo:

1 2k C2 2k)!
nk > <2l1,.. 2 >E(Y1211)"'E(Yf?ln)§7ﬁ 2. (2;1)!(...)(2ln)!

., 21
J1<i<n:1;>2 v J1<i<n:1;>2
I+ Ain=k I+ +in=k

o (2k)!
s En 2 2. (20t (2—1)!(2m)!

2 (2k)) & C2 (26) S~ [ ke —m — 2
D I S
m=2 ll,...,ln,120 m=2
14ty 1=k—m
2k (9k) & 2k (2k) K C
< ¢ k(_l) g (n+k—m—2)k_m§0 2_1) ( +k)k_2<?k — 0 O
n n—oo
m=2



