Random matrices and communication systems COM-612, Summer Semester 2009-2010

Solutions 5

1. a) First note that we have the following equivalent definitions:
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By the Cauchy-Schwarz inequality, we obtain:
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For k € {1,...,n}, we denote by 8®) the column vector whose components are given by 5](.k) =1if

7 =k, 0 otherwise. We then have
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Next, we see that since ||Az|| < ||A||1 ||=|],
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Finally, let us denote by b*) the k-th column vector of the matrix B (i.e., bg-k) = bj}); we have
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b) Without any assumption on A, we know that 5; > 0 for all j. If A is Hermitian, then a;; € R and
B = oz]? (provided that we have ordered the eigenvalues correspondingly).

Now, another possible equivalent definition for ||A||; is

A= swp oAz,
zeCn:||z||=1

and A*A is diagonalizable (because it is Hermitian), so A*A = U*DU for some unitary matrix U and
D = diag(f1,...,0y). This implies that
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Similarly,
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Finally, using the fact that any square matrix A is similar to a Jordan matrix, i.e., that there exists
an invertible matrix S such that
A=SJS71,

where J is an upper-triangular matrix whose main diagonal is composed of the eigenvalues aq, ..., ay,
of A, we deduce that
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¢) Since T and C™ are both Hermitian, we deduce from part 2 that
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Using then Gersgorin discs’ argument, we deduce that
IT™|; <4 and [|C™]y < 4.

NB: there are many ways to prove these two inequalities! (in particular, one could use ex. 2 below)
The third inequality is the result of a direct computation:
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From these inequalities and the above results, we deduce finally that
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2. We have
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Similarly (set tp = 1 and ¢; = 0 for all [ # 0 in the above formula), we have
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From the above two equations, we easily deduce that

inf g(z) <A™ < sup g(x).
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