Solutions 1

First of all, since λ is an eigenvalue of A, there exists $u \in \mathbb{C}^n$ such that $u \neq 0$ and $Au = \lambda u$. In particular, $u^*Au = \lambda u^*u$.

a1) If $A^* = A$, then

$$\lambda u^* u = u^* A u = u^* A^* u = (Au)^* u = (\lambda u)^* u = \overline{\lambda} u^* u,$$

i.e. $\lambda \in \mathbb{R}$, since $u^*u \neq 0$.

a2) If $A^* = -A$, then similarly,

$$\lambda u^* u = u^* A u = -u^* A^* u = -\overline{\lambda} u^* u,$$

i.e. $\lambda \in i\mathbb{R}$, since $u^*u \neq 0$.

b1) If $a_{jk} \in \mathbb{R}$ for all $j, k \in \{1, ..., n\}$, then we have

$$\overline{Au} = \overline{\lambda u}$$
, so $A\overline{u} = \overline{\lambda} \overline{u}$.

i.e. $\overline{\lambda}$ is also an eigenvalue of A.

b2) If $a_{jk} \in i\mathbb{R}$ for all $j, k \in \{1, ..., n\}$, then we have

$$\overline{Au} = \overline{\lambda u}, \text{ so } -A\overline{u} = \overline{\lambda}\overline{u}.$$

i.e. $-\overline{\lambda}$ is also an eigenvalue of A.

c) If A is positive semi-definite, then $\lambda u^*u = u^*Au \ge 0$ by assumption, so $\lambda \ge 0$, since $u^*u > 0$.

d1) If $A^*A = I$, then

$$|\lambda|^2 ||u||^2 = ||\lambda u||^2 = ||Au||^2 = u^* A^* A u = u^* u$$
, so $|\lambda| = 1$.

d2) Notice that $(A^2)_{jk} = 1$ if j + k = n or j = k = n, and 0 otherwise. Therefore, is easy to infer that $A^4 = I$, so that whenever λ is an eigenvalue of A, we have $\lambda^4 = 1$, i.e. $\lambda \in \{1, i, -1, -i\}$.

e1) If $a_{jk} \geq 0$ for all $j, k \in \{1, ..., n\}$ and $Au = \lambda u$, then let $l = \operatorname{argmax}_j |u_j|$. We have

$$|\lambda u_l| = \left| \sum_{k=1}^n a_{lk} u_k \right| \le \sum_{k=1}^n a_{lk} |u_k| \le \sum_{k=1}^n a_{lk} |u_l|.$$

Since $u \neq 0$, $|u_l| > 0$, so

$$|\lambda| \le \sum_{k=1}^{n} a_{lk} \le \max_{j \in \{1,\dots,n\}} \sum_{k=1}^{n} a_{jk}.$$

e2) It is a direct consequence of e1), since $\sum_{k=1}^{n} a_{jk} = 1$ for all $j \in \{1, \dots, n\}$.

f) Let again $l = \operatorname{argmax}_{i} |u_{j}|$. $Au = \lambda u$ implies that

$$(\lambda - a_{ll}) u_l = \sum_{k=1, k \neq l}^n a_{lk} u_k,$$

 \mathbf{SO}

$$|\lambda - a_{ll}| |u_l| \le \sum_{k=1, k \ne l}^n |a_{lk}| |u_k| \le \sum_{k=1, k \ne l}^n |a_{lk}| |u_l|.$$

This in turn implies (since $|u_l| > 0$) that

$$|\lambda - a_{ll}| \le \sum_{k=1, k \ne l}^{n} |a_{lk}|,$$

so

$$\lambda \in \bigcup_{j=1}^{n} B\left(a_{jj}, \sum_{k=1, k \neq j}^{n} |a_{jk}|\right).$$