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1 Introduction

Toeplitz matrices arise naturally in the study of stationary random processes.
Therefore, a careful analysis of their properties is needed in order to under-
stand the behavior of the underlying processes. In particular, the spectral
behavior of Toeplitz matrices and their close relationship with circulant ma-
trices are of particular interest. In this report, we consider the extension to the
multi-dimensional case, by means of multi-level Toeplitz and their associated
multi-level circulant matrices. We also show how the asymptotic equivalences
established between some classes of Toeplitz and circulant matrices can be gen-
eralized by means of low-rank corrections.

The outline of the report is as follows. In Section 2, we explain multi-level
matrices and multi-level indexing. We extend some results about Toeplitz ma-
trices to the multi-dimensional case and illustrate them with a simple example.
Section 3 shows how standard results can be generalized to a larger class of
Toeplitz matrices by means of a low-rank correction. We finally offer some
conclusions in Section 4.

2 Multi-Level Toeplitz Matrices

In this section, we first review some concepts about (single level) Toeplitz ma-
trices and then show how these generalize to the multi-level case. We then
illustrate these theoretical results with a simple example.

2.1 Single-Level Case

An n × n Toeplitz matrix Tn is a matrix with constant coefficients along its
diagonals, i.e. (Tn)i,j = tj−i for 1 ≤ i, j ≤ n where (Tn)i,j denotes the ele-
ment at position (i, j). It is thus completely characterized by its generating
sequence {tk}k∈Z. We may consider the associated (2π-periodic) Fourier series
f(x) defined as

f(x) =
∑

k∈Z

tkeikx. (1)

Note that we do not say anything about the convergence of the above series.
In particular, if Tn is Hermitian (i.e. f(x) is real-valued) and {tk} ∈ ℓ1(Z),
then f(x) exists, is continuous and bounded. In the rest of the discussion, the
Toeplitz matrices under consideration will be solely characterized with respect
to their associated Fourier series f and denoted Tn(f). Toeplitz matrices are
of particular interest in the study of stationary random processes, since the
covariance matrix corresponding to any finite realization of such processes is of
Toeplitz form. Unfortunately, very little is known about the eigenvalues of Tn in
general. We can however alleviate this problem by considering the asymptotic
eigenvalue behavior as the size n of the matrix becomes large. To this end, we
first recall the two following definitions.
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Definition 2.1 (Equally Distributed Sequences). Two sequences of real num-

bers {λ(n)
k }n

k=1 and {µ(n)
k }n

k=1 are said to be equally distributed if for any con-
tinuous function F with bounded support

lim
n→∞

n
∑

k=1

[

F
(

λ
(n)
k

)

− F
(

µ
(n)
k

)]

= 0. (2)

We denote λ(n) ∼ µ(n).

Definition 2.2 (Asymptotic Distribution). A sequence of real numbers {λ(n)
k }n

k=1

is said to have an asymptotic distribution if there is a Lebesgue-integrable 2π-
periodic function f(x) such that for any continuous function F with bounded
support

lim
n→∞

1

n

n
∑

k=1

F
(

λ
(n)
k

)

=
1

2π

∫ 2π

0

F (f(x)) dx. (3)

The sequence {λ(n)
k } is said to be distributed as f(x) and we denote λ(n) ∼ f(x).

Definitions 2.1 and 2.2 are central to all the results considered in the se-
quel concerning the limiting eigenvalue distribution of Toeplitz matrices. In the
rest of the discussion, we will concentrate on Hermitian Toeplitz matrices (f(x)
real-valued). Similar results hold for the singular values in the non-Hermitian
case [1]. Note that if f ∈ L∞, the eigenvalues of Tn(f) all belong to a common
finite interval [m, M ] for all n. In this case, we can thus restrict the above defi-
nitions to any function F continuous on [m, M ].

Let us denote the eigenvalues of Tn(f) by λ
(n)
k . In order to prove that

λ(n) ∼ f(x), the idea is to consider a carefully chosen circulant matrix Cn(f)

with eigenvalues µ
(n)
k such that

λ(n) ∼ µ(n) and µ(n) ∼ f(x). (4)

Circulant matrices are characterized by the fact that (Cn)i,j = cj−i(mod n). We
write Cn = circ(c0, c1, . . . , cn−1). Note that such a matrix is not necessarily
unique. In [1], two types of circulant matrices are shown to both fulfill the
conditions given by (4). The first type, referred to as “simple” circulant and
denoted Sn, is constructed from the Toeplitz sequence {tk}k∈Z as

S2m = circ(t0, t1, . . . , tm, t−m, . . . , t−1),

S2m+1 = circ(t0, t1, . . . , tm−1, 0, t−m+1, . . . , t−1).
(5)

The second type, referred to as “Cesàro” circulant and denoted Cn, is built as

Cn = circ(c0, c1, . . . , cn−1) (6)

where

c0 = t0,

ck =
(n − k)tk + kt−n+k

n
for k = 1, 2 . . . , n − 1.

(7)
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(a) (b)

Figure 1: Multi-level matrices. The tiling of a multi-level matrix with (a) p = 2,
n1 = 3, n2 = 2 and (b) p = 3, n1 = 2, n2 = 2, n3 = 2.

Note that in both definitions, the idea is to build a circulant sequence out of
a Toeplitz sequence. Using these results, the theorem of Szegö [2] states that
for f ∈ L∞, the eigenvalues of Tn(f) are asymptotically distributed as f(x).
This was extended in [1] to the case where f ∈ L2. We state it here for future
reference.

Theorem 2.3. If f(x) ∈ L2 is a real-valued function, then the eigenvalues of
the (Hermitian) Toeplitz matrix Tn(f) are distributed as f(x).

2.2 Multi-Level Case

The results presented in the single-level case can be extended to matrices with
multiple levels. Multi-level matrices are matrices which are recursively par-
titioned into smaller blocks. We give a more precise characterization in the
following definition that aims to avoid cumbersome notations.

Definition 2.4 (Multi-Level Matrix). A partitioned matrix A of size n × n is
called a p-level matrix of level orders n1, n2, . . . , np if n = n1 ·n2 · · ·np and if the
matrix at level k can be obtained from the matrix at level k − 1 by partitioning
each block into n2

k square blocks of equal size (with the convention A0 = A and
n0 = n).

Examples of multi-level tilings are shown in Figure 1. A possible way to
index a multi-level matrix is with the use of multi-indices. Namely, for each
element a, we define similarly its horizontal and vertical position by two vectors
of indices

ī = (i1, i2, . . . , ip) ,

j̄ = (j1, j2, . . . , jp) .
(8)

The index 1 ≤ ik ≤ nk (resp. 1 ≤ jk ≤ nk) corresponds to the horizontal (resp.
vertical) position of the block at level k to which the element a belongs. We thus
successively refine the position of the element a as we go through the vectors ī
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a

b

Figure 2: Multi-level indexing. The element a is indexed by the vectors ī =
(1, 2, 2) and j̄ = (1, 1, 2). The element b is indexed by the vectors ī = (2, 1, 1)
and j̄ = (2, 2, 2).

18 17 14 13 6 5 2 1

17 18 13 14 5 6 1 2

14 13 16 15 2 1 4 3

13 14 15 16 1 2 3 4

6 5 2 1 12 11 8 7

5 6 1 2 11 12 7 8

2 1 4 3 8 7 10 9

1 2 3 4 7 8 9 10

Figure 3: Schematic representation of a multi-level Toeplitz matrix with p = 3,
n1 = 2, n2 = 2 and n3 = 3.

and j̄. Based on these vectors, the position of the element a can be expressed
as

i = (i1 − 1)ñ1 + . . . + (ip−1)ñp−1 + ip ,

j = (j1 − 1)ñ1 + . . . + (jp−1)ñp−1 + jp

(9)

where ñk = n/(n1 · n2 · · ·nk). Examples of multi-level indexing is shown in
Figure 2.

Let k̄ = (k1, k2 . . . , kp) and n̄ = (n1, n2 . . . , np). We define 1̄ ≡ (1, 1, . . . , 1)
and the inequality k̄ ≤ n̄ to mean that kl ≤ nl for l = 1, 2, . . . , p. With these
notations, a multi-level Toeplitz matrix can be defined similarly to the single-
level case. A p-level Toeplitz matrix Tn̄ of size n × n with n = n1 · n2 · · ·np

is a matrix such that (Tn̄)̄i,j̄ = tj̄−ī for 1̄ ≤ ī, j̄ ≤ n̄ where (Tn̄)̄i,j̄ denotes the
element indexed by the vectors ī and j̄. It is thus completely characterized by
its generating sequence {tk̄}k̄∈Zp . A multi-level Toeplitz matrix is thus a multi-
level matrix whose level k is Toeplitz with respect to level k+1. Such a matrix is
schematically represented in Figure 3. We can naturally associate a multi-level
Toeplitz matrix Tn̄ with the multi-dimensional Fourier series f(x1, x2, . . . , xp)
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defined as

f(x1, x2, . . . , xp) ∼
∑

k1∈Z

∑

k2∈Z

· · ·
∑

kp∈Z

t(k1,k2,...,kp)e
i(k1x1+k2x2+...+kpxp) (10)

which is 2π-periodic with respect to each argument. In this case, we denote it
Tn̄(f). Using short-hand notations, we can more compactly write

f(x̄) ∼
∑

k̄∈Zp

tk̄ei〈k̄,x̄〉 (11)

where x̄ = (x1, x2 . . . , xp) and 〈., .〉 denotes the Euclidian scalar product. Again,
nothing is said about the convergence of the above series. At this point, we can
extend Definitions 2.1 and 2.2 of Section 2.1 to the multi-level case.

Definition 2.5 (Equally Distributed Multi-Level Sequences). Two multi-level

sequences of real numbers {λ(n̄)

k̄
} and {µ(n̄)

k̄
} are said to be equally distributed if

for any continuous function F with finite support

lim
n̄→∞

∑

1̄≤k̄≤n̄

[

F
(

λ
(n̄)

k̄

)

− F
(

µ
(n̄)

k̄

)]

= 0. (12)

We denote λ(n̄) ∼ µ(n̄).

Definition 2.6 (Asymptotic Multi-Level Distribution). A multi-level sequence

of real numbers {λ(n̄)

k̄
} is said to have an asymptotic (multi-level) distribution

if there is a function f(x1, x2, . . . , xp), Lebesgue-integrable on the p-dimensional
cube [0, 2π]p and 2π-periodic with respect to each argument, such that for any
continuous function F with finite support

lim
n̄→∞

1

n1 · n2 · · ·np

∑

1̄≤k̄≤n̄

F
(

λ
(n̄)

k̄

)

=
1

(2π)p

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0

F (f(x1, x2, . . . , xp)) dx1dx2 · · ·dxp . (13)

The sequence {λ(n̄)

k̄
} is said to be distributed as f(x1, x2 . . . , xp) and we denote

λ(n̄) ∼ f(x1, x2 . . . , xp).

The notation n̄ → ∞ means that nk → ∞ for all 1 ≤ k ≤ p. Using Defini-
tions 2.5 and 2.6, we can proceed exactly along the same lines as in Section 2.1.

Let us denote the eigenvalues of Tn̄(f) by λ
(n̄)

k̄
. The main technicality is to con-

struct a multi-level circulant matrix Cn̄(f) with eigenvalues µ
(n̄)

k̄
which fulfills

λ(n̄) ∼ µ(n̄) and µ(n̄) ∼ f(x1, x2, . . . , xp). (14)

A multi-level circulant is characterized by (Cn̄ )̄i,j̄ = cj̄−ī(mod n̄) where j̄ −
ī(mod n̄) ≡ (j1 − i1(mod n1), j2 − i2(mod n2), . . . , jp − ip(mod np)). In other
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i

j

k

l

m

Figure 4: Nearest neighbor averaging. The pixel i is obtained by computing the
average value of its nearest neighbors j,k,l and m.

words, the matrix at level k is circulant with respect to level k + 1. As in
the single-level case, “simple” and “Cesàro” multi-level circulant matrices can
be built [1] and shown to both fulfill conditions (14). This allows to state the
following theorem [1] which is the multi-level counterpart to Theorem 2.3.

Theorem 2.7. If f(x1, x2, . . . , xp) ∈ L2 is a real-valued function, then the
eigenvalues of the p-level (Hermitian) Toeplitz matrix Tn̄(f) are distributed as
f(x1, x2, . . . , xp).

2.3 Example: Nearest Neighbor Averaging

We now illustrate the theory explained previously by means of a simple example.
We define the 2-level Hermitian Toeplitz matrix Tn̄ of size m2 × m2 as

(Tn̄)i1,i2,j1,j2 =







1 if |i1 − j1| = 1 and i2 = j2,
1 if |i2 − j2| = 1 and i1 = j1,
0 otherwise

(15)

for 1 ≤ i1, i2, j1, j2 ≤ m. The parameters of this multi-level matrix are thus
p = 2 and n1 = n2 = m. A possible scenario where we might encounter such a
matrix is the following. Consider an image of size m × m where the pixel i has
coordinate (i1, i2). Suppose that we represent this image by a vector of length
m2 whose coefficients are obtained by scanning the image row-wise. Applying
the matrix Tn̄ on this vector amounts (up to a normalization factor) to replace
the value of the pixel i by the average value of its nearest neighbors, as shown in
Figure 4. In other words, it amounts to filter the image with a two-dimensional
low-pass filter whose frequency response is given by the two-dimensional Fourier
series f(x1, x2) derived hereafter. The corresponding two-level circulant matrix
amounts to consider the nearest neighbor averaging of an image which has been
wrapped around both axis. We show the effect of this averaging process on a
real image in Figure 5. The matrix Tn̄ is generated by the sequence tk̄ = tk1,k2
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(a) (b) (c)

Figure 5: Nearest neighbor averaging on a real image. (a) The original 64 × 64
image. (b) The image after the first transformation. (c) The image after the
second transformation.
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Figure 6: Fourier series f(x1, x2) corresponding to the 2-level Hermitian Toeplitz
matrix Tn̄.

where

tk1,k2 =

{

1 if (k1, k2) ∈ {(−1, 0), (0,−1), (1, 0), (0, 1)},
0 otherwise.

(16)

Thus, the corresponding two-dimensional Fourier series f(x1, x2) exists, is con-
tinuous and bounded. It can easily be computed as

f(x1, x2) =
∑

k1∈Z

∑

k2∈Z

tk1,k2e
i(k1x1+k2x2)

= 2 cosx1 + 2 cosx2. (17)

We plot it over one period in Figure 6. Denoting the eigenvalues of Tn̄(f) by
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λn̄
j̄
, we can compute the moments mk of the limiting eigenvalue distribution as

mk = lim
n̄→∞

1

n1 · n2

∑

1̄≤j̄≤n̄

(

λn̄
j̄

)k

(1)
=

1

(2π)2

∫ 2π

0

∫ 2π

0

f(x1, x2)
kdx1dx2

=
1

(2π)2

∫ 2π

0

∫ 2π

0

(2 cosx1 + 2 cosx2)
k
dx1dx2

(2)
=

2k

(2π)2

∫ 2π

0

∫ 2π

0

k
∑

l=0

(

k
l

)

cosl(x1) cosk−l(x2) dx1dx2

(3)
=

2k

(2π)2

k
∑

l=0

(

k
l

)
∫ 2π

0

cosl(x1)dx1

∫ 2π

0

cosk−l(x2)dx2

where (1) follows from Theorem 2.7 using F (x) = xk, (2) from the binomial
formula, (3) from the linearity of the integrals. When k is odd, the above
summation is easily seen to be zero owing to the parity of the cosine function.
Thus m2k+1 = 0 for all k ∈ Z. In the even case, m2k can be computed as

m2k =
22k

(2π)2

k
∑

l=0

(

2k
2l

)
∫ 2π

0

cos2l(x1)dx1

∫ 2π

0

cos2(k−l)(x2)dx2

(1)
=

k
∑

l=0

(

2k
2l

) (

2l
l

) (

2k − 2l
k − l

)

=

k
∑

l=0

(2k)!

(l!)2[(k − l)!]2

(2)
=

(

2k
k

)2

where (1) follows from the fact that [3, Homework 7]

1

2π

∫ 2π

0

cos2l(x1)dx1 =
1

22l

(

2l
l

)

and (2) from the formula
k

∑

l=0

(

k
l

)2

=

(

2k
k

)

.

The moments mk are thus given by

mk =







(

2k
k

)2

if k is even,

0 if k is odd.

(18)
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Numerical evaluation shows that the first six even moments are: 1, 4, 36, 400,
4900 and 63504. We can also try to derive the corresponding limiting eigenvalue
distribution F (t) which can be computed as

F (t) =
1

(2π)2

∫

f(x1,x2)≤t

dx1dx2 =
1

π2

∫

f(x1,x2)≤t

dx1dx2 (19)

for t ∈ [−4, 4] where in the second integral (x1, x2) ∈ [0, π]2. The second
equality follows from obvious arguments about the symmetry of f(x1, x2) =
2 cosx1+2 cosx2, as can be inferred from Figure 6. Assume first that t ∈ [−4, 0].
For all x1 ∈ [arccos(1+t/2), π], there exists a unique x2 ∈ [arccos(t/2−cosx1), π]
such that f(x1, x2) = t. We can thus write

1

π2

∫

f(x1,x2)≤t

dx1dx2 =
1

π2

∫ π

arccos(1+t/2)

∫ π

arccos(t/2−cos x1)

dx2dx1

=
1

π2

∫ π

arccos(1+t/2)

(

π − arccos

(

t

2
− cosx1

))

dx1.

Unfortunately, the above integral does not seem to be solvable in closed-form.
Nevertheless, we can derive the underlying probability density function (pdf)
p(t) using the derivation formula

d

dt

∫ b(t)

a(t)

f(t, s)ds = f(t, b(t))b′(t) − f(t, a(t))a′(t) +

∫ b(t)

a(t)

∂f

∂t
(t, s)ds.

This yields

p(t) =
d

dt
F (t)

=
1

π2

∫ π

arccos(1+t/2)

1

2

√

1 −
(

t
2 − cosx1

)2
dx1

=
1

2π2

∫ 1+t/4

−1−t/4

1
√

(

1 −
(

t
4 − x1

)2
) (

1 −
(

t
4 + x1

)2
)

dx1

where the last equality follows from the change of variable x1 → cos(x1) − t/4.
Using tabulated formulas [4], the above integration yields for t ∈ (−4, 0)

p(t) = − 4

π2(t − 4)
K

(

(t + 4)2

(t − 4)2

)

where K denotes the complete elliptic integral of the first kind given by

K(t) =

∫ π/2

0

1
√

(

1 − t sin2 θ
)

dθ.
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Figure 7: Probability density function p(t) of the limiting eigenvalue distribution
of the 2-level Hermitian Toeplitz matrix Tn̄(f). (a) Theoretical result. (b)
Experimental result for m = 50.

In particular, limt→0 K(t) = π/2 and limt→1 K(t) = ∞, hence

lim
t→−4+

p(t) =
1

4π

and
lim

t→0−

p(t) = ∞.

The pdf thus exhibits a discontinuity in -4 and 0. Note that Tn̄(f) has the
same eigenvalues as −Tn̄(f). The pdf is thus symmetric around zero and we
can deduce that for all t ∈ (−4, 0) ∪ (0, 4),

p(t) = − 4

π2(|t| − 4)
K

(

(|t| + 4)2

(|t| − 4)2

)

. (20)

The pdf p(t) is shown in Figure 7. Note that the moments mk correspond to
the squared moments of an arcsin law whose pdf is given by

pν(t) =
1

π
√

4 − t2
1{|t|<2} . (21)

Since these moments satisfy Carleman’s condition, our density p(t) corresponds
to the pdf of the random variable Z = XY , where X and Y are two independent
random variables distributed according to pν .

Let us now consider another matrix Rn̄ obtained by independently choosing
the non-zero coefficients of Tn̄ to be equal to 1 with probability p and -1 with
probability 1− p. We nevertheless force the matrix to be Hermitian. For p = 0,
Rn̄ = Tn̄ and for p = 1, Rn̄ = −Tn̄. Thus, for both cases, the pdf is well known
and is given by (20). However, for a general value of p, Rn̄ is not a multi-level
Toeplitz and the corresponding pdf seems difficult to derive analytically. We
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Figure 8: Probability density function p(t) of the limiting eigenvalue distribution
of the 2-level random Hermitian matrix Rn̄. Experimental result for m = 50
and (a) p = 0, (b) p = 0.1 (c) p = 0.2 and (d) p = 0.5. The graphs have been
averaged over 1000 realizations.
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Figure 9: Probability density function p(t) of the limiting eigenvalue distribution
of the 2-level random Hermitian matrix Rn̄. Experimental result for m = 50
and (a) a binomial distribution of parameter p = 1/2 and (b) a zero mean
Gaussian distribution with variance 1/3. The graphs have been averaged over
1000 realizations.

show in Figure 8 the empirical pdfs obtained for different values of p. Note that
Rn̄ exhibits the same behavior as Tn̄, i.e. Rn̄ and −Rn̄ have the same eigenvalues.
Hence, the pdfs obtained with p and 1− p will be the same and we can restrict
our analysis to p ∈ [0, 0.5]. It also interesting to compare the graphs obtained in
the case where the non-zero elements of the matrix are distributed according to
two different distributions. In Figure 9, we plot the pdfs corresponding to the
binomial distribution considered so far, with p = 1/2, and a zero mean Gaussian
distribution with variance 1/3. With these parameters, the two distributions
have mean 0 and variance 1/3. The different curves obtained suggest that there
is no universal law, such as the Wigner’s law, for this type of matrices.

3 Low-Rank Correction

The results presented in Section 2 are based on the assumption that the multi-
dimensional Fourier series f belongs to L2. In this section, we show [5] that
these results still hold if f is in L1. In itself, this extension is only of for-
mal purpose. What is interesting in the L1 case however, is that the approach
adopted to prove the claim is based on low-rank correction matrices. More
precisely, our goal is to prove that, given a p-level Toeplitz matrix Tn̄(f) with
f ∈ L1, the conditions (14) are satisfied for some p-level circulant matrix Cn̄(f).

Let ‖A‖1, ‖A‖2 and ‖A‖F denote respectively the L1, L2 and Frobenius
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norms of the n × n matrix A. These norms are defined as

‖A‖1 = sup
x∈Cn:x 6=0

‖Ax‖
‖x‖ , (22)

‖A‖2 =

√

1

n
tr(A∗A) , (23)

‖A‖F =
√

tr(A∗A) =
√

n‖A‖2 . (24)

The eigenvalues of Tn̄(f) and Cn̄(f) are denoted λ
(n̄)

k̄
and µ

(n̄)

k̄
, respectively.

The condition µ(n̄) ∼ f(x1, x2, . . . , xp) has been proved for f ∈ L1 in [6] using a
Cesàro multi-level circulant matrix. It was also shown in [6] that the following
holds

f ∈ L2 ⇒ ‖Tn̄ − Cn̄‖2
F = o(n) ⇒ λ(n̄) ∼ µ(n̄). (25)

Unfortunately, the properties (25) are no longer valid when f ∈ L1. In other
words, the multi-level Toeplitz Tn̄(f) is not close in norm to the multi-level
circulant matrix Cn̄(f). The derivation that follows aims at showing that the
above properties can be saved if we consider the closeness a bit differently. The
next theorem [7] shows that λ(n̄) ∼ µ(n̄) also holds for f ∈ L1 if Tn̄(f) and
Cn̄(f) are close after a “low-rank correction”, i.e. ‖Tn̄ − Cn̄ + ∆n̄‖2

F = o(n) for
some correction matrix ∆n̄ with rank(∆n̄) = o(n). Here again, we will assume
that f is real-valued. The complex-valued case follows by splitting the matrix
into real and imaginary parts and can be found in [5].

Theorem 3.1. Suppose that for any ǫ > 0, there exists a matrix ∆n̄(ǫ) with
rank smaller than ǫn such that

‖Tn̄ − Cn̄ + ∆n̄(ǫ)‖2
F ≤ ǫn

for all n̄ with sufficiently large components. Then,

λ(n̄) ∼ µ(n̄).

According to Theorem 3.1, it thus remains to show that such a low-rank cor-
rection matrix exists in our case. To this end, we prove the following theorem [5]
by skipping some technical details in order to gain in clarity.

Theorem 3.2. Let f ≥ 0 and f ∈ L1. Then, for an arbitrary ǫ > 0, there
exists a matrix ∆n̄(ǫ) with rank smaller than ǫn such that

‖Tn̄ − Cn̄ + ∆n̄(ǫ)‖2
F ≤ ǫn

for all n̄ with sufficiently large components.

Proof: For convenience, we will write f(x1, x2, . . . , xp) as f(x̄). The key
idea of this proof is to split the generating Fourier series f(x̄) ∈ L1 as

fM (x̄) =

{

f(x̄) for f(x̄) ≤ M,
M for f(x̄) > M
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and rM (x̄) = f(x̄)− fM (x̄) for some M > 0. Since fM (x̄) ∈ L∞, the associated
multi-level Toeplitz Tn̄(fM ) and circulant Cn̄(fM ) are close in norm, i.e.

‖Tn̄(fM ) − Cn̄(fM )‖2
F ≤ ǫn (26)

for all n̄ with sufficiently large components. Let us consider rM (x̄). We have
that

‖rM‖1 =

∫

{x̄∈[0,2π]p:f(x̄)>M}

|f(x̄) − M |dx̄

≤
∫

{x̄∈[0,2π]p:f(x̄)>M}

|f(x̄)|dx̄

=

∫

[0,2π]p
|f(x̄)|1{f(x̄)>M}dx̄.

Now, |f(x̄)|1{f(x̄)>M} ≤ |f(x̄)| with f ∈ L1, thus by the dominated convergence
theorem

lim
M→∞

∫

[0,2π]p
|f(x̄)|1{f(x̄)>M}dx̄ =

∫

[0,2π]p
lim

M→∞
|f(x̄)|1{f(x̄)>M}dx̄ = 0.

Hence, limM→∞ ‖rM‖1 = 0 and limM→∞ |{x̄ ∈ [0, 2π]p : f(x̄) > M}| = 0. It
can be shown [5] that under these conditions, for large enough M , we can write
Tn̄(rM ) and Cn̄(rM ) as

Tn̄(rM ) = T1,n̄(rM ) + T2,n̄(rM ),

Cn̄(rM ) = C1,n̄(rM ) + C2,n̄(rM )

where

max {‖T1,n̄(rM )‖2, ‖C1,n̄(rM )‖2} ≤ ǫ, (27)

max {rankT2,n̄(rM ), rankC2,n̄(rM )} ≤ ǫn. (28)

The way we perform this split is quite technical and we will not discuss this
matter here. The important point is that both Tn̄(rM ) and Cn̄(rM ) can be
divided into one low-norm component (indexed by 1) and one low-rank compo-
nent (indexed by 2). The low-rank components allow us to define our small-rank
correction matrix ∆n̄(ǫ) as

∆n̄(ǫ) ≡ C2,n̄(rM ) − T2,n̄(rM ),

which satisfies rank∆n̄ ≤ 2ǫn by equation (28). We can thus write

‖Tn̄(f) − Cn̄(f) + ∆n̄(ǫ)‖2
F

= ‖ (Tn̄(fM ) − Cn̄(fM )) + (T1,n̄(rM ) − C1,n̄(rM )) ‖2
F

≤ 2‖Tn̄(fM ) − Cn̄(fM )‖2
F + 2‖T1,n̄(rM ) − C1,n̄(rM )‖2

F

≤ 2ǫn + 4ǫ2n.
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The last inequality follows from equation (26) and the fact that, using the
triangle inequality and equation (27), we have

‖T1,n̄(rM ) − C1,n̄(rM )‖2
F = n‖T1,n̄(rM ) − C1,n̄(rM )‖2

2

≤ n‖T1,n̄(rM )‖2
2 + n‖C1,n̄(rM )‖2

2

≤ 2n max
{

‖T1,n̄(rM )‖2
2, ‖C1,n̄(rM )‖2

2

}

≤ 2nǫ2.

The proof follows. �

Theorem 3.2 can be easily extended to any real-valued f by appropriate split-
ting into its positive and negative parts. In the light of the results obtained, we
can thus conclude this discussion with the following theorem.

Theorem 3.3. If f(x1, x2, . . . , xp) ∈ L1 is a real-valued function, then the
eigenvalues of the p-level (Hermitian) Toeplitz matrix Tn̄(f) are distributed as
f(x1, x2, . . . , xp).

4 Conclusions

In this report, we have shown how the notions of Toeplitz and circulant matrices
can be extended to the multi-dimensional case by considering multi-level matri-
ces and multi-level indexing. We have provided a simple example to illustrate
these concepts. Finally, the idea of low-rank correction was explained in order
to prove asymptotic equivalence results between Toeplitz and circulant matrices
for a larger class of Fourier series.
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