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Abstract-
We find the diversity-multiplexing gain trade-off of a multiple-

antenna (MIMO) system with M transmit antennas, N receive X
antennas, R relay nodes, and with independent Rayleigh fading,
in which the relays apply a distributed space-time code. In this :
two-stage scheme the trade-off is shown to coincide with that X
of a MIMO system with R transmit and min{M, N} receive
antennas.

M R N

I. INTRODUCTION Fig. 1. Relay network with multiple antennas at transmitter and receiver.

There has been recent interest in the area of cooperative
diversity, in which relay nodes provide diversity, setting up
multiple independent paths between each transmitter and re- Yang and Belfiore [11] consider the diversity-multiplexing
ceiver [1], [2], [3]. In this way errors will only occur in the trade-off of a MIMO system where the channel matrix H is
rare event that all of the links are in a deep fade. the product of two independent complex Gaussian matrices.

In this paper we are interested in the high SNR behavior of Such a model takes into account instances of lower rank
a system with a single transmitter with M antennas, a single channel matrices. The model we will work with reduces to the
receiver with N antennas, and R single-antenna relay nodes Rayleigh product channel in the special case that the relays
to assist communication (see Fig. 1). We assume half-duplex do no processing of their received signal.
communication, meaning that nodes cannot simultaneously II. MODEL
transmit and receive information. The relays forward a unitary
transform of the signal they receive over T channel uses. Let fij be the fading coefficient from the i-th transmit
The diversity-multiplexing gain trade-off, first introduced by antenna to the j-th relay, and gjk be the fading coefficient
Zheng and Tse in [4] for MIMO systems, is seen as a way from the j-th relay to the k-th transmit antenna. All fading
of comparing the rate versus reliability behavior in the high coefficients are drawn from a CPJ(O, 1) distribution. Next
SNR regime. Since then it has been applied to systems with define
relays or more than one transmitter-receiver pair [5]. fi

Following [4], we consider a family of codes of fixed f2i
block length and increasing signal-to-noise ratio (SNR) and fi 9 [ il 9i2 ... iN ] (1)
say that the user supports a multiplexing gain of r if its
data rate rate(SNR) satisfies limSNR_O rate(SNR) = r. The fmi"Olo SNR-
family has a diversity d if the average probability of error as column and row vectors corresponding to connections to
Pe behaves as liMSNR logSNR =-d (for which we shall the i-th relay.
write Pe SNR-d). Let s be the T x M matrix sent by the transmitter over

The protocol for this system, whose trade-off behavior will T transmission steps and via its M antennas. That is, s =

be analyzed in this paper, was first described by Jing and [ S1 S2 ... SM ], where si is the T-dimensional vector
Hassibi in [6]. This can be considered a generalization of [7] sent by the i-th transmit antenna.
in which there were single-antenna nodes. In these works the In the first T time steps, the transmitter sends s to the relay
pairwise error probability of the system was evaluated and nodes. The receiver is assumed to be inactive at this stage.
conditions placed on the coding to achieve optimal perfor- The i-th relay node receives a faded version of s plus noise:
mance. An explicit code construction is given in [8]. The r- s
single-antenna case has also been studied by Elia et al. [9] ri \/ tf ±
and Susinder Rajan and Sundar Rajan [10]. The coding used where vi is a T-dimensional noise vector. Here we assume
is known as distributed space-time coding as it is spread over E ls 2 =TM, so P is a normalization constant proportional
the relays in the network. to the SNR at the receiver.
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Next each relay left-multiplies its T-dimensional signal by 1) Find the probability of outage taking into account that
a unitary matrix Ai (thus forming linear combinations of the there is additional relay noise. We claim that at high
rows, coding over time) and transmits the resulting vector to SNR the outage behavior is the same as though there
the receiver. The receiver obtains a T x N matrix: the sum of were no relay noise.
the R faded copies of s processed by the relay nodes that are 2) Apply the results of [11] to find the exponent of the
received by N antennas over T further time steps: probability density function of the joint eigenvalue dis-

R tribution of the channel matrix.
X = 3 Airigi + w 3) Optimize this exponent subject to constraints that pre-

=. ~ vent exponential decay of the pdf this gives the
R R diversity by application of Laplace's method [4], that

v'/E Aisfigi + E Aivigi + w asymptotically an integral is close to its integrand having
i=1 i-i dominating exponent:

wherVSH + W, (2) P'e(x) dxc = PsuP, e p -+oo
whereJ

S [ Als A2S ... ARS], (3) We assumeM >N initially.
F 91 4) We argue that the case M < N, the optimal trade-off can

f292 I R be obtained by disregarding N- M receive antennas.
H = l, W = Aivigi + w. (4) The maximum diversity of this scheme (r = 0) is already

[.f i=1 known [6] to be R min{M, N}. The maximum multiplexing
fRgR I gain will be determined by the maximum dimension of the

Here S is a T x MR transmission matrix, H is an MR x N signal space that can be exploited: min{M, N, R}. In the
matrix describing the channel connections as R outer products analysis we now will see what happens for intermediate values
figi stacked together, and W is a T x N noise matrix. The Of r.
noise sources vi from each relay and w at the receiver are We remark that since this is a two stage protocol and that
also assumed to be independent complex Gaussian random the direct link between transmitter and receiver is not used,
variables with zero mean and unit variance for each time step. all multiplexing gains obtained should strictly be divided by
Equation (2) has the same form as a space-time code for a 2, since two channel uses are used to transmit information.
MIMO system. We assume only the receiver knows H, while Adopting the direct path for relay networks with slightly
the transmitter and relays do not have any channel knowledge. different models are considered in [5], [12] and [10] amongst
The difference between this system and a MIMO system is that others. Adopting lines similar to Yang and Belfiore [12], we
there is no cooperation amongst the relays, and none of them conjecture the following, adopting a non-orthogonal amplify
have direct access to s. The code to describe s and the unitary and forward protocol.
matrices Ai form what is known as a distributed space-time Conjecture 1: If d(r) is the trade-off curve we obtain for
code [6]. our system in the following analysis, and d1(r) that of the
We will assume T is sufficiently large for codewords to be direct path between transmitter and receiver (a MIMO link),

allowed to be spaced appropriately distant from each other. then the overall diversity is lower-bounded by
This will allow an error event to be outage dominated. The
model differs from that of [7] in that we do not concern dNAF (r) > di (r) + d(2r).
ourselves with power allocation at the relays. Any constants of The first term here corresponds to the source-destination link
proportionality become absorbed in the forthcoming high-SNR used all the time; the second to the source-relays-destination
analysis. system used at half the rate.

III. MAIN RESULT AND PROOF A. Outage Calculation
In this section we show the following trade-off behavior for Since the equivalent noise W in (4) consists of Gaussian

the system just described.Sneteeuvln os n()cnit fGusatheore 1Cosier mltileantnnsystem withMescribed. noise amplified by gi we need to verify that it does not

transmit antennas, N receive antennas and R relay nodes adversely impact the diversity-multiplexing gain trade-off.trhdniversity-ultip eing ain trade o
r re to-st First we determine the noise covariance. Considering the k-The diversity-multiplexing gain trade-offo h w-tg hrwofWfrk=1 .

ehv fro t4etwo-sage
scheme defined in the previous section (I)-(4) is given by th row of W for k = 1,*... T we have from (4) Wk

k

the piecewise linear curve joining the points (k, d(k)), where Ei=K (Aivi)kgi ± wk where (Aivi) and wk denote the k-
th row of Aivi and w respectively. Then it can be shown that

d(kz) =(min{tM,N}-k)(R-kz), kn 1, ................,min{M,N,R}.r

That is, the trade-off curve coincides with that of a MIMO9

system with min{M, N} transmit and R receive antennas. 6k1WA*I¢(IN±+G*G) whereG [I I
To carry out the trade-off analysis we proceed as follows. L9



Note that this is the same for all time steps k = 1, ... T. The distribution of the ordered eigenvalues A1 > ... >
Hence the instantaneous mutual information between trans- Amin{N,R} of QQ* given D is given by the following lemma,
mitter and receiver is given by [13] applying a result in [14].

Lemma 1. Let p2 > ... > p2 be the ordered values of
I(X; S) = log det(IN + P(IN + G*G)YlH*RSH) (5) fif2, .,2 lfRI12, the diagonal elements of D, assumed to

where Rs is the MR x MR input covariance matrix ofX for be distinct. The distribution of the ordered eigenvalues A 1 >
each time step. ... > Amin{N,R} of QQ* = D1/2GG*D1/2 for fixed D and
We remark that S given by (3) has a particular structure, for G a random R x N matrix with independent CP(O, 1)

namely its columns span the M-dimensional space generated entries, is given by
by the columns of s. It is known that with the channel p(AID)
unknown to the transmitter the mutual information (5) is 2
maximized when Rs = IMR. Hence we make that substitution KR,N det[eXi/I] H>i1i2 R
here. Although S has rank M, Rs takes an average over all Hi i>A, N > R
realizations of S and so is allowed to have full rank MR. - (6)

Since G is a Gaussian matrix, the probability that an GR 1 N - A N < R
eigenvalue of I + G*G is large is exponentially small. That GR,N det[]liR<j ri<j(Aij)N
is, Amax(G*G) < trG*G which is a x2 random variable . . 2

w12NO 2 d o r ( a s o N2 where KR,N and GR,N are normalization constants, [eI- iwith2N egreso fredom(eqivalntl a sm o N 1S a (min -R, N}I x min{R, N}1) matrix with (i, j) entryexponential random variables). Hence it has an exponentially is / (2
decaying tail and its probability of being large is exponentially e , and
small: [1 2 L. 1 e(/) ... pLe(-AN/Iu) 1

(I1+ Amax (GG* )) 1 _po.=:::
We therefore have justified the following sequence of steps: 2 L Le(-_A/[t)2L (-AXN/it)2We therefore(1±Amax(GG*)>l 0 K ~~PR ..PR lPRe R ...P

Poutage(r logP) where L 72(R-N-i).
mmin Pr(I(X;S) < rlogP)

Rs:trRs<MR With each entry being the sum of M independent expo-
mmin Pr (log det(IN+PR HH*RsH)<r log P) nential random variables, the joint distribution of the diagonal

Rs :trftS<.MR
(where Rw = I + G*G) entries of D is

R 2 2(M-1)
< Pr (log det(IN + PR- H*H) < r log P) p(P2):= P(2 2 feI(
- Pr (log det(IN + PH*H) < r log P) i (M1).

To proceed with the calculation of this probability we first Define
observe that -logAi -

-
logp X oi 2 =p_

[f~~~~~1
/ =logP ~

i logP
A

H*H [(figi)* ... (fRgR) j Then defining the vectors
fRgR he= (Ca1 ...*CVmin{N,R}), /3 = * /, we may write

R the joint eigenvalue distribution of a and S from (6)- (9) as:

= p 3g)fi f(ai=l1
R CR,M,N(log P)N±R

= 9 9i diag(f12)2H> p-(N-R+±)1ip-(R+M-N-1)f3i
f__<jp-)_i exp

= G*DG where D =diag(11f,112) .. lf I12). dt[x(_p-)3j f 1 1- )- C*DC where ~~~~~~~~~~~~~det[exp (p-(caj-/3i))]i =,N>RR10
This shows that the rank of H is the smaller of the ranks of =,=1 - (10)
G and D: min{R, N} which is independent of M. For the p)N+RfIN p °i R p M,3i
remainder of the analysis we will assume M > N. At the end DR,M,N(o i=1 pc i=H
of the section we will comment on the M < N case. Hli<j p-dj -p-QHjH(Pi< - P )
We proceed along lines similar to recent work by Yang Pexp (_ 1i det A N < R

and Belfiore [11] which was applied to the Rayleigh product /=
channel. The non-zero eigenvalues of H *H C* GDC are the where A is the transformation of the matrix in (7) under
same as those of QQ* where QRXN - D1/2C. We know that this change of variables (9), while CR,M,N and DR,M,N are
given D, QQ * has a Wishart distribution QQF*WR2~(N, D). normalization constants.
That is, the columns of Q are zero-mean independent complex Note that from the exponential factor, p(ct, /) will decay
Gaussian vectors having covariance matrix D. exponentially unless f3i > 0 for i =1, .. ., R.



The next task is to find the exponent of P in (10). To deal Next we find this infimum by optimizing (14) and (15) over
with the determinant factors we make use of the results proved a and /.
by induction on the matrices' dimensions, in Lemmas 2 and B. Optimization over a and /
3 of2[1]: To minimize (14) and (15) subject to the constraints just
Lemma 2. We have the following expressions for the expo- stated, we first fix a, < ... <amin{ N,R} and find the optimal

nential orders of the determinants in (10). We wisumeM > .
R~~~~~We will assume M > N.

det exp -p-(ci-/i) 1) Case 1: N > R. As done in [11] we begin with an
i,j=l initial configuration

-xp(- p-(ei-i)) p-Ei<i(ei-oj), (11) ° <_ i1 = atl <_ i2 = aE2 < R=AR
i=1 so that Ei<j(ai - )+ =0.

This determinant decays exponentially in P unless a°i > /i. The sum (14) is of the form Z (aioai + bi/i). With the
initial configuration just described we would have ai = N +

N+1 RI -i and bi=M-N+-1>0. Forsomefixedj,if/3j
det A 17 P(R-N-1)3i 17 p-(R-i) is decreased below ai for some i < j, the term (ai - /j)+ is

i=1 i=N+2 no longer zero. Here ai increases by 1, bj decreases by 1 and
N R the overall sum (14) decreases provided bj remains positive.
I1 17 p-(a>i-3j)+ How many ai's should /j cross? Denote this number by cj.
i=1 j=N+l Since bj decreases by 1 each time from an initial value of
N N M-N+j-1,we have cj = min{j-1, M-N+j-1} = j-1
fI P-->)exp -3E P-' )(12) since M > N. In other words, for M > N it is optimal for
i<j i=1 / /3j to be decreased all the way to zero. Substituting this into

For i = 1, ... N this decays exponentially in P unless ai > (14) leads to
/3 for /i > 0. R

c(a, 0) Z(N±+R±+1-2i)aei (16)
Since Ai > Aj and ,ui > pj for i < j, we have a°i < a°j

aNi

and ii < /j for i < j. Hence 2) Case 2: N < R: Again we assume an initial configura-
p-cxi - p-ce3 p-cxi tion

p-Oti _p-°tj p p-(Cei-oi) . ( 13)
p-Qi pj3.- p_ - (1<30.1= Cel <_.2=a2 <_

. /3N=aN <_/3N1<*--./3ft<
Combining (10), (11), (12) and (13), and using the fact that the last two terms of (15) are 0.

that constants and powers of (log P) do not contribute to so This time(ls5) is of the foare 0.N aiai +
the exponential order allows us to find the exponential order N tm (

( o . e t t bj/j +± bj/j. With the initial configuration, aic(a, /3) of p(a, /3). We make use of the identity N - i ± N,b+ ±j-1 rcedn iial
RR R ~~~~~~N-i + 1, bj = M-N + ij-1. Proceeding similarly

to Case 1, but treating the cases j < N and j > N
S ai 55, , ai =5,(R - i)ai. separately, we see that if /j is decreased below ai for some
i<j j=1 i<j i=1 i < j, ai increases by 1 while bj decreases by 1. The overall

For N > R, sum (15) decreases provided bj remains positive. If cj is
R R the number of ai's that bj should cross, we have as before

c(a,/) = 5(N+1-i)ai±+(M-N +i-1)/i cj= min{j-1,M-N+±j-1} =Hj-.Hencejmaycross
i=1 i=1 all aoi's all the way to zero to minimize the sum. Substituting
+ 5(a -/3)±, (14) this into (15) leads to

i<j
N

while for N < R, E(a, 0) = 5(N + R +1-2i)ai (17)

c(a,3) i=1
N N Combining (16) and (17),

= (N-i +±)ai + (M-N + i-1)i min{N,R}
i==1N c(a) 5 (N + R +1-2i)ai. (18)

R N R N

5M/, ±5 5 (ai 3j)±±5(ai7Ti)±I Now we optimize this over a, so we assume 0 < a i <1 fori=N±1 i=1 j=N±1ij1 i =1,. .., min{N, R}. Initially suppose r 0 which forces
(15) ai 1 for all i. This corresponds to a maximum diversity of

The diversity of our wireless scheme is then infc(t,/) mlinl{N,ft}
whereZ>i=l(1-aei)± < r,a .a<C2 <.*..*<aminl{Nft},/31 < 5 (N±+R±+1-2i) = NR.



As r increases, we are free to lower the values of ai. Since Comparing (20) and (21), we conclude
the coefficients (N +R -1 - 2i) of a i are positive and strictly
decreasing in i, to minimize (18) it is optimal to push a i to d d
zero one at a time beginning with a,. IV. DISCUSSION

That is, We make the following summarizing remarks.
. For r = 0 set all ai 1 achieving diversity NR. . Large diversity benefits can be reaped by increasing
. For 0 < r < 1 push a, to zero, ai = 1 for i > 1. The the number of relay antennas, provided they maintain

diversity decreases by N +R -1 to NR - (N+R -1) independently fading channels. Implementing cheap relay
(N- 1)(R -1) for r = 1. nodes may be easier to do than adding antennas at the

. For 1 < r < 2 push a2 to zero, while a, = 0, ai = 1 transmitter or receiver.
for i > 2. The diversity decreases by N + R - 3 to . The trade-off behavior is a function of min{M, N} so
(N - 1)(R - 1) - (N + R - 3) = (N - 2)(R - 2) for there is no point in having more transmit than receive
r = 2. antennas or vice versa.
*... . Compared with the results of Yang and Belfiore [11] for
For min{N, R}- 1 < r < min{N, R} push amin{N,R} the product Rayleigh channel, there is a significant benefit
to zero, while ai = 0 for i < min{N, R}. The diversity of having different unitary matrices at the relays. The
decreases by IN - R 1 to zero for r = min{N, R}. Rayleigh product channel's result applies to our model

We hence obtain a piecewise linear curve joining points in the case Ai all equal to the identity matrix, and in that
(k, (N - k)(R - k)) for k = 1, 2, ... , min{N, R}. This is case, the diversity is at most MN if R > max{M, N}
precisely the same as the optimal trade-off curve for a MIMO (i.e. no growth in R).
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