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Abstract— We investigate the role of cooperation in wireless
networks subject to a spatial degrees of freedom limitation To
address the worst case scenario, we consider a free-spaceeh
of-sight type environment with no scattering and no fading.We
identify three qualitatively different operating regimes that are
determined by how the area of the network A, normalized with
respect to the wavelength\, compares to the number of userss.
In networks with v/A/\ < y/n, the limitation in spatial degrees
of freedom does not allow to achieve a capacity scaling bette
than y/n and this performance can be readily achieved by multi-
hopping. This result has been recently shown in [7]. Howeveifor
networks with v/A/X\ > \/n, the number of available degrees of
freedom is min(n,v/A/)), larger that what can be achieved by
multi-hopping. We show that the optimal capacity scaling inthis
regime is achieved by hierarchical cooperation. In particuar, in
networks with \/Z/)\ > n, hierarchical cooperation can achieve
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the phases are uniform and independent across the different
channel gains. [7], on the other hand, starts from physical
principles and regards the phases as functions of the toati
of the nodes. While the physical channel model used in [7]
is more fundamental, the i.i.d. phase model is also widely
accepted in wireless communication engineering, pagibul
for nodes in far field from each other. Is there a way to
reconcile the two sets of results?

A deeper look at [7] provides a clue. The spatial degrees of
freedom limitation in [7] is actually dictated by tligameterof
the network rather than the number of nodes. More precisely,
the spatial degrees of freedom in the network are limited by
VA/\, where A is the area of the network andl is the
carrier frequency. This number can be heuristically thaugh

linear scaling. .
g of as an upper bound to the total degrees of freedom in the

network as a whole and puts a limitation on the maximum

ossible cooperation gain. The conclusion that the capacit

.MU|t"h°p is the communication architecture of CurrenEcales like\/n comes from the assumption that tHensityof
wireless networks such as mesh or ad hoc networks. Paclﬁ

I. INTRODUCTION

. C . Ches is fixed as the number of nodegrows, so that/A/\
are sent from each source to its destination via multip

roportional to\/n. But for actual networks, there can be
relay nodes. Each relay decodes the packets sent from §1§uge difference\/b—etweevﬁ/)\ and /7. Take an example
previous relay and forwards them to the next relay. C

more sophisticated cooperation between nodes signifjcaru a network serving: = 10,000 users on a campus df
) : o . 2, operating a3 GHz: v/ A/\ = 10000, while is onl
increase capacity of such networks? This is an |mportam P 9 / v y

0, two orders of magnitude smaller. So while multi-hop can

queks]tlont corILcernan? .fl;ture ;:_omrtr;lunlcat;]on at‘)mh'tegtumitfachieve a total throughput of the order 1f0 bits/s/Hz, there
such networks, and information theory has been broug iIsostiIIant of potential for cooperation gain, since thatal

bear to try to shed some light on this question. Adopting t .
scaling law formulation of Gupta and Kumar [1], much focuréeegrees of freedom upper boundiis 000.

. . he ultim ration gain is limi whil
has been on the asymptotic regime where the number of no(ﬁ%%tci)-aoi)l;;rf;trigr?ggﬁeaggndgin trs1e mﬁ%g%{/r\]’ | |§
is large. Two diametrically opposite answers have emerged;

] e _ and not om/A/\. But the number of nodes and the area are
» 1) Capacity can be significantly improved when nod&g,o independent parameters of a network, each of which can
form distributed MIMO arrays via an intelligent cooperigke on a wide range of values. To yield a complete picture
ation architecture [3], [4]. The total degrees of freedomf whether cooperation can help, the key is to remove the
in the network isn, the number of nodes, and in regimegytificial coupling between these two parameters and apalyz
where power is not a limiting factor, the capacity caghe capacity in terms of the two parametseparately This is
scale almost linearly withn. the goal of the present paper. We focus on a physical channel
« 2) The total degrees of freedom in the network is not model similar to that used in [7], but with only a line-of-big
but is actually upper bounded by due to the spatial channel between each pair of nodes, a case in which spatial
constraints imposed by the physical channel [7]. Nearegnitation is expected to be the most severe. Our main résult
neighbor multi-hop is optimal to achieve this scaling [1}hat in the regime when and 4/ are both large, the capacity
This is no mathematical contradiction between these tved the network is approximately
sets of results. They are based on two different channel
models. The key difference is the assumption on the phases
of the channel gains between the nodes. [3], [4] assume that

max <\/ﬁ, min(n, @)> ) (@)

A



Accordingly, the optimal operation of the network fallsant randomly paired up one-to-one intosource-destination pairs
three different operating regimes: without any consideration on node locations. Each source

e 1) VA/X < /n: The number of spatial degrees ofvants to communicate to its destination at the same Fate
freedom is too small, cooperation is useless and nearb#s/s/Hz. The aggregate throughput of the systeffi is nR.
neighbor multi-hopping is optimal. We assume that communication takes place in free-space

¢ 2) VA/X > n: The number of spatial degrees ofine of sight type environment and the complex baseband-
freedom isn, cooperation is very useful, and the optimagquivalent channel gain between nadand nodek is given
performance can be achieved by the same hierarchi€¥( P
cooperation scheme introduced in [4]. Spatial degree Hy =G el @
of freedom limitation does not come into play and the Tik
performance isas thoughthe phases are i.i.d. uniformwherer;, is the distance between the nodesnd % and \ is
across the nodes. the carrier wavelength. Note that the locations of the users

o 3)/n < VA/X < n: The number of degrees of freedonmare drawn randomly but remain fixed over the duration of
is smaller tham, so the spatial limitation is felt, but largerthe communication. Therefore for a given realization of the
than what can be achieved by simple multi-hoppingetwork, the channel coefficients in (2) are deterministic.

A modification of the hierarchical cooperation scheme The parameteé is given by the Friis’ formula,
achieves optimal scaling in this regime. Gry - Gry - A2
Regime (1) is essentially the conclusion of [7]; regime (2) G = T 162 ®3)
is essentially the conclusion of [4] (in the case when PoWgfhere iy, and G, are the transmitter and receiver antenna

is not a limiting factor). Thus, the validity of the results i 5ins respectively. The discrete-time complex basebayrdbi
these papers is not universal but depends on the relath)ns?@ceived by nodé at timem is given by

between: and A/\. Theupper boundf v/A/\ on the spatial n
degrees of freedom of the network is already established by Yi[m] = Z Hip X[m] + Zi[m] (4)
[7]. The main technical contributions of the present paper a kT, ki
tWO'TOIdEd' 1) we show that therg are gctuaﬂyn(n, .\/Z/)‘) where X [m] is the signal sent by node at time m subject
spatial degrees of freedom available in the physical cHanreg an average power constraint
model whenvA/\ > /n; 2) we show that hierarchical
cooperation can achieve these degrees of freedom. E(|Xx|?) < P/W

Both mathematically and philosophically, the present papgyg 7.1,,,] is complex white circularly symmetric Gaussian
follows the same spirit of [5]. [5] advoca_tesashift of tharfge noise of varianceNy. The model in (2), (3) corresponds to
networks” research agenda from seeking a single “universglog_space propagation. It is equivalent to the model iniGec
scaling law, where the number of nodesscales with all |\, of (7] but with no scatterers. We consider the case of no

systems parameters Coupled. with in a specific way, 10 geatierers since the spatial degrees of freedom limitaiion
seeking amulti-parameter familyof scaling laws, where the expected to be most severe in this case.

key parameters are decoupled and many different limits with|; 55 been shown in [5] that a wireless adhoc network

respect to these parameters are taken. A single scalingitiw vy power-limited when the long-range SNR in the network is

a particular coupling between parameters is often aryitragmaier tharp dB and the long range SNR has been identified
and too restrictive to cover the wide ranges that the meltipl¢

parameters of the network can take on. The specific parasneter SNR = n GP )

that were decoupled in [5] were the number of nodes and ’ NOW(\/Z)Q'

the amount of power available. The current paper follows th&); ihe current case — 2, which implies that SNR= SNR,,

approach of [5], but focuses on the number of nodes apghere SNR is the SNR in a point-to-point transmission over

the area of the network, while assuming there is a sufficiefile typical nearest neighbor distance in the network. (See

amount of power available that it is not limiting performanc ., [6]) In the present paper, our goal is to concentrate

A future goal of this research program is to investigate g, e effect of the spatial degrees of freedom limitation

dependence of the capacity on the number of nodes, the g&ahe capacity of wireless adhoc networks. To be able to

of the network and the amount of power all together. solely concentrate on this factor, we assume there is nopowe
Il. MODEL limitation in our network. Formally, we assume thatand W

There aren nodes with transmitting and receiving capa‘:’Ire such that

bilities that are uniformly and independently distributad SNR > 0 dB, ©6)

a rectangle of area/A x v/A. Each node has an averagdor every A and n. For the current case ofi = 2, the
transmit power budget aP Watts and the network is allocatedcondition can be equivalently stated as SNRO dB. When

a total bandwidth ofi’ Hertz around a carrier frequency ofthis condition fails to hold, the network becomes power tedi

f, f > W. Every node is both a source and a destinatiand the behavior of the capacity as well as optimal operation
for some traffic request. The sources and destinations aen be significantly different.



o o o o Dr @ IV. HIERARCHICAL COOPERATION INLOS
® o
Dy o ® d ° ENVIRONMENTS
1 1 o * ° The proof of Theorem 3.1 relies on the following lemma
o © o e o which establishes a lower bound on the capacity of a MIMO
hd transmission between two clusters of nodes. For notational
VA VA simplicity, in the sequel we assume that all the distances

in the network are normalized with respect to the carrier
wavelength\. Note that when the distanceg; are expressed

in wavelength units, the channel model in (2), (3) takes the
simplified form,

Fig. 1. Two square clusters of areh. separated by a distanee

1. M AIN RESULT

eJ2mTik Grs - Gra
The main result of [7] is to show that under the network Hiy, =VG : G=——7—. (7)
. . . . . Tik 167
and the channel model described in the previous section with _
the additional restrictionrd = n, the capacity of the wireless Lemma 4.1:Consider two square clusters of arda sep-

network is upper bounded by arated by a distance (see Figure 1), with each cluster
) containingM nodes distributed uniformly at random ové.
T < Ky +/n(logn)®, Let /A, < d < A,, and the nodes in the transmit clusiey
with high probability, where K; > 0 is a constant indepen- perform independent signalling with powé&y /M such that
dent ofn. Coupling the area of the network a priori with the GP,

number of nodes in the network is restrictive and does not N > 0dB. (8)
allow to deduce the nature of the limitation imposed here. A _ 0 _
relatively straightforward generalization of the anadyisi [7] Then the capacity of the MIMO channel from the transmit

gives the following result. Let us define the normalized aréduster Dz to the receive clusteDp, is lower bounded by

of the network with respect to the wavelengttas, P 1 ;
A :é CMI]WO: <10gdet <I+NOWMHH >)
0" e | Ac/d
Under the network and channel model described in the pre- > K3 min <M, m)
vious section, the capacity of the wireless network is upper ¢
bounded by with high probabilityfor some constarit’; > 0 independent

. ) N of M, A, andd.
7<) Kimin (" (logn)?, v/Aq (logv/Ap) ) if Ao >n  The lemma is the analog of Lemma 4.3 in [4] which lower
~ | Ki+/n(logn)? if Ao <n bounds the capacity of a MIMO transmission between two

with high probability wherei; > 0 is a constant independenthSterS of nodes. under the i.i.d. pha;e r_nodel. With i.i.d.
of n and Ay. For Ay < n, this result says that the maximumohases, the capacity of the MIMO transmission scales lipear

achievable capacity is of orde{/ﬁ, which is achievable N M. The condition (8) ensures that the MIMO transmission is

by a simple multi-hopping scheme [1]. Fot, > n, the NOtpower limited. For the LOS case, we have the additional

. o . . Au/d 1 1
achievability remains an open issue so far. term 1z /ay» Which corresponds to the spatial degrees of

The following theorem is the main contribution of thefreedom between the two clusters. When t.h's. term is smaller
present paper. than M, the capacity of the MIMO transmission is not any

Theorem 3.1:Consider the network and the channel modé}'°'® linear inM. This in turn degrades the performance of
described in the previous section and assue> n, the the hierarchical cooperation scheme which is based on such

total throughput achieved by hierarchical cooperatiorigelr MIMO transmussmns. .
bounded by, The capacity of a MIMO transmission between tvyo cIu_sters
_ under the current LOS channel model has been investigated
T > Ko (min(n, \/A_o)) earlier in [8]. The result stated in Theorem 1 of [8] is equiva
] ) - lent to Lemma 4.1 above. However, the proof of Theorem 1 in
with high probability, for anys > 0 and a constanz > 0 [g] is based on an approximation which is not fully justified.
independent of. and Aj. ,  Through private communication, we have been informed of a
_The theorem can bfe mterpretec_j as follows: Whgn> n=, follow-up work [9] by the same authors, that similarly to our
hlerarch|ceil cooperation can achieve an aggrzega_te thpugherrent paper investigates the performance of the hieigatch
T > Kyn = for anye > 0. When Ag < n hierarchi- - qheration scheme under the LOS channel model.
cal Cf’/‘gﬁffa“on can achieve an aggregate througliput  Neyt we investigate the performance of the hierarchical
K3 Ay’ ™. Note that this throughput is larger thgfm, when  coqperation scheme and show how Lemma 4.1 allows to
Ao > n. prove the result in Theorem 3.1. The core of the proof is the
1With probability 1 asn — oo. following recursion lemma.



Lemma 4.2:Consider a network ofn nodes uniformly to d, which can then do joint MIMO processing of all
distributed over an ared, > n and the available powe? per the quantized observations and decodelthéransmitted
node satisfies (6). Assume that there exists a communication bits from s.
scheme for this network that achieves an aggregate thratighprom the network point of view, all source-destination pair

T > K4 min(n, \/A_O)b have to eventua_llly gccompllsh these three steps_. St(_ep gs_ lo
range communication and only one source-destination pair ¢
with high probability for somed < b < 1 and a constant operate at a time. Steps 1 and 3 involve local communication

K4 > 0 independent of and Ay. and can be parallelized across clusters.
Then, we can construct another scheme for this network thaiSince there aré/ source nodes in every cluster, this gives
achieves a higher aggregate throughput a total traffic of exchanging/(M — 1) ~ M? bits inside

. . each cluster in phase 1. We can handle this traffic by setting
> Ky \/ —5 €1 i o

T 2 K min(n, v/ Ao) > up M sub-phases, and assignig pairs in each sub-phase

with high probability for anys; > 0 and a constank’s; > 0 to communicate theit bit. The traffic to be handled at each

independent of, and Ag. sub-phase is similar to our original network communication

As soon as we have a scheme to start with, Lemma 4foblem withn users on an areal, but now instead, we
can be applied recursively, yielding a scheme that achieJ&/€ M users on areal.. We handle this traffic using the

higher throughput at each step of the recursion. Note tfEgmmunication scheme given in Lemma 4.2. Note that if this

s > bfor 0 < b < 1. We first show that a simple time-Scheme achieves an aggregate throughiputuin (n, VAo)®

sharing strategy between the source-destination pairti@p N the network ofn nodes and arealy, it will achieve an
satisfies the conditions of the lemma with= 0. Note that with 2dgregate rate; min(M, v/A.)" inside the clusters of/
TDMA, each source node transmits only a fractigim, of the Nodes and ared.. This can be verified by checking that the
total time of communication. Hence when active, each sourg&!Sters ofM nodes and ared.. satisfy the conditions of the
node can transmit with elevated poweP and still satisfy 8mma. We haved. > M for the clusters ifA, > n for the
its average power constraidt. This yields an SNR larger ©riginal network and
than SNR in (5) for each transmission, hence a constant rate. GP
Therefore, the aggregate throughput achieved by TDMA is SNR(M, A.) = Mm
constant independent of and Ay. . e )

Starting with TDMA, b = 0, and applying Lemma 4.2 if P sausﬁezs (6). Moreover whem, > n®, we have _
recursivelyh times, we get a hierarchical scheme that achiev > M, S0 the , performance of the scheme s
an aggregate throughput of ordein (n, \/A—O)h’ﬁfeg for any K, mm(M, \/A_C)’ = M. The traffic in the third phase is
£/ > 0. Therefore given any > 0, we can choose; = ¢/2 handled similarly to the first phase. Then, we need:
andh such that;2; > 1—¢/2 and we a get a scheme that e M?~"/K, time slots to complete phase 1 all over the
achieves the performance in Theorem 3.1. O network; We handle the traffic il subphases, each

) subphase is completed W' ~*/K, time-slots.

Proof of Lemma 4.2We will prove thg lemma by CONCEN-, n/Ks time-slots to complete the successive MIMO trans-
trating separately on the two caség > 7~ andn < Ay < n”. missions in the second phaséthe distributed MIMO
In the first case, we prowdgabrlef overview of t_he thr_ee$ha transmissions between any two clusters can achieve a
scheme from Lemma 3.1 in [4] and verify that it a_ch_|e\_/es the |ate of K3M bits/time-slof We perform one MIMO
same performance in [4] under the current deterministieeha  yansmission for each of the source-destination pairs
model. The reader should refer to [4] for a precise analysis. i the network.
For t_he caser < Ay < n? a modlflcatlpn of the scheme is QM?>*/K;K, time slots to complete phase 3 all over
required to achieve the performance given in Lemma 4.2. the network; The traffic in the third phase is symmetrical

A Ay > n? to the traffic in the first phase, but larger by a factor
of Q/Ks. This factor comes from the fact that each
MIMO transmission lastd /K5 time slots, and each of
the correspondind /K3 observations is quantized @
bits.

In [4], it is shown that each destination node is able to
decode the transmitted bits from its source node from the
quantized signals it gathers by the end of Phase 3. Thus,
e aggregate throughput achieved by the scheme can be
calculated as follows: each source node is able to trankmit
,\R'Hs to its destination node, henad/ bits in total are delivered

=SNR > 0dB

Let us divide the network into square clusters of arga
Each cluster contains approximately = Q—;n nodes. A
particular source node sendsM bits to its destination node

d in three steps:

(S1) Nodes first distributes itsM bits among theM nodes
in its cluster, one bit for each node;

(S2) These nodes together can then form a distributed tians
antenna array, sending theg bits simultaneouslyo the
destination cluster where lies;

(S3) Each node in the destination cluster observes the Ml

transmission in the previous phase; it quantizes eachyye ignore the performance loss due to inter-cluster interfee since it
observation toQ bits, with a fixed@, and ships them does not change the scaling law. The reader is referred ttpfa]etails.



to their destinations irM2*b/K4 +n/Ks+ QMQ*b/K3K4 More precisely, for a cluster of smaller size, we can either

time slots, yielding an aggregate throughput of have M < A, < M? or A, > M?. This fact requires a more
nM o careful analysis. In particular, we separately considerténo
bits/time-slot. 20-h) 2(4-b) 2
M2~ /Ky +n/Ks+ QM2 /KsK, casesn < Ag <n3-2 andn-2 < Ay < n°.

ChoosingM = n?>5 to maximize this expression yields an 1) i < Ay < n2 As before, we divide the network

aggregate throughp(t = K5n== for a constants’s > 0. into clusters of aread, that containM = n A./A, nodes
Note that this throughput can only be achieved if the MIM@nd the goal again is to accomplish steps S1-S2-S3 for every
transmissions in phase 2 achieve a rate linedt/irThe rate of source-destination pair in the network. We choose the elust
the MIMO transmissions are lowerbounded in Theorem 4.1 fgize in the following particular way,
the deterministic phase model under certain conditiong Th S
cluster areas and the separation between the clustersdshoul M =nz75 Ay "7, 9)
satisfy _the_cond|t|on\/A_c_ s .d < A ‘fi_”d the users ShOUIdThis is a valid choice in the sense thiat < n, in particular
transmit with power satisfying condition (8). It is easy toM S o th ditiom < n2 for th work. Th
verify that /A, < d < A.. Note that\/4, < d is always <n %‘ € conaitionde = n* Tor e|;e Work. The
true unless the communicating clusters are neighbbet.us conditionn === < A, ensures thatl. > M~. Therefore
verify that the power condition (8) for the MIMO transmissio 25 Pefore, the scheme given in the hypothesis o}f Lemr}na 4.2
can be satisfied under the average power constrajdr node achieves an aggregate throughpf min(M, v/A.)" = M°
satisfying (6). In the second phase, the MIMO transmissiol§€n used inside the clusters of aréaand number of nodes
between clusters are performed successively and each nod_édi' We use this scheme to handle the traffic inside the clusters
the network transmits onlyZ/n of the time. Therefore when IN Phases 1 and 3 as before. In the second phase, the MIMO
active, each node can transmit with elevated powifMand transmissions achieve a rate

still satisfy its average power constraifit Observe that if A./d - A/ A
Py, = nP, the condition (8) is satisfied given (6) and the fact log(A./d) ~ log(A./vAg)'
thatd < v/ Ap.

Therefore, Theorem 4.1 lowerbounds the rate of the MIM his implies that in the_seqond ph_ase, the MIMO transmlssmr?
Qr each source-destination pair can not be completed in

transmissions in the second phase. The lower bound is linear .
in M if A<l S AfIf Ay > n?, using A, — XA and constant number of time-slots as before. In order for these
. 0 1 c n

log(Ac/d) = O MIMO transmissions of lower rate not to result in too many
d > /Ao, we obtain for sufficiently large\/, MIMO observations in the third phase containing a small

A./d M~/ A /n S al-e number of degrees of freedom, we introduce the following
log(Ac/d) = log(My/Ag/n) ~ modification to step (S2). Let
for anye; > 0. Thee; is introduced to compensate for the M = Ac/vV Ao . (10)
logarithmic term and in turn yields an = degradation in the log(A./v/Ao)
overall throughput as stated in Lem.ma 4.2.2Th|s concludes i} randomly divide theM nodes in the source cluster to
proof of the lemma for networks witho > n*. M/M’ groups each containing/’ nodes. We do the same
B. n< Ay <n? division also in the destination cluster. We randomly asgec

) one-to-one theM /M’ groups in the source cluster with the

In the casen < Ay < n7 th2e. proof of the lemma M /M’ groups in the destination cluster. The earlierx M
differs from2the earlier casely > n° in two aspects. When \;vo transmission between the source and the destination
n < Ay < n”, the MIMO transmissions between the clustersysier is now divided intd/ /M’ successive MIMO transmis-
are limited in spatial degrees of freedom. More precisely, kions, each of siz&1’ x M. In each of thesa/’ x M’ MIMO

Theorem 4.1, the performance is lower bounded by the secqpghsmissions, a group dff’ nodes in the source cluster are
term 1o;737zy and it is not anymore linear id/. This fact gjmyjtaneously transmitting their bits to their corresgion
requires a modification in the operation of this phase. group in the destination cluster. Note that thesé x M’
The secon(Qj difference is the following: We have seern tRAIMO transmissions are not limited in spatial degrees of
when Ay > n” for the original network, we havel. > M~ feedom, precisely due to our choice fbf’ in (10). We will

for the smaller clusters. In other words, when the network iSter verify that these\/’ x M’ MIMO transmissions achieve
not spatial degrees of freedom limited at the largest scaley rate K5 M. If this is the case, we need:

is not spatial degrees of freedom limited at any scale. In the
current case, when < Ay < n?2, the network is limited in
spatial degrees of freedom at the largest scale, but thdesmal
clusters may or may not be spatial degrees of freedom limited *

o M?7%/K, time slots to complete phase 1 all over the

network;

n x M/M' x 1/K3 time-slots to complete the succes-

sive MIMO transmissions in the second pha#fethe
The special case of neighboring clusters is excluded froen dirrent distributed M x M" MIMO transmissions between any

discussion and can be handled separately as in [4]. two groups can achieve a rate &f; M’ bits/time-slof



. QMQ*b/K3K4 time slots to complete phase 3 all oveused inside the clusters of area and number of nodes/.
the network; Note that although each cluster receivégplying exactly the scheme in the earlier case (1), we now
M x M /M’ MIMO transmissions in total)/ /M’ MIMO  get an aggregate throughput
transmissions per each destination node in the cluster, nM
each node has one MIMO observation of duratighi(s > A=b/2 ; > A=b/2 .
time-slots for each of the other nodes. The modification M *Ac "/ Ka+nM/M'Ks + QM?A: ™"/ K34
in the second phase is precisely made to ensure this falite three terms in the denominator of this expression are
Thus, the aggregate throughput achieved by the schemétiger-wise equal for the cluster area given in (12). Theegfo
given by the throughput achieved is given by

nM
11 2+b
M2 /Ky +nM/M'Ks + QM?~b/K3K, (11) T=KM =KsA;“" A% 2K5(\/A0)ﬁ761,

bits per time-slot. It can be verified that for the choice & thfy, 5 constantks > 0 and anye; > 0. The last inequality

cluster size in (9), we have follows from the fact that) < b < 1.
M2b — nM Combining the conclusions of Sections IV-A and IV-B
Ac/VAy above completes the proof of Lemma 4.2. O
The three terms in the denominator of (11) are order-wise APPENDIX |
equal or in other words, (9) is the cluster size that maxisize PROOF OFLEMMA 4.1
h h ion in (11). This yiel . . ,
:Efosgrr?ggt put expression in (11) Is yields an aggregateLemma 4.1 will be proven in two steps. We first lower
, Ae ., I bound the expected capacity of the MIMO channel over
T'=KsM = Ks \/A—OAO = Ksn=r Ay Ag™ random node positions and then show that for a random real-

ization of the node positions, the capacity of the corredpun

for a constanis > 0 and for anye; > 0, which is introduced MIMO channel is not that different from its expected value.

to compensate for the I209ar|thm|c term in (10). It can b'V?Ve formally state these two results in the following lemmas.
verified that whend, < n* the above throughput,

Lemma 1.1:The expected capacityy;;r0 of the MIMO

T> Kg,(\/Ao)ﬁ‘g1 channel in Lemma 4.1 is lower bounded by
which is the performance claimed in the lemma. E(Crmrno) = E(log det (I + (Py/M) HH*))
It remains to verify that we can achieve a ratgM’ in . A./d
the M’ x M’ MIMO transmissions between the two clusters > K3 min <M7 m) ;

of areaA.. Note that since thé/’ nodes in each group are

chosen randomly among the nodes in each cluster, withoutfor a constant<s > 0, where the expectation is taken over the
any consideration on node locations, they are uniformly amedependent and uniform distribution of node positionsrove
independently distributed over the arda. It can be readily the transmit and receive domains of aréa

verified that the condition/4A. < d < A. in Theorem 4.1 ~ Lemma 1.2:Let s = min (M7 %), foranyt >0

is satisfied. It remains to verify that we can transmit with 2

power Py /M’ such thatP, satisfies (8). Note that due to the P(|Crrvo —E(Curmo)| >t) <e "+ .

extra time division between th&/ /M’ distinct groups in each

cluster, each node is transmitting in only’/M of the total Choosingt = s'/2t22 ¢, > 0, the probability in the second
transmission time of the cluster. On the other hand, duedo tlemma decreases to zero for increasinghis implies that the
time sharing between the clusters in the second phase, edetiations ofCy;ra0 from E(Carvmo) are, at most, of the
cluster is only active in a fraction/ /n of the total completion order of \/s. Therefore combining the results of these two
time of the phase. Therefore during thé’ x M’ MIMO lemmas yields the result given in Lemma 4.1. In the sequel,
transmissions, the nodes in the transmit group can transmé prove Lemma 1.1. The proof of Lemma 1.2 closely follows
with elevated powemP/M’ and still satisfy their average the proof of Proposition 5.2 in [2] and is skipped due to space
power constrain®’. This, in turn, means that they can satisfyimitations.

the power requirement (8) in Theorem 4.1. Proof of Lemma 1.1For notational convenience, we start

2(4-b) . by defining
2) n < Ag < n5-2: In this case, we choose the cluster
area as 5 fir = i el 2mrin — d el 2l —wil (13)
A=A, (12) Tik s — wi|
2(4-b) wherer;;, denotes the distance between the nddesD and

For this choice, the current condiQti(m < Ao SI n 5:" OE i € Dx located at positions;, andw; respectively . Note that
the netwqu g!vesM < A, < M=. This implies that, t € U<y < d(1 + 2v/24,/d), and therefore
scheme given in the hypothesis of Lemma 4.2 can now achieve

an aggregate throughpif, min(M, /A.)? = (v/A.)® when co < (14+2y2A./d)~ < |fi| <1, (14)



wherecy := (1+2+/2)~! and the first inequality follows from o oy

the fact thaty/A. < d. .’T\/Z7’

The first ingredient of the proof of Lemma 1.1 is the Paley- —
Zygmund inequality used in [4] to prove Lemma 4.3. We have o e
PO 1 Dr Dr
E 0)=E[1 I —HH'
(CMUy[o) (0gdet< + NoW M ))
GPy 1 Fig. 2. S = |E(faa f3, foo £33)]
=E (logdet (I N —FFT)>
GPy
=ME/[1 1 @
(o (1 ) w
P VAy
2M10g<1+ GOQt)]P(/\>t) ! Iﬁz
NOWd —VAz 0 d VAw

for anyt > 0, where\ is an eigenvalue ofl /M) FF picked
uniformly at random. By Paley-Zygmund’s inequality,0if< Fig. 3. Coordinate system.
t <E()\), we have

E(C ) > M1 - GPy ’ (E(N\) —t)? extremes. Our aim in the following is to show that if both
MIMO) = ) NoWd2 E(\?) A andd grow large andy/A. < d < A., then there exists
i H

Given (13), we have K3 > 0 independent ofd. and, Slj:h that

] M S <K/ T log (76) . (15)

E(\) = —E (tr(FFY)) = ) > o ¢
() M2 (tr( ; (1) = 5. This implies that y
- A./d
E(Cym > K3 mi —_
E(\2) = i]E(tr(FF*FFT)) (Crtrnro) 2 Ka mm( Tog(A. /d))
M which completes the proof.
Z E(fire [ frm fim) The rest of the section is devoted to proving (15). Let us
ik,l,m=1 first explicitly write the expression fof. We have
M
]. * * E aa a a
<2495 3 EGalfifnfi)<2+us 5T RS Ju)
ikl m=1 dz, / dxy, / dw, / dwy pe? 2™A| (16)
i1 kEm Al /DT . o . P
Where the last inequality follows from the upper bound in)(14where
= |E(faa fi, fov 1) Wherea, b are two different indices _ B _ _ _ _ -~

(notlce thatS does not depend on the specific choicer@nd Iz = wall = llza = woll + [l —wsll = [lzs w(“1||7’)

b). See Figure 2. Choosing then= c2/2, we obtain .
p=d(||za —walllza — woll[|zs — wsll[|2s — wal])

Py c? 1
E(Cyminvo) = (M cg/4) log (1 + Q?VOI(;VCZQ> TS We first derive the result (15) by approximating the 8hnce
1 in (13) in the regime/A. < d < A.. This approximate anal-
> K/ min <M, —) ysis captures most of the intuitions for the precise deidvat
o which is given afterwards. Consider two nodes at positions
for a constant<’; > 0 independent of\/ and S if x = (—vA.2,/Ay) € Dr andw = (d + VA.w,/A.z) €
GPy Drg, where x,y,w,z € [0,1] (see Figure 3). Using the
NV > 0dB. assumption thatl > \/A., we obtain
The quantityS, which takes values betweénand1, dictates |z —w| = \/ d4/Ae (z +w))?2 + A. (y — 2)?
therefore the capacity scaling. In the case where the channe A )
matrix entriesf;, are i.i.d. phasesS = 0, so the capacity ~ d+ Ao (v +w) T 54 (y—2)

E(Cumrmo) is of orderM. At the other end, if we considerwhich in turn implies

the LOS channel model in (13) in the scenario where nodes

are placed on a single straight line, then a simple computati & = [[Za — wall — [[Xa — wy || + [z — we[| — [|s — wa|
shows thatS = 1, so thatE(Cararo) is of orderl (in this  _ Ac 22 N2 2
case, we know that the matriX is also rank one, so the lower ~ 24 (W2 = 2a)” = (o = 20)" + (90 = 20)" = (¥ = 2a)°)
bound matches the upper bound on the capacity, ugdg &/ A

term). The problem we are looking at lies between these two_ _7(% ~ Ya) (2~ Za)



Next, let us also make the approximation that 1 in (18): Proof of Inequality(15): We start again with the expression
this is actually assuming that the spatial degrees of freeddor S in (16). Note that due to the symmetry &f and p in
between the two clusters are mainly determined by the phases and w,, we can upper bound (16) as

of the channel coefficients and not so much by the amplitudes.

. > G 1 i 2 (@0 —w]|—|lzp —w]) |2
We will see below that this intuition is correct. g < = dwa/ dxy, / dw
These two successive approximations lead to the following™ 4% /b, Dr Dr e — wl| [lzs — w]|
expression fors: Expressing this upper bound more explicitly in the coortéina
S~ S system in Figure 3, we obtain the following upper bound for
dYa dys dz, dzy €77 2148 (Yo —ya) (26—2a)
0 0

=2

0
1 1 1 1 dxg dya d d
/ dya / dyy / dza / dzy =724 =) (a=z2) | “/ y/ ””’/ o
0 Ya 0 0

€127 ga, b (w,z)
/ dw/ dz ——— L
Gap(w,2)
(19
where the second equation follows from the symmetry of té1€re
integrand. Note that this expression does not depend on the . e 2. 4 RY
horizontal positions of the nodes. This can be interpreted a Ga.p(, 2) _\/(d+ e (@ +w))* + Ac (yo — 2)
followg,. ProviQed the above approximation is valid, the MOM _ \/(d + VA, (zy +w))2 + A, (yp — 2)2.
capacity scaling between two clusters &f nodes separated
by a distancel > /A, is the same, be the nodes uniformlyand
distributed on two squares of ared. or on two parallel G _d_Q\/ d \/A— 204 )
(vertical) lines of lengthy/A.. This result is of interest in ap(W,2) = (d+ VAc(ta +w))? + Ac (Yo — 2)

itself and can be proven rigorously. 2 Y

We show below that the above integral is indeed of order 8 \/(d+ \/A_C(xb W)+ Ac (g = 2)*
d/A.. Let us compute the first integral, which yields Let us first focus on the integral inside the square in (19).

1 The key idea behind the next steps of the proof is contained

/ dzy e~ 2™ & (w=va) (z0—2a) in the following two lemmas.

0 i Lemma 1.3:Let g : [0,1] — R be aC? function such that

_ d o= 2748 (yo—va) (50—2a) - lg'(#)| > 1 > 0forall z € [0,1] andg” changes sign at most
727 Ac (Yo — Ya) ..—o  twice on[0,1] (say e.9.¢"(z) > 0in [z_,2,] andg"(z) <0

This implies that outside). Let alsa7 : [0,1] — R be aC! function such that
|G(2)| > ¢2 > 0 and G’'(z) changes sign at most twice on
da 1 0,1]. Then
/1 . 01 279(2)
z
0 G(z)

/ doy =9 274 (0s=va) (30=2a)
Ac |yp — Yal
for a constantss independent ofA. andd. We can divide the
integration overy, andy; into two parts, Lemma 1.4:Let g : [0,1] — R be aC? function such that
1 1 1 1 . there existszy € [0,1] andc; > 0 with |¢/(2)] > ¢1 |z — 20
_iopAc —ya) (2p—2a 0 ’ 1 v = .1 0
/0 dya/ dyb/o dza/o dzy ¢ i mue) (2020) for all z € [0,1] andg” changes sign at most twice 4 1].
Let alsoG : [0,1] — R be aC* function such thatG(z)| >

<K
%A, 14

T Tecy

1 Ya+E: 1 1—e: 1 . .
= (/ dya /(J o dyp + / - dya/ ) c2 > 0 andG’(z) changes sign at most twice ¢, 1]. Then
0 0 Yates 1 j2mg(z)
1 1 o A dz ¢ < 14
x/ dza/ dzy €792 7d Wo—va) (20=2a) G(2) ey o
0 0 The proof of Lemma 1.3 is relegated to Append|x Il. The

for any 0 < e5 < 1. The first term can be simply bounded byProof of Lemma 1.4 follows the same lines and is omitted due

e3, which yields the following upper bound faf, to space limitations.
Let nowes > 0 and let us divide the integration domain

So < 2e5 + 2K i/l - dya /1 dys 1 (Ta, Tb, Ya, yo) € [0,1]* in (19) into three subdomains (see
A Jo Yates 1Y — Yal Figure 4):
< 2e+2Ks Ai( log(1/e3) U, = {|ya — | — (VAL/d) |zp — Ta| > 53}
So choosings = d/A., we finally obtain Uy = {0 < Yo —up| — (\/A—c/d) |2y — a| < 53}
5~ S0 < K 4 log(Ac/d) Us = {lva—wl < (VS 11— ]

for a constantK} independent ofd. and d. We will next Consider first the integral ovér,. It can be verified from the
prove (15) without making use of the above approximationgxpression (23) for the first order partial derivativeyf, with



" For the remainder of the proof, let us therefore assume that
. ' VA, <d< Ai“. As before, we focus on the integral inside
the square in the following term

63271' Ja,b(w, z)
/ dw/ ds " . (20)
(Lb(w7z)

Let us start by considering the simplest case where the goint
x, andx;, are located on the same horizontal line, yg.=
yp- In this case, the second term in the expression (23) for

ag;” (w, z) becomes zero, so we deduce the following lower

Fig. 4. Domains of integration: the relative positions oé fointsz, and  pound:
x;, determine in which domain one i#/{ on the figure). ’

Uz

Us Us

s / dzqdzydyadys
Us

|xb - a:(,,| |Z - yar|

) ; 3/2
‘ g'7b(w7z) ZKQ

0z d?

This, together with the above mentioned properties of the

respect toz given in Appendix Il that if(x., zp, ya, ys) € Ui,

then
9 A VI functions g, , and G, allows us to apply Lemma 1.4 so
Ga b (w, 2)| > K7 =5 |y — ya| — C |zp — 4] as to obtain
0z d d j21 (w,z)
d / dZ el Ga,b K d 1
. : w 10 -
for a constantk’; > 0 independent ofA. andd. Notice next Gap(w, 2) A3/4 \/m

that |G, (y,2)| > 1. It can further be checked that both
9’ ga. 2 (w, z) and aGZ,b( +) change sign at most twice on thefor a constanf{;y > 0 independent ofi. andd. A slight gen-

m?ezrval 2 € [0,1] (for w fixed). Therefore, applying Lemma €ralization of this argument (see Appendix I for detailspws
that not only whery, = y;, but for any(z., v, ya, y») € Us,

1.3, we conclude that

(o) (o) we have
J 27 ga,b(w,z 727 ga,p(w,z
dw/ dze / dw / dze / / eI27 ga b (w,2)
a b yv dw dz —————
Gap(w, 2)
< Ky d 1
= _ — (VA _ <K
- 'yb AT = A (= w7+ (- )

Since we know that this integral is also less thigrthis in d 1

<K (21)

turn implies =810"30
P Ac/ |xb - {Ea|

Since we also know that the above integral is less thame

deadavdyadyy | [ aw [ as 20D )
U, Tt @atly / w/ T Gus(w2) Gap(w, z) further obtain
d j2m (w, z) 2
< Kg — dzqdzydyadys d d eJ=T gab < min (K d 1
— \/ — 1
f;c Ur o = Ya| = (VAc/d) |zp — 4] w “ Gan(w, 2) min | 1o A7 oy — g’
= K3 A, log(1/es) For any0 < 1 < 1, we can now upper bound (20) as
Second, it is easy to check that 0327 gap(w,2) |
dzxqdxydy.dyp / dw/ dz ————
e] 27 Y9a, b(w Z) 2 Us a b(w7 Z)
/ dx o dxydy.dyy / dw/ dz —————| < 2e3. < |Us N {|zp — za| < 0}
Us 0 b(w) Z)

d? 1

i i i i DA i + Km/ drodrydy.dyy — —
The integral over the third domain of integratidp is more Us {2y -] 57} A:z/z |z — 24

delicate. Notice first that the obvious bound

eg 27 ga, h(wz)
/dw/ dz
(Lb(w7z)

VA, d? A,
VA S+ K VL log(1/n) = 2n+ Ko = log(1/n)

/ dxqdxydy.dys <2
Us

implying that
allows to obtain d d
. S < Kg— log(1/es) + 2e3 + 20+ K19 — log(1/n)
S < Ky Ai log(1/e3) Ae A

Choosing finallyes; = n = d/A. allows to conclude
which can be made smaller thaiis; (d/A.) log(A./d) by that S < K (d/A.) log(A./d) also in the case where
choosinge; = d/A. when AY* < d < A, (asvA,/d < A, < d< A4 O
d/A. in this case).



APPENDIXII
TECHNICAL DETAILS

Proof of Lemma 1.3By the integration by parts formula,

we obtain

/1 dz 7ej27"g(z) = /1 dz J 27Tg/(z) _ 627rjg(z)
0 G(2) o J2mg'(2)G(z)

_ e b / 1 8RGE) + (G2 o)
j2ng'(2)G(2) |y Jo j2n(g'(2)G(2))?

which in turn yields the upper bound
1 1

1
) " G(z) <|g< NEOIRTZOIEC]

/d /d S |>>2>'

By the assumptions made in the lemma, we have

el 1 1)
/o TR / )
i - Z_ i g//(z)

( L =Gy

—l—/:+ dz
Rypaic
o (9(2))?

11 1
2 \9'(1)  ¢'(0)

1 ,
ei2mg(z)

g9"(2)
(¢'(2))?

> L ) 6
dz <
/0 (9'(2))?IG(2)] ~ creo
We obtain in a similar manner that
1 /
|G"(2)] 6
d <
/o “TEECR) T G

Combining all the bounds, we finally get

! 14
/ dz
0

~ mwcicy
Expression for the first order derivative 9f ,(w, z): It can
be verified that

Gap(w, 2) = —\/A_c/: Vi
’ WT/ V@A

ei2mg(z)

G(2)

O

(d/VA:.+ z +w) dz

d/VA:. +x+w)2 + (Yo — 2)2
(y—2)dy

(22)

+ap+w)? + (y — 2)?

So the expression for the first order partial derivative of

gap(w, z) With respect toz is given by

8ga,b —ya) (d/VAc + 2z +w) do
0z \/_/ d/\/_+x+w) + (2 — Ya)? )3/2
d/\/_+xb+w) dy

d/\/_—|—a:b+w) +(z—

—

N'b\t
Dr

\

Fig. 5. Tilted reference frame.

Proof of equation(21). In order to prove (21), we need
to make a change of coordinate system, repla¢ingz) by
(w', 2"), wherew’ is now in the direction of the vectat, —

x;, and 2’ is perpendicular to it (see Figure 5 ). In this new
coordinate system, the integral reads

01 2mga b (w',2")
!/

l —_—
dw'dz ol 2

Dr

where g, (W', 2’), Gap(w',2') have the same form as
Gap(w, 2), Gqp(w, z), but now, the domain of integratial

is a tilted square, as indicated on the Figure 5. Using then th
same argument as in the cagge= y,, we conclude that

d
4374

01 27 (W' )

Gap(w',2")

1

|z}, — 5]

dw'dz

- < Kio
Dr

Noticing finally that|z) — 2| = /(zp — 24)2 + (Yo — Ya)?

allows to conclude (21).
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