Random matrices and communication systems

Homework 7: Stieltjes Transform

1. Basic properties. Let μ be a probability distribution on \mathbb{R} and $g_{\mu} : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$ be its Stieltjes transform, defined as

$$g_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x-z} d\mu(x), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

- a) Writing z = u + iv, decompose $g_{\mu}(z)$ into real and imaginary parts.
- b) It can be shown that g_{μ} is analytic on $\mathbb{C}\setminus\mathbb{R}$ (no proof required here).
- c) Show that $\operatorname{Im} g_{\mu}(z) > 0$, if $\operatorname{Im} z > 0$.
- d) Show that $\lim_{v \to +\infty} v |g_{\mu}(iv)| = 1$.
- e) Show that $g_{\mu}(\overline{z}) = \overline{g_{\mu}(z)}$.

NB: If a function g satisfies properties b) to e), then it is the Stieltjes transform of a distribution μ (BTW, property c) ensures that $\mu(B) \ge 0$ for all $B \in \mathcal{B}(\mathbb{R})$ and property d) ensures that $\mu(\mathbb{R}) = 1$).

2. Inversion formula. a) Let μ be any probability distribution on \mathbb{R} . For any a < b continuity points of F_{μ} , prove that

$$\frac{1}{\pi} \lim_{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{\mu}(x + i\varepsilon) \, dx = \mu(\,]a, b[\,).$$

b) Assume now that μ has a pdf p_{μ} . Show that for any $x \in \mathbb{R}$,

$$p_{\mu}(x) = \frac{1}{\pi} \lim_{\varepsilon \downarrow 0} \operatorname{Im} g_{\mu}(x + i\varepsilon).$$

3. a) Let $x_0 \in \mathbb{R}$, $y_0 \ge 0$ and $g_0(z) = \frac{1}{x_0 - iy_0 - z}$ for Imz > 0. Deduce the distribution corresponding to the Stieltjes transform g_0 (separate the cases $y_0 = 0$ and $y_0 > 0$). What are the moments of this distribution?

b) Let g_{μ} be the Stieltjes transform solution of the quadratic equation

$$g_{\mu}(z)^2 + z g_{\mu}(z) + 1 = 0.$$

Deduce what distribution μ corresponds to g_{μ} .

c) Let g_{μ} be the Stieltjes transform solution of the quadratic equation

$$z g_{\mu}(z)^2 + z g_{\mu}(z) + 1 = 0$$

Deduce what distribution μ corresponds to g_{μ} .

NB: Both the above quadratic equations have two solutions, but notice that for each of them, only one solution is a Stieltjes transform satisfying the properties of Exercise 1.

4. Limiting eigenvalue profile and distribution.

Let $\rho \in [-1, +1]$ and $T^{(n)}$ be the $n \times n$ Toeplitz matrix whose entries are given by

$$T_{jk}^{(n)} = \rho^{|j-k|}.$$

Using the Grenander-Szegö theorem, compute *both* the limiting eigenvalue profile g(x) and the limiting eigenvalue distribution p(y) of $T^{(n)}$ as $n \to \infty$.