Homework 5

1. a) Matrix norms: For a given $n \times n$ matrix $A = (a_{ik})$, we define

$$||A||_1 = \sup_{x \in \mathbb{C}^n, x \neq 0} \frac{||Ax||}{||x||}$$
 and $||A||_2 = \sqrt{\frac{1}{n} \text{Tr}(A^*A)}$.

Show that

$$\left|\frac{1}{n}\operatorname{Tr}(A)\right| \le \|A\|_2 \le \|A\|_1.$$

For two $n \times n$ matrices A and B, show moreover that

$$||AB||_1 \le ||A||_1 ||B||_1$$
 and $||AB||_2 \le ||A||_1 ||B||_2$.

b) Relation with eigenvalues:

Let $\alpha_1, \ldots, \alpha_n$ be the eigenvalues of A and β_1, \ldots, β_n be the eigenvalues of A^*A . What do we know a priori about the β 's?

In the case where A is Hermitian (i.e. $A = A^*$), what do we know a priori about the α 's? and what is the relation between the α 's and the β 's?

Show that in general, the following holds:

$$||A||_1 = \max_{j \in \{1, ..., n\}} \sqrt{\beta_j}, \quad ||A||_2 = \sqrt{\frac{1}{n} \sum_{j=1}^n \beta_j}, \quad \text{and} \quad \frac{1}{n} \text{Tr}(A^m) = \frac{1}{n} \sum_{j=1}^n \alpha_j^m, \quad \text{for any } m \ge 0.$$

c) Asymptotic equivalence of Toeplitz and ciculant matrices:

(first step in the proof of the Grenander-Szegö theorem = Lemma 1 of the class)

Let $t_0 = 2$, $t_1 = t_{-1} = -1$ and $t_l = 0$ for |l| > 1. Let $(T^{(n)}, n \ge 1)$ be the sequence of Toeplitz matrices built from the sequence $(t_l, l \in \mathbb{Z})$. For each n, let $C^{(n)}$ be the circulant matrix corresponding to $T^{(n)}$ (that is, the matrix $T^{(n)}$ with 0 replaced by -1 in the lower left and upper right corners).

Show that there exists K > 0 such that

$$\sup_{n\geq 1} \|T^{(n)}\|_1 \leq K \quad \text{and} \quad \sup_{n\geq 1} \|C^{(n)}\|_1 \leq K \quad \text{and} \quad \|T^{(n)} - C^{(n)}\|_2 \leq \frac{K}{\sqrt{n}}.$$

Noticing that for any $m \geq 0$, (this can be proved easily by induction)

$$(T^{(n)})^m - (C^{(n)})^m = \sum_{j=1}^m (C^{(n)})^{j-1} (T^{(n)} - C^{(n)}) (T^{(n)})^{m-j},$$

show, using most of the preceding statements, that if $\lambda_k^{(n)}$, $\mu_k^{(n)}$ are the eigenvalues of $T^{(n)}$, $C^{(n)}$, respectively, then for any fixed $m \geq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (\lambda_k^{(n)})^m = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (\mu_k^{(n)})^m.$$

please turn the page

2. Proof of Lemma 2 of the class

Let $(t_l, l \in \mathbb{Z})$ be a sequence of complex numbers such that $t_l = 0$ for all $|l| > l_0$ and $t_{-l} = \overline{t_l}$ for all $|l| \le l_0$. Let $T^{(n)}$ be the $n \times n$ matrix with entries $T^{(n)}_{jk} = t_{k-j}$ and g be the function defined as

$$g(x) = \sum_{l=-l_0}^{l_0} t_l e^{ilx}, \quad x \in [0, 2\pi].$$

Show that if $\lambda^{(n)}$ is an eigenvalue of $T^{(n)}$, then

$$\lambda^{(n)} \in \mathbb{R}$$
 and $\inf_{x \in [0,2\pi]} g(x) \le \lambda^{(n)} \le \sup_{x \in [0,2\pi]} g(x)$.

Hint: compute $u^*(T^{(n)})u$ for the eigenvector u corresponding to $\lambda^{(n)}$ and use the fact that

$$t_l = \frac{1}{2\pi} \int_0^{2\pi} g(x) e^{-ilx} dx.$$