Homework 5

1. a) Matrix norms: For a given $n \times n$ matrix $A=\left(a_{j k}\right)$, we define

$$
\|A\|_{1}=\sup _{x \in \mathbb{C}^{n}, x \neq 0} \frac{\|A x\|}{\|x\|} \quad \text { and } \quad\|A\|_{2}=\sqrt{\frac{1}{n} \operatorname{Tr}\left(A^{*} A\right)}
$$

Show that

$$
\left|\frac{1}{n} \operatorname{Tr}(A)\right| \leq\|A\|_{2} \leq\|A\|_{1} .
$$

For two $n \times n$ matrices A and B, show moreover that

$$
\|A B\|_{1} \leq\|A\|_{1}\|B\|_{1} \quad \text { and } \quad\|A B\|_{2} \leq\|A\|_{1}\|B\|_{2}
$$

b) Relation with eigenvalues:

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the eigenvalues of A and $\beta_{1}, \ldots, \beta_{n}$ be the eigenvalues of $A^{*} A$.
What do we know a priori about the β 's?
In the case where A is Hermitian (i.e. $A=A^{*}$), what do we know a priori about the α 's? and what is the relation between the α 's and the β 's?

Show that in general, the following holds:

$$
\|A\|_{1}=\max _{j \in\{1, \ldots, n\}} \sqrt{\beta_{j}}, \quad\|A\|_{2}=\sqrt{\frac{1}{n} \sum_{j=1}^{n} \beta_{j}}, \quad \text { and } \quad \frac{1}{n} \operatorname{Tr}\left(A^{m}\right)=\frac{1}{n} \sum_{j=1}^{n} \alpha_{j}^{m}, \quad \text { for any } m \geq 0
$$

c) Asymptotic equivalence of Toeplitz and ciculant matrices:

(first step in the proof of the Grenander-Szegö theorem $=$ Lemma 1 of the class)
Let $t_{0}=2, t_{1}=t_{-1}=-1$ and $t_{l}=0$ for $|l|>1$. Let $\left(T^{(n)}, n \geq 1\right)$ be the sequence of Toeplitz matrices built from the sequence $\left(t_{l}, l \in \mathbb{Z}\right)$. For each n, let $C^{(n)}$ be the circulant matrix corresponding to $T^{(n)}$ (that is, the matrix $T^{(n)}$ with 0 replaced by -1 in the lower left and upper right corners).

Show that there exists $K>0$ such that

$$
\sup _{n \geq 1}\left\|T^{(n)}\right\|_{1} \leq K \quad \text { and } \quad \sup _{n \geq 1}\left\|C^{(n)}\right\|_{1} \leq K \quad \text { and } \quad\left\|T^{(n)}-C^{(n)}\right\|_{2} \leq \frac{K}{\sqrt{n}}
$$

Noticing that for any $m \geq 0$, (this can be proved easily by induction)

$$
\left(T^{(n)}\right)^{m}-\left(C^{(n)}\right)^{m}=\sum_{j=1}^{m}\left(C^{(n)}\right)^{j-1}\left(T^{(n)}-C^{(n)}\right)\left(T^{(n)}\right)^{m-j},
$$

show, using most of the preceding statements, that if $\lambda_{k}^{(n)}, \mu_{k}^{(n)}$ are the eigenvalues of $T^{(n)}, C^{(n)}$, respectively, then for any fixed $m \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\lambda_{k}^{(n)}\right)^{m}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\mu_{k}^{(n)}\right)^{m}
$$

2. Proof of Lemma 2 of the class

Let $\left(t_{l}, l \in \mathbb{Z}\right)$ be a sequence of complex numbers such that $t_{l}=0$ for all $|l|>l_{0}$ and $t_{-l}=\bar{t}_{l}$ for all $|l| \leq l_{0}$. Let $T^{(n)}$ be the $n \times n$ matrix with entries $T_{j k}^{(n)}=t_{k-j}$ and g be the function defined as

$$
g(x)=\sum_{l=-l_{0}}^{l_{0}} t_{l} e^{i l x}, \quad x \in[0,2 \pi] .
$$

Show that if $\lambda^{(n)}$ is an eigenvalue of $T^{(n)}$, then

$$
\lambda^{(n)} \in \mathbb{R} \quad \text { and } \quad \inf _{x \in[0,2 \pi]} g(x) \leq \lambda^{(n)} \leq \sup _{x \in[0,2 \pi]} g(x) .
$$

Hint: compute $u^{*}\left(T^{(n)}\right) u$ for the eigenvector u corresponding to $\lambda^{(n)}$ and use the fact that

$$
t_{l}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) e^{-i l x} d x
$$

