Homework 4: Circular Unitary Ensemble

Let U be an $n \times n$ complex unitary matrix picked according to the Haar distribution on $U(n)$. U has n complex eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ which are all located on the unit circle: $\left|\lambda_{j}\right|=1$. We may therefore write $\lambda_{j}=e^{i \theta_{j}}$, where $\theta_{j} \in[0,2 \pi[$. The joint distribution of (the arguments of) the eigenvalues of U is given by

$$
p\left(\theta_{1}, \ldots, \theta_{n}\right)=C_{n} \prod_{j<k}\left|e^{i \theta_{k}}-e^{i \theta_{j}}\right|^{2}, \quad \theta_{j} \in[0,2 \pi[.
$$

The goal of this exercise is to show that the first order and second order marginal distributions of $p\left(\theta_{1}, \ldots, \theta_{n}\right)$ are given respectively by

$$
p(\theta)=\frac{1}{2 \pi} \quad \text { and } \quad p(\theta, \varphi)=\frac{1}{4 \pi^{2}} \frac{n}{n-1}\left(1-\left(\frac{\sin (n(\theta-\varphi) / 2)}{n \sin ((\theta-\varphi) / 2)}\right)^{2}\right), \quad \theta, \varphi \in[0,2 \pi[.
$$

a) Following the reasoning developed in class for the Laguerre Unitary Ensemble, express $p\left(\theta_{1}, \ldots, \theta_{n}\right)$ in terms of the self-reproducing kernel $K(\theta, \varphi)=\sum_{l=0}^{n-1} e^{i l \theta} \overline{e^{i l \varphi}}$.
b) Show that (0) $K(\varphi, \theta)=\overline{K(\theta, \varphi)}$.
(i) $\int_{0}^{2 \pi} K(\theta, \theta) d \theta=2 \pi n$.
(ii) $\int_{0}^{2 \pi} K(\theta, \varphi) K(\varphi, \psi) d \varphi=2 \pi K(\theta, \psi)$.
c) For $m \in\{1, \ldots, n\}$, let $D_{m}\left(\theta_{1}, \ldots, \theta_{m}\right)=\operatorname{det}\left(\left\{K\left(\theta_{j}, \theta_{k}\right)\right\}_{j, k=1}^{m}\right)$. Prove Mehta's lemma:

$$
\int_{0}^{2 \pi} D_{m}\left(\theta_{1}, \ldots, \theta_{m}\right) d \theta_{m}=2 \pi(n-m+1) D_{m-1}\left(\theta_{1}, \ldots, \theta_{m-1}\right)
$$

Hint: recall that for a $m \times m$ matrix A and for any $j \in\{1, \ldots, m\}$,

$$
\operatorname{det} A=\sum_{k=1}^{m}(-1)^{j+k} a_{j k} \operatorname{det}(A(j, k))=\sum_{k=1}^{m}(-1)^{j+k} a_{k j} \operatorname{det}(A(k, j)),
$$

where $A(j, k)$ is the matrix A whose row j and column k have been removed.
d) Deduce the formulas stated above for $p(\theta)$ and $p(\theta, \varphi)$.

