Homework 3: Joint eigenvalue distribution of $W=H Q H^{*}$

Let H be an $n \times n$ complex matrix with i.i.d. $\sim \mathcal{N}_{\mathbb{C}}(0,1)$ entries and Q be an $n \times n$ deterministic and positive definite matrix.

The goal of this homework is to determine the joint distribution of the eigenvalues of the $n \times n$ matrix $W=H Q H^{*}$.
a) Show that W is positive semi-definite.
b) Let $M=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$, where μ_{1}, \ldots, μ_{n} are the (positive) eigenvalues of Q. Show that W and $H M H^{*}$ have the same distribution.
c) Compute the joint distribution of the entries of $\widetilde{H}=H M^{1 / 2}$.
$\left[\mathrm{NB}: M^{1 / 2}=\operatorname{diag}\left(\sqrt{\mu_{1}}, \ldots, \sqrt{\mu_{n}}\right)\right.$]
d) Compute the the joint distribution of the entries of the matrix $\widetilde{W}=\widetilde{H}^{*} \widetilde{H}$.
[NB: this is not a typo; we do not consider here $\widetilde{W}=\widetilde{H} \widetilde{H}^{*}$.]
e) Compute the joint distribution of the eigenvalues of \widetilde{W} (which is the same as that of W : why?).
[NB: do not worry if you cannot get a completely closed form expression!]

