Homework 2: Joint distribution of eigenvalues

Let a, b, c be three independent random variables such that $a, c \sim \mathcal{N}_{\mathbb{R}}(0,1)$ and $b \sim \mathcal{N}_{\mathbb{R}}(0,1 / 2)$, and let

$$
\text { 1. } H_{1}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \quad \text { and } \quad \text { 2. } H_{2}=\left(\begin{array}{cc}
a & c \\
c & a
\end{array}\right)
$$

The goal of the exercise is to compute the joint eigenvalue distributions of both H_{1} and H_{2}, following two different approaches:
A. use the "Jacobian method" described in the class.
B. compute directly the eigenvalues of the matrix and look for their joint distribution.

Guidelines:

A.1. Since H_{1} is symmetric, its eigenvalues λ, μ are real and there exists $\theta \in\left[0, \frac{\pi}{2}\right]$ such that

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

- Compute the joint distribution $p(a, b, c)$ of the entries.
- Write explicitly the change of variables $a(\lambda, \mu, \theta), b(\lambda, \mu, \theta), c(\lambda, \mu, \theta)$ and compute its Jacobian

$$
J(\lambda, \mu, \theta)=\left.\operatorname{det}\left(\begin{array}{lll}
\frac{\partial a}{\partial \lambda} & \frac{\partial a}{\partial \mu} & \frac{\partial a}{\partial \theta} \\
\frac{\partial b}{\partial \lambda} & \frac{\partial b}{\partial \mu} & \frac{\partial b}{\partial \theta} \\
\frac{\partial c}{\partial \lambda} & \frac{\partial c}{\partial \mu} & \frac{\partial c}{\partial \theta}
\end{array}\right)\right|_{(\lambda, \mu, \theta)} .
$$

- Compute the joint distribution

$$
p(\lambda, \mu, \theta)=p(a(\lambda, \mu, \theta), b(\lambda, \mu, \theta), c(\lambda, \mu, \theta))|J(\lambda, \mu, \theta)|
$$

and deduce an expression for $p(\lambda, \mu)$.

- Compute also

$$
\mathbb{E}(\lambda+\mu), \quad \mathbb{E}(\lambda \mu) \quad \text { and } \quad \mathbb{E}(\max \{\lambda, \mu\})
$$

Watch out that the first two computations are particularly easy!

- Compute finally the marginal distribution $p(\lambda)=\int_{\mathbb{R}} p(\lambda, \mu) d \mu$. How does it look?
A.2. Redo the same analysis as above, but watch out that the eigenvectors of H_{2} are now deterministic!
B. For this part, you might need the following facts about Gaussian random vectors:

Two real Gaussian random variables (x, y) are said to form a (2-variate) Gaussian random vector if for any $\alpha, \beta \in \mathbb{R}, \alpha x+\beta y$ is also a Gaussian random variable [in this definition, we adopt the convention that if a random variable is constant (for example equal to zero), then we say that it is a Gaussian random variable of variance zero].

For example, if x and y are independent Gaussian random variables, then (x, y) forms a Gaussian random vector.

The joint distribution of a generic Gaussian random vector (x, y) is entirely determined by the means $\bar{x}=\mathbb{E}(x), \bar{y}=\mathbb{E}(y)$ and the covariance matrix

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{x}^{2}
\end{array}\right)
$$

where $\sigma_{x}^{2}=\mathbb{E}\left((x-\bar{x})^{2}\right), \sigma_{y}^{2}=\mathbb{E}\left((y-\bar{y})^{2}\right)$ and $\rho \sigma_{x} \sigma_{y}=\mathbb{E}((x-\bar{x})(y-\bar{y}))$.
In particular, if Σ is non-singular, then

$$
p(x, y)=\frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\binom{x-\bar{x}}{y-\bar{y}}^{T} \Sigma^{-1}\binom{x-\bar{x}}{y-\bar{y}}\right)
$$

and we deduce from this formula that if Σ is diagonal, then x and y are independent.
(NB: Notice that part B. 1 also requires an (easy) Jacobian computation.)

