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This paper constructs tridiagonal random matrix models for general (b.0)
b-Hermite ~Gaussian! and b-Laguerre~Wishart! ensembles. These generalize the
well-known Gaussian and Wishart models forb51,2,4. Furthermore, in the cases
of theb-Laguerre ensembles, we eliminate the exponent quantization present in the
previously known models. We further discuss applications for the new matrix mod-
els, and present some open problems. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1507823#

I. INTRODUCTION

A. Overview

Classical random matrix theory focuses on the random matrix models in the following33
table:

Real, b51 Complex, b52 Quaternion, b54

Hermite GOE GUE GSE
Laguerre Real Wishart Complex Wishart ~Quaternion Wishart!
Jacobi Real MANOVA Complex MANOVA ~Quaternion MANOVA!

The two entries in parentheses~in the third column! correspond to less-studied random mat
models; the others are mainstream and have been extensively researched and publicized. T
columns correspond to Dyson’s ‘‘threefold way’’b51,2, and 4; the three rows correspond to t
weight function associated to the random matrix model. Other weight functions have also
considered~for example, the uniform weight on the unit circle corresponds to the circular
sembles!.

Zirnbauer33 and Ivanov12 produced a more general taxonomy of random matrix models. T
characterizations~‘‘tenfold,’’ and ‘‘twelvefold,’’ respectively! are based on symmetric spaces, a
include Hermite, Laguerre, and Jacobi cases, and also the circular ensembles~each of their models
can be associated withb51,2 or 4!.

We propose a random matrix program of study that would generalizeb beyond the above-
mentioned threefold way, thus generalizing the 333 Cartesian product to 33`, making the leap
from discrete characterizations to continuous ones. A step in this direction has been initia
Forrester,2,10 who studied theb-ensembles in connection with multivariate orthogonal polynom
and Calogero–Sutherland-type quantum systems. Furthermore, in the case of the class
guerre and Jacobi models, our program goes beyond the quantized exponents forced
classical models, and proposes continuous ones.

For the benefit of the reader we have expanded the 333 table with detailed information in
Fig. 1.

a!Electronic mail: dumitriu@math.mit.edu
b!Electronic mail: edelman@math.mit.edu; http://math.mit.edu/̃edelman
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B. Background

The Gaussian~or Hermite! ensembles arise in physics, and are identified by Dyson7 by the
group over which they are invariant: Gaussian Orthogonal or for short GOE~with real entries!,
Gaussian Unitary or GUE~with complex entries!, and Gaussian Symplectic or GSE~with quater-
nion entries!. The Wishart ensembles arise in statistics, and the three corresponding models
be named Wishart real, Wishart complex, and Wishart quaternion.

The three Gaussian ensembles have joint eigenvalue probability density function

HERMITE: f b~l!5cH
b)

i , j
ul i2l j ub expS 2(

i 51

n

l i
2/2D , ~1!

with b51 corresponding to the reals,b52 to the complexes,b54 to the quaternions, and with

cH
b 5~2p!2n/2)

j 51

n GS 11
b

2 D
GS 11

b

2
j D . ~2!

FIG. 1. Random matrix ensembles. As a guide toMATLAB notation, randn(m,n) produces anm3n matrix with i.i.d.
standard normal entries, conj(X) produces the complex conjugate of the matrixX, and the apostrophe~8! operator produces
the conjugate transpose of a matrix. Also@X Y; Z W] produces a 232 block matrix.
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The best references are Mehta18 and the original paper by Dyson.7

Similarly, the Wishart~or Laguerre! models have joint eigenvalue p.d.f.

LAGUERRE: f b~l!5cL
b,a)

i , j
ul i2l j ub)

i
l i

a2p expS (
i 51

n

l i /2D , ~3!

with a5 (b/2) n and p511 (b/2) (m21). Again,b51 for the reals,b52 for the complexes,
andb54 for the quaternions. The constant

cL
b,a522ma)

j 51

m GS 11
b

2 D
GS 11

b

2
j DGS a2

b

2
~m2 j ! D . ~4!

Good references are Refs. 21, 8, and 13, and forb54, Ref. 17.
To complete the triad of classical orthogonal polynomials, we will mention theb-MANOVA

ensembles, which are associated with the multivariate analysis of variance~MANOVA ! model.
They are better known in the literature as the Jacobi ensembles, with joint eigenvalue p.d.

JACOBI: f b~l!5cJ
b,a1 ,a2)

i , j
ul i2l j ub)

j 51

n

l i
a12p

~12l i !
a22p, ~5!

with a15(b/2) n1 , a25(b/2) n2 , andp511 (b/2) (m21). As usual,b51 for real andb52
for complex; also

cJ
b,a1 ,a25)

j 51

m GS 11
b

2 DGS a11a22
b

2
~m2 j ! D

GS 11
b

2
j DGS a12

b

2
~m2 j ! DGS a22

b

2
~m2 j ! D . ~6!

The MANOVA real and complex cases (b51 and 2! have been studied by statisticians~see Ref.
21!.

Though ‘‘Gaussian,’’ ‘‘Wishart,’’ and ‘‘MANOVA’’ are the traditional names for the thre
types of b-ensembles, we prefer the sometimes used and technically more informative n
‘‘Hermite,’’ ‘‘Laguerre,’’ and ‘‘Jacobi’’ ensembles. These technical names reflect the fact tha
p.d.f.s for the ensembles correspond to the p.d.f.s etr(2A2/2), det(A)a2petr(2A/2), and
det(A)a12p det(I2A)a22p over their respective spaces of matrices. In turn, these functions c
spond to three sets of orthogonal polynomials~Hermite, Laguerre, Jacobi!. Throughout this paper
we will use the term ‘‘generalb-Hermite, -Laguerre, -Jacobi ensembles’’ for generalb in the
p.d.f.s~1!, ~3!, ~5!.

Though it was believed that no other choice ofb would correspond to a matrix mode
constructed with entries from a classical distribution, there have been studies of generalb-Hermite
ensembles as theoretical eigenvalue distributions. They turn out to have important applicat
lattice gas theory~see Refs. 10 and 2!.

The generalb ensembles appear to be connected to a broad spectrum of mathemati
physics, among which we list lattice gas theory, quantum mechanics, and Selberg-type int
Also, theb ensembles are connected to the theory of Jack polynomials~with the correspondence
a5 2/b wherea is the Jack parameter!, which are currently objects of intensive research~see
Refs. 27, 17, and 23!.
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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C. Our results

Dyson’s original threefold way is a byproduct of the invariance assumptions as in the
variance’’ column of Fig. 1. By necessity, any invariant distribution is generically dense. Fu
the invariance approach forces the consideration of the complex and quaternion division alg

In this paper, we drop the invariance requirement. What we gain are ‘‘sparse’’ models~with
only O(n) nonzero parameters! over the reals numbersonly. As an additional bonus, we g
beyond the quantizations of the classical casesb51,2,4 and obtain continuous exponents~see
Sec. IV for further discussion of this point!.

We provide real tridiagonal random matrix models for allb-Gaussian~or Hermite! and
b-Wishart ~or Laguerre! ensembles, and we discuss the possibility of constructing a real m
model for theb-MANOVA ~or Jacobi! ensembles.

We obtain our results by extrapolating the classical cases, thereby providing concrete m
for what have previously been considered purely theoretical distributions.

In Sec. II we establish results for symmetric tridiagonal matrices, and we use them to
struct tridiagonal models for theb-Hermite ensembles. Along the way, we obtain a short pr
based on random matrix theory for the Jacobian of the transformationT→(q,l), whereT is a
symmetric tridiagonal matrix,l is its set of eigenvalues, andq is the first row of its eigenvecto
matrix. In Sec. III we construct tridiagonal models for theb-Laguerre ensembles, by building o
the same set of ideas that we use in Sec. II. In Sec. IV we present some immediate applica
the new classes of ensembles and we discuss theb-Jacobi ensembles and other interesting op
problems.

We display our random matrix constructions in Table I.

II. THE b-HERMITE „GAUSSIAN … ENSEMBLES

A. Motivation: Tridiagonalizing the GOE, GUE, and GSE

The joint distributionf b(l) of the eigenvalues for the GOE, GUE, and GSE is

f b~L!5cH
b uD~l!ub expS 2

1

2 (
i

l i
2D , ~7!

whereb51,2,4.18 Here the Vandermonde determinant notationD~l! stands for) iÞ j (l i2l j ), and
cH

b is given by~2!.

TABLE I. Random matrix constructions.

Hermite matrix
nPN

Hb;
1

& S N~0,2! x (n21)b

x (n21)b N~0,2! x (n22)b

� � �

x2b N~0,2! xb

xb N~0,2!

D
Laguerre matrix Lb5BbBb

T , where
mPN
aPR

a.
b

2
~m21!

Bb;S x2a

xb(m21) x2a2b

� �

xb x2a2b(m21)

D
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We will prove in Sec. II B that the tridiagonalb-Hermite random matrix displayed in Table
has the joint eigenvalue p.d.f. given by generalb in ~7!. For motivation, we will begin with a
quick ‘‘back-door’’ proof forb51 by tridiagonalizing the GOE; then we will extend the result
the GUE and GSE.

To illustrate the proof and help the reader follow it more easily, we have included the dia
of Fig. 2.

Theorem 2.1: If A is an n3n matrix from the GOE, then reduction of A to tridiagonal for
shows that the matrix T from the 1-Hermite ensemble has joint eigenvalue p.d.f. given by (7
b51.

Proof: We write A5(x B
an xT

). Here an is a standard Gaussian,x is a vector of (n21) i.i.d.
Gaussians of mean 0 and variance 1/2, andB is an (n21)3(n21) matrix from the GOE;an , x
andB are all independent from each other.

Let H be any (n21)3(n21) orthogonal matrix~depending only onx) such that

Hx5@ ixi2 0...0#T[ixi2e1 ,

wheree15@1,0,...,0#T. Then clearly

S 1 0

0 H D S an xT

x B D S 1 0

0 HTD 5S an ixi2e1
T

ixi2e1 HBHTD .

SinceA is from the GOE andH depends only onx, we can readily identify the distribution
of an , ixi2 , and HBHT ~these three quantities are clearly independent!. The entryan is un-
changed and thus a standard normal with variance 1. Being the length of a multivariate Ga
of mean 0 and entry variance 1/2,ixi2 has the distribution (1/&) xn21 . It is worth mentioning
that the p.d.f. ofixi2 is given by

2

GS n21

2 D yn22e2y2
.

Finally, by the orthogonal invariance of the GOE,HBHT is an (n21)3(n21) matrix from the
GOE.

Proceeding by induction completes the tridiagonal construction.
Because the only operations we perform onA are orthogonal similarity transformations

which do not affect the eigenvalues, the conclusion of the theorem follows. h

FIG. 2. A dense symmetric matrixA can be tridiagonalized~left-hand side! or diagonalized~right-hand side!. In brackets,
we provide the distributions starting with that ofA ~GOE or Wishart real!.
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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We recall that matrices from the GOE have the following properties:
Property 1:The joint eigenvalue density iscH

1 uD(l)uexp(21
2(ili

2).18

Property 2:The first row of the eigenvector matrix is distributed uniformly on the sphere,
it is independent of the eigenvalues.

The second property is an immediate consequence of the fact that the eigenvector mat
GOE matrix is independent from the eigenvalues@Ref. 18,~3.1.3! and ~3.1.16!, pp. 55–58#, and
has the Haar~uniform! distribution because of the orthogonal invariance.

The following corollary is easily established.
Corollary 2.2: If T is a matrix from the 1-Hermite ensemble, with eigendecompositio

5QLQT, then the first row q of the eigenvector matrix Q is independent ofL, and is distributed
uniformly on the sphere.

Proof: If A5Q1LQ1
T andT5HAHT, thenQ5HQ1 . Since each one of the reflectors whic

form H has first rowe1 , multiplication byH does not affect the first row ofQ1 . The conclusion
follows. h

Reduction to tridiagonal form is a familiar algorithm which solves the symmetric eigenv
problem. The special ‘‘reflector’’ matrixH used in practice for a vectorx5@x1 ,...,xn21#T is

H5I 22
uuT

uTu
,

whereu5x6x1 e1 . This special matrixH is known as the ‘‘Householder reflector’’~see Ref. 11,
p. 209!.

The tridiagonal reduction algorithm can be applied to any real symmetric, complex herm
or quaternion self-dual matrix; the resulting matrix is always a real, symmetric tridiagonal. U
the algorithm similarly on a GUE or GSE matrix one gets the following.

Corollary 2.3: Whenb52,4, reduction to tridiagonal form of matrices from the GUE, respe
tively, GSE, shows that the tridiagonal 2-Hermite, respectively, 4-Hermite, random matrix ha
distribution given by (7). Note thatb ‘‘counts’’ the number of independent Gaussians in each en
of the matrix.

Remark 2.4: The observation that numerical linear algebra algorithms may be perfo
statistically is not new; it may be found in the literature (see Trotter—Ref. 31, Silverstein—Re
and Edelman—Ref. 8).

B. Tridiagonal matrix lemmas

In this section we prove lemmas that will be used in our constructions in Secs. II C and
Given a tridiagonal matrixT defined by the diagonala5(an ,...,a1) and subdiagonalb

5(bn21 ,...,b1), with all bi positive, letT5QLQT be the eigendecomposition ofT as in Theo-
rem 2.12. Letq be the first row ofQ andl5diag(L).

Lemma 2.5: Under the above-given assumptions, starting from q andl, one can uniquely
reconstruct Q and T.

Proof: This is a special case of the more general Theorem 7.2.1 in Parlett.24 h

Remark 2.6: It follows that, except for sets of measure0, the map T→(q,l) is a bijection from
the set of tridiagonal matrices of size n with positive subdiagonal, to the set of pairs(q,l), with
q a unit norm n-dimensional vector of positive real entries, andl a strictly increasingly ordered
sequence of n real numbers. Let the bijection’s Jacobian be denoted by J

J5H ]~a,b!

]~q,l! J .

Our next lemma establishes a formula for the Vandermonde determinant of the eigenva
a tridiagonal matrix.

Lemma 2.7: The Vandermonde determinant for the ordered eigenvalues of a symmetri
agonal matrix with positive subdiagonal b5(bn21 ,...,b1) is given by
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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D~l!5)
i , j

~l i2l j !5
) i 51

n21bi
i

) i 51
n qi

,

where(q1 ,...,qn) is the first row of the eigenvector matrix.
Proof: Let l i

(k) , i 51...k, be the eigenvalues of thek3k lower right-corner submatrix ofT.
ThenPk(x)5) i 51

k (x2l i
(k)) is the associated characteristic polynomial of that submatrix.

For k51,...,n we have the three-term recurrence

Pk~x!5~x2ak!Pk21~x!2bk21
2 Pk22~x!, ~8!

and the two-term relation

)
1< i<k

1< j <k21

ul i
(k)2l j

(k21)u5)
i 51

k

uPk21~l i
(k)!u5)

j 51

k21

uPk~l j
(k21)!u. ~9!

From ~8! we get

U)
i 51

k21

Pk~l i
(k21)!U5bk21

2(k21)U)
i 51

k21

Pk22~l i
(k21)!U. ~10!

By repeatedly applying~8! and ~2.9! we obtain

)
i 51

n21

uPn~l i
(n21)!u5bn21

2(n21) )
i 51

n22

uPn21~l i
(n22)!u ~11!

5bn21
2(n21) bn22

2(n22) U)
i 51

n22

Pn23~l i
(n22)!U ~12!

5... ~13!

5 )
i 51

n21

bi
2i . ~14!

Finally, we use the following formula due to Paige, found in Ref. 24, as the more ge
Theorem 7.9.2:

qi
25UPn21~l i !

Pn8~l i !
U5UPn21~l i

(n)!

Pn8~l i
(n)!

U . ~15!

It follows that

)
i 51

n

qi
25

) i 51
n uPn21~l i

(n)!u
D~l!2 5

) i 51
n21bi

2i

D~l!2 , ~16!

which proves the result.
Remark 2.8: The Vandermonde determinant formula of Lemma 2.7 can also be obtaine

the Heine formula, as presented in Deift (Ref. 5, p. 44).
The next lemma computes the JacobianJ by relating the tridiagonal and diagonal forms of

GOE matrix, as in Fig. 2.
Lemma 2.9: The Jacobian J can be written as
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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J5
) i 51

n21bi

) i 51
n qi

.

Proof: To obtain the Jacobian, we will study the transformation from GOE to 1-Herm
ensemble~see Fig. 2!. Note thatJ doesnot depend onb; hence computing the Jacobian for th
case is sufficient.

Let T be a 1-Hermite matrix. We know from Sec. II A that the eigenvalues ofT are distributed
as the eigenvalues of a symmetric GOE matrixA, from whichT can be obtained via tridiagona
reduction (T5HAHT for some orthogonalH, which is the product of the consecutive reflectio
described in Sec. II A!.

The joint element distribution for the matrixT is

m~a,b!5ca,b expS 2
1

2 (
i 51

n

ai
2D)

i 51

n

bi
i 21 expS 2(

i 51

n

bi
2D ,

where

ca,b5
2n21

~2p!n/2) i 51
n21GS i

2D .

Let

da5∧ i 51
n dai , db5∧ i 51

n21dbi , dl5∧ i 51
n l i ,

and dq be the surface element of then-dimensional sphere. Letm(a(q,l),b(q,l)) be the expres-
sion for m(a,b) in the new variablesq,l. We have that

m~a,b!da db5J m~a~q,l!,b~q,l!!dq dl[n~q,l! dq dl. ~17!

We combine Properties 1 and 2 of Sec. II A to get the joint p.d.f.n(q,l) of the eigenvalues
and first eigenvector row of a GOE matrix, and rewrite it as

n~q,l!dq dl5n!cH
1

2n21GS n

2D
pn/2 D~l!expS 2

1

2 (
i

l i
2D dq dl.

We have introduced then! and removed the absolute value from the Vandermonde, becaus
eigenvalues are ordered. We have also included the distribution ofq ~as mentioned in Property 2
it is uniform, but only on the all-positive 22nth of the sphere because of the conditionqi>0.)

Since orthogonal transformations do not change the Frobenius normiAiF5( i , j 51
n ai j

2 of a
matrix A, from ~17!, it follows that

J5
n~q,l!

m~a,b!
5

n!cH
1

2n21GS n

2D
pn/2

ca,b

D~l!

) i 51
n bi

i 21 .

All constants cancel, and by Lemma 2.7 we obtain

J5
) i 51

n21bi

) i 51
n qi

.
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Note that we have not expressedm(a,b) in terms ofq and l in the above, and have thu
obtained the expression for the Jacobian neither in the variablesq andl, nor a andb, solely; but
rather in a mixture of the two sets of variables. The reason for this is that of simplicity. h

Remark 2.10: Our derivation of the Jacobian is a true random matrix derivation. Alter
derivations of the Jacobian can be obtained either via symplectic maps or through direct c
lation.

The last lemma of this section computes one more Jacobian, which will be needed in
III B.

Let B be a bidiagonal matrix with positive diagonalx5(xm ,...,x1) and positive subdiagona
y5(ym21 ,...,y1). Let T5BBT; denote bya5(am ,...,a1) and b5(bm21 ,...,b1), respectively,
the diagonal and the subdiagonal part ofT. SinceT is a positive definite matrix, the transforma
tion B→T is a bijection from the set of bidiagonal matrices with positive entries to the se
positive definite tridiagonal matrices.

Lemma 2.11: The Jacobian J(B→T) is

J(B→T)5S 2mx1)
i 52

m

xi
2D 21

.

Proof: We computeJ(B→T) from the formula

dx dy5J(B→T)da db,

where dz5∧ idzi for all zP$a,b,x,y%.
We have that

am5xm
2 , ~18!

ai5yi
21xi

2 , ~19!

bi5yixi 11 , ~20!

for all i 5m21,m22,...,1.
Hence by computing differentials we get

dam52xm dxm

dai52~xi dxi1yi dyi !, ; i 5m21,m22,...,1

dbi5xi 11dyi1yi dxi 11 , ; i 5m21,m22,...,1,

from which the formula follows. h

C. The eigendistribution of the b-Hermite ensemble

Let Hb be a random real symmetric, tridiagonal matrix whose distribution we schemati
depict as

Hb;
1

A2 S N~0,2! x (n21)b

x (n21)b N~0,2! x (n22)b

� � �

x2b N~0,2! xb

xb N~0,2!

D .
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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By this we mean that then diagonal elements and then21 subdiagonals are mutuall
independent, with standard normals on the diagonal, and 1/A2 xkb on the subdiagonal.

Theorem 2.12:Let Hb5QLQT be the eigendecomposition of Hb ; fix the signs of the first
row of Q to be non-negative and order the eigenvalues in increasing order on the diagon
l5diag(L). Thenl and q, the first row of Q, are independent. Furthermore, the joint density
the eigenvalues is

f b~l!5cH
b)

i , j
ul i2l j ub expS 2

1

2 (
i 51

n

l i
2D 5cH

b uD~l!ub expS 2
1

2 (
i 51

n

l i
2D ,

and q5(q1 ,...,qn) is distributed as(xb ,...,xb), normalized to unit length.
Proof of Theorem 2.12:Just as before, we denote bya5(an ,...,a1) the diagonal ofHb , and

by b5(bn21 ,...,b1) the subdiagonal. The differentials da,db,dq,dl are the same as in Lemm
2.9.

For generalb, we have that

~dHb![m~a,b!da db5ca,b)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDda db

5ca,bJ)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDdq dl,

where

ca,b5
2n21

~2p!n/2)k51
n21GS b

2
kD .

With the help of Lemmas 2.7 and 2.9 this identity becomes

~dHb!5ca,b

)k51
n21bk

)k51
n qk

)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDdq dl ~21!

5ca,b

)k51
n21bk

kb

) i 51
n qi

b )
i 51

n

qi
b21 expS 2

1

2 (
i

l i
2D dq dl. ~22!

Thus

~dHb!5S cq
b)

i 51

n

qi
b21 dqD S n!cH

b D~l!b expS 2
1

2 (
i

l i
2D dl D .

Since the joint density function ofq andl separates,q andl are independent. Moreover, onc
we drop the ordering imposed on the eigenvalues, it follows that the joint eigenvalue dens
Hb is cH

b uD(l)ub exp(21
2(ili

2), and q is distributed as (xb ,...,xb), normalized to unit length.
From ~22!, it also follows that

cq
b5

2n21GS b

2
nD

FGS b

2 D Gn . ~23!
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III. THE b-LAGUERRE „WISHART… ENSEMBLES

A. Motivation: Tridiagonalizing the Wishart ensembles

The preceding section gives tridiagonal random matrix models for allb-Hermite ensembles
In the following we define theb-Laguerre ensembles, and give tridiagonal random matrix mo
for them.

The Wishart ensembles have joint eigenvalue density

f b~l!5cL
b,auD~l!ub)

i 51

m

l i
a2p expS 2(

i 51

m

l i /2D , ~24!

again witha5 (b/2) n, p511 (b/2) (m21), and with, respectively,b51 for real, andb52 for
complex. HerecL

b,a as the same as in~4!.
From now onp will always denote the quantity 11 (b/2) (m21), following the notation of

Muirhead forb51 ~Ref. 21, Chap. 7! and Forrester10 ~Forrester uses 11 (1/a) (m21), where
a52/b is the Jack parameter!. Its presence is implicit in the p.d.f. of allb-Laguerre ensembles
hence we will identify the ensembles byb and bya ~we call the latter the ‘‘Laguerre’’ paramete
generalizing from the univariate caseb51, m51).

As in Sec. II A, we will provide the most basic case for our construction: the caseb51 and
Wishart real exponent (n2m21)/2 ~also referred to as the caseb51 and Laguerre paramete
a5 n/2).

Theorem 3.1: Let G be an m3n matrix of i.i.d. standard Gaussians; then W5GGT is a
Wishart real matrix. By reducing G to bidiagonal form B one obtains that the matrix T5BBT

from the 1-Laguerre ensemble of Laguerre parameter a5 n/2 (defined as in Table I) has the join
eigenvalue p.d.f. given by (24).

Proof: We write

G5S xT

G1
D ,

with xT a row multivariate standard Gaussian of lengthn and G1 a (m21)3n matrix of i.i.d.
standard Gaussians. LetR be a right reflector corresponding to the vectorxT (RTx5ixi2 e1

T)
which is independent ofG1 . HenceG1R is a matrix of i.i.d. standard Gaussians.

Write G1R5@y,G2#, wherey is a column multivariate standard Gaussian of lengthm21 and
G2 is a (m21)3(n21) matrix of i.i.d. standard Gaussians. LetL be a left reflector correspond
ing to y (Ly5iyi2 e1) which is independent ofG2 . Then we have that

S 1 0

0 L DGR5S ixi2 0

iyi2 e1 LG2
D .

As we have seen before,ixi2 is distributed likexn21 , iyi2 is distributed likexm21 , andLG2 is
a matrix of i.i.d. standard Gaussians~sinceL andG2 are independent!.

We proceed inductively to finish the bidiagonal construction ofB.
Because the operations we have performed onG are orthogonal left and right multiplications

which do not affect the singular values, it follows that the singular values ofG andB are the same.
Since the squares of the singular values ofG andB, respectively, are the eigenvalues ofW andT,
respectively, the conclusion of the theorem follows. h

Remark 3.2: The bidiagonalization process presented above is part of a familiar num
linear algebra algorithm for computing the singular values of a matrix.

Corollary 3.3: The same process of bidiagonalization performed on G˜ , a matrix of i.i.d.

standard complex (standard quaternion) Gaussians, shows that the matrix W˜ 5G̃G̃T and the
matrix T from the 2-Laguerre (4-Laguerre) ensemble of parameter a5n (a52n) has the joint
2 Feb 2005 to 169.229.140.19. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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eigenvalue p.d.f. given by (24). In all three cases (real, complex, quaternion) we say t
represents the tridiagonalization of the Wishart (real, complex, quaternion) ensemble.

In Sec. III B we prove the general form of the theorem.

B. The Eigendistribution of b-Laguerre ensemble

Let

Bb;S x2a

xb(m21) x2a2b

� �

xb x2a2b(m21)

D ,

by this we mean that all of the 2m21 diagonal and subdiagonal elements are mutually indep
dent with the correspondingx distribution.

Let Lb5BbBb
T be the corresponding tridiagonal matrix.

Theorem 3.4:Let Lb5QLQT be the eigendecomposition of Lb ; fix the signs of the first row
of Q to be non-negative and order the eigenvalues increasingly on the diagonal ofL. ThenL and
the first row q of Q are independent. Furthermore, the joint density of the eigenvalues is

f b~l!5cL
b,auD~l!ub)

i 51

n

l i
a2p expS 2(

i 51

n

l i /2D ,

where p511 (b/2) (m21), and q is distributed as(xb ,...,xb) normalized to unit length.
Proof of Theorem 3.4:We will use throughout the results of Lemma 2.7, Lemma 2.9, Lem

2.11, and Remark 2.6, which are true in the context of tridiagonal symmetric matrices
positive subdiagonal entries. By definition,Lb is such a matrix.

We will again use the notations of Lemma 2.9 and 2.11 for the differentials da, db, dq, dl,
dx, and dy.

We define (dBb) to be the joint element distribution onBb

~dBb![m~x,y!dx dy5cx,y )
i 50

m21

xm2 i
a2b i21exp~2xi

2/2! )
i 51

m21

yi
b i21exp~2yi

2/2!dx dy.

By using Lemma 24 we obtain the joint element distribution onLb as

~dLb![JB→T
21 m~x,y!dx dy ~25!

522mcx,yx1
2a2b(m21)22exp~2x1

2/2! )
i 50

m22

xm2 i
a2b i23

3exp~2xi
2/2! )

i 51

m21

yi
b i21exp~2yi

2/2!dx dy, ~26!

where

cx,y5

) i 51
m21GS i

b

2 D ) i 51
m GS a2

b

2
~ i 21! D

22m21 .

We rewrite~26! in terms ofx,y,l, andq:
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~dLb!522mcx,y expS 2(
i 51

m

xi
2/2D expS 2 (

i 51

m21

yi
2/2D ) i 51

m21~xi 11yi !

) i 51
m qi

x1
2a2b(m21)22

3 )
i 50

m22

xm2 i
2a2b(m2 i )23 )

i 51

m21

yi
b i21dq dl

522mcx,y expS 2(
i 51

m

xi
2/2D

3expS 2 (
i 51

m21

yi
2/2D ) i 50

m21xm2 i
2a2b(m2 i )22) i 51

m21yi
b i

) i 51
m qi

dq dl.

Since the Vandermonde with respect tob andq and the ordered eigenvaluesl can be written
as

D~l!5
) i 51

m21bi
i

) i 51
m qi

,

it follows that

D~l!5
) i 51

m21~xi 11yi !
i

) i 51
m qi

.

This means that we can rewrite

~dLb!522mcx,y expS 2 (
i 50

m21

xm2 i
2 /2D expS 2 (

i 51

m21

yi
2/2D ) i 51

m21~xi 11yi !
b i

) i 51
m qi

b

3 )
i 51

m21

qi
b21 )

i 50

m21

xm2 i
2a2b(m21)22dq dl

522mcx,y expS 2 (
i 50

m21

xm2 i
2 /2D expS 2 (

i 51

m21

yi
2/2DD~l!b

3 )
i 51

m21

qi
b21S )

i 50

m21

xm2 i D 2a2b(m21)22

dq dl.

The trace and the determinant are invariant under orthogonal similarity transformatio
tr(Lb)5tr(L), and det(Lb)5det(L). This is equivalent to

(
i 50

m21

xm2 i
2 1 (

i 51

m21

yi
25(

i 51

m

l i ,

)
i 50

m21

xm2 i
2 5)

i 51

m

l i .

Using this, and substitutingp for 11 b/2 (m21), we obtain that

~dLb!5S cq
b )

i 51

m21

qi
b21 dqD S m!cL

b,ae2( i 51
m l i /2D~l!b)

i 51

m

l i
a2p dl D ,

wherecq
b is the same as in~23!.

From the above we see thatq andl are independent, and once we drop the ordering the j
eigenvalue density is given by theb-Laguerre ensemble of parametera, while q is distributed like
a normalized vector ofxb’s.
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This concludes the proof of Theorem 3.4. h

IV. APPLICATIONS AND OPEN PROBLEMS

As we mentioned in Sec. I, we believe that there should be many applications for the
tridiagonal ensembles. Here we illustrate some~in Sec. IV A!, in the hope that researchers w
find many more. Some of the applications we believe are new results~Applications 1, 3, 5, and 6!,
and some are simplifications of known results~Applications 2 and 4!.

We discuss the open problem of constructing a matrix model for theb-Jacobi ensembles in th
beginning of Sec. IV B. To facilitate the finding of new results, we conclude with a few o
‘‘general b-ensemble’’ problems.

A. Applications

1. Interpolating Laguerre exponents

Our b-Laguerre ensembles have ‘‘continuous’’ Laguerre parametersa which, even in the
casesb51,2,4, interpolate the Wishart parameters. Thoughb-Laguerre ensembles with gener
~‘‘continuous’’! parametera have been studied by many researchers~Refs. 2, 14, and 21!, no
nonquantized matrix realizations~i.e., explicit random matrix models! of b-Laguerre ensemble
are found in the literature. By ‘‘quantized’’ we mean that the exponenta is either an even integer
an integer, or a half-integer~depending on the value ofb!. In particular, all models correspondin
to a Laguerre~or Jacobi! weight found in Refs. 33 and 12 are quantized.

Thus, ourb-Laguerre random matrix constructions extend the pre-existing ones in two w
throughb and through the Laguerre parametera.

2. The expected characteristic polynomial

The result in the following might be seen as an extension of the classical Heine theorem~see
Szego¨25 and Deift5! which hasb52. Note that forbÞ2, D(l)b can no longer be written as th
determinant of a Vandermonde matrix times its transpose, and the proof cannot be duplica

The same result is found in a slightly more general form in Ref. 8, and its Jacobi case wa
derived by Aomoto.1

Theorem 4.1: The expected characteristic polynomial Pn(y)5det(yIn2S) over S in the
b-Hermite andb-Laguerre ensembles, respectively, are proportional to

HnS y

A2b
D , Ln

~2a/b! 2nS y

2b D .

Here Hn and Ln
(2a/b) 2n are, respectively, the Hermite and Laguerre polynomials, and the cons

of proportionality accounts for the fact that Pn(y) is monic.
Proof: Both formulas follow immediately from the 3-term recurrence for the character

polynomial of a tridiagonal matrix~see formula~8!! and from the independence of the variabl
involved in the recurrence. h

3. Expected values of symmetric polynomials

Using the three-term recurrence for the characteristic polynomial of a tridiagonal matri
obtain Theorem 4.2.

Theorem 4.2:Let p be any fixed (independent ofb) multivariate symmetric polynomial on n
variables. Then the expected value of p over theb-Hermite orb-Laguerre ensembles is a poly
nomial in b.

We remark that it is difficult to see this from the eigenvalue density.
Proof: The elementary symmetric functions

ei~x1 ,x2 ,...,xn!5 (
1< j 1,¯, j i<n

xj 1
xj 2

...xj i
, i 50,1,...,n,
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can be used to generate any symmetric polynomial of degreen ~in particularp).
The ei evaluated at the eigenvalues of a matrix are the coefficients of its characteristic

nomial, and hence they can be written in terms of the matrix entries. Thusp can be written as a
polynomial of then3n tridiagonal matrix entries~which corresponds, respectively, to the Herm
and Laguerre cases!.

To obtain the expected value ofp over theb-Hermite orb-Laguerre ensemble, one can wri
p in terms of the corresponding matrix entries, use the symmetry to condense the expressio
replace the powers of the matrix entries by their expected values.

The diagonal matrix entries are either normal random variables in the Hermite case or s
x2 random variables in the Laguerre case. The subdiagonal entries appear only raised
powers in theei and hence inp ~this is an immediate consequence of the three-term recurrenc
the characteristic polynomial,~8!!. Since all even moments of the involvedx distributions are
polynomials inb/2, it follows that the expectation ofp will be a polynomial inb. h

As an easy consequence we have the following corollary.
Corollary 4.3: All moments of the determinant of ab-Hermite matrix are integer-coefficien

polynomials inb/2.
Proof: Note that even moments of thexb i distribution are integer-coefficient polynomials

b/2, and that the determinant isen . h

4. A new proof for Hermite and Laguerre forms of the Selberg integral

Here is a quick proof for the Hermite and Laguerre forms of the Selberg integral~Ref. 18!,
using respectively, theb-Hermite, andb-Laguerre ensembles.

The Hermite Selberg integral is

I H~b,n![E
Rn

uD~l!ub expS 2(
i 51

n

l i
2/2D dl.

We have that

I H~b,n!5n! S E
0<l1<¯<ln,`

D~l!b expS 2(
i 51

n

l i
2/2D dl D S cq

bE
S1

n21)i 51

n

qi
b21 dqD ,

where cq
b is as in ~23!. We introduce then! because in the first integral we have ordered

eigenvalues;S1
n21 signifies that allqi are positive.

Note thatcq
b can easily be computed independently of theb-Hermite ensembles.

Using the formula for the Vandermonde given by Lemma 2.7, the formula for the JacobJ
given in Lemma 2.9, and the fact that the Frobenius norm of a matrix in the tridiagonal 1-He
ensemble is the same as the Frobenius norm of its eigenvalue matrix, one obtains

I H~b,n!5n!cq
bE

Rn3(0,̀ )n21

) i 51
n qi

) i 51
n21bi

) i 51
n21bi

b i

) i 51
n qi

b )
i 51

n

qi
b21 expS 2 (

i 51

n21

bi
22(

i 51

n

ai
2/2D da db

5n!cq
b~2p!n/2)

i 51

n21 E
(0,̀ )

bi
b i 21e2bi

2
dbi5n!

2n21GS b

2
nD

S GS b

2 D D n ~2p!n/2)
i 51

n21 GS b

2
i D

2
5

1

cH
b .

The same reasoning yields the Laguerre Selberg integral formula

I L
b,a,n5

1

cL
b,a .
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5. Moments of the discriminant

The discriminant of a polynomial equation of orderm is the square of the Vandermond
determinant of them zeroes of the equation. Thus, the discriminant of the characteristic pol
mial of a b-Hermite orb-Laguerre ensemble matrix is simplyD(l)5D(l)2.

A simple calculation shows that thekth moment ofD(l) is, respectively,

cH
b

cH
b12k 5)

j 51

n S 11
b

2
j D

k j

S 11
b

2 D
k

,

cL
b,a

cL
b12k,a1k(m21) 52km(m21))

j 51

m S 11
b

2
j D

k j
S a2

b

2
~m2 j ! D

k( j 21)

S 11
b

2 D
k

,

wheren and m are, respectively, the matrix sizes for the Hermite and Laguerre cases, an
rising factorial (x)k[G(x1k)/G(x).

Using the Selberg integral, one obtains that the moments of the discriminant for theb-Jacobi
case are

cJ
b,a1 ,a2

cJ
b12k,a11k(m21),a21k(m21) 5)

j 51

m S 11
b

2
j D

k j
S a12

b

2
~m2 j ! D

k( j 21)
S a22

b

2
~m2 j ! D

k( j 21)

S 11
b

2 D
k
S a11a22

b

2
~m2 j ! D

k(m1 j 22)

.

6. Software for application 3: Computing eigenvalue statistics for the b-ensembles

Application 3 suggests that integrals of the form

Eb@p#[cH
b E

Rn
p~l!uD~l!ub expS 2(

i 51

n

l i
2/2D dl

may be evaluated with software.
One example of this would be computing moments of the determinant over theb-Hermite

ensemble. There are explicit formulas for the casesb51,2 and 4, due to Mehta19 and to Delannay
and Le Cae¨r,6 which can be used to evaluate these moments.

In the absence of a closed-form, explicit formula, like the one forb51 provided in Ref. 6, the
computation of these moments cannot be made polynomial; thus it is inherently slow.

For the generalb case, one can compute the moments in terms of a multivariate He
polynomial evaluated at 0~see Refs. 4 and 2!. Using this technique, the complexity of the com
putation might exceed that of symbolically taking the determinant of a tridiagonal matrix, exp
ing the power, and replacing all powers of the entries by their expected values~which are all
known!. Writing a Mathematica code to implement this algorithm is an easy exercise, and s
code would allow the author to compute these moments in a reasonable amount of time, pr
that the product between the power and the size of the matrix is not very large. A template
special case whenb51 can be found in Ref. 9, Appendix A.
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B. Open problems

1. b-Jacobi (MANOVA) ensembles

Sections II and III of the paper provide tridiagonal matrix models for theb-Hermite and
b-Laguerre ensembles. The natural question is whether such models exist for the last mem
the classical triplet, Jacobi. Theb-Jacobi ensembles have been intensively studied as theore
distributions, especially in connection with Selberg-type integrals and Jack~or Jack–Selberg!
polynomials~see Refs. 1, 15, 16, and 3!. Finding a random matrix model that corresponds to th
would be of much interest.

If the two matrix factorization problems that are associated with the Hermite and Lag
ensembles are the EIG and the SVD, the one associated with the Jacobi should be the Q~the
generalized symmetric eigenvalue problem!. This idea is supported by the fact that the MANOV
real and complex distributions, which correspond to the Jacobib51,2 ensembles, are indee
connected to the QZ algorithm. A good reference for QZ is Ref. 11.

Though we have not studied this problem sufficiently, we believe that a concrete~perhaps
sparse, perhaps tridiagonal! matrix model may be constructed for theb-Jacobi ensembles.

2. Level densities

The level density of an ensemble is the distribution of a random eigenvalue of that ens
~and by the Wigner semicircular law we know that the limiting distribution asn→` of such an
eigenvalue is semicircular!. The three functions found to be the level densities of the Gaus
models depend on the univariate Hermite polynomials.

Recently, Forrester10 has found a formula for the level densities of theb-Hermite ensembles
which works forb an even integer. This formula depends on a multivariate Hermite polynom

Finding a unified formula for the generalb case would be of interest.

3. Level spacings

The level spacings are the distances between the eigenvalues of an ensemble, usually
ized so that the average consecutive spacing is 1. These spacings have been well-studie
case of the Gaussian ensembles (b51,2,4). The limiting probability density of a random spaci
in these cases is known in terms of spheroidal functions~see Ref. 18!.

A surprising connection exists between the limiting probability density of a GUE ran
spacing and the probability density of the zeroes of the Riemann zeta function. Inspired
theoretical work of Montgomery,20 Odlyzko22 has shown experimentally that the two probabil
densities are very close; the subsequent conjecture that the two probability densities coinc
been named the Montgomery–Odlyzko law.

To the best of our knowledge, the level spacing of the generalb-Hermite ensembles has no
been investigated.

4. Bulk and edge scaling limits

Finally, a very important application would be the generalization of the bulk and edge sc
limits for the GOE, GUE, and GSE obtained by Tracy and Widom~the latter are known as th
Tracy–Widom distributionsF1 , F2 , andF4).

The edge scaling limit refers to the distribution of the largest eigenvalue of a matrix in
ensemble; the bulk scaling limit refers to the distribution of an eigenvalue in the ‘‘bulk’’ of
spectrum. See Refs. 29, 30 or 28. The Tracy–Widom distributions are defined in terms of Pa´
functions, which are solutions to certain differential equations, with asymptotics given by
functions. For a good treatment of Painleve´ equations in relationship with Gaussian~Hermite!,
Laguerre, and Jacobi random matrix models, see Pierre van Moerbeke’s notes~Ref. 32, Sec. 4!.
Recently, Johnstone14 has found that the limiting distributionsF1 and F2 apply to real~respec-
tively, complex! Wishart matrices.
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