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Matrix models for beta ensembles

loana Dumitriu® and Alan Edelman®
Massachusetts Institute of Technology, Department of Mathematics,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139

(Received 3 December 2001; accepted 3 June 2002

This paper constructs tridiagonal random matrix models for genegat Q)
B-Hermite (Gaussiajp and B-Laguerre(Wishar) ensembles. These generalize the
well-known Gaussian and Wishart models #®+ 1,2,4. Furthermore, in the cases

of the B-Laguerre ensembles, we eliminate the exponent quantization present in the
previously known models. We further discuss applications for the new matrix mod-
els, and present some open problems2@2 American Institute of Physics.
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I. INTRODUCTION

A. Overview

Classical random matrix theory focuses on the random matrix models in the followdryy 3

table:

Real B=1 Complex, B=2 Quaternion, B=4
Hermite GOE GUE GSE
Laguerre Real Wishart Complex Wishart (Quaternion Wishajt
Jacobi Real MANOVA Complex MANOVA (Quaternion MANOVA

The two entries in parenthes@s the third column correspond to less-studied random matrix
models; the others are mainstream and have been extensively researched and publicized. The three
columns correspond to Dyson’s “threefold wag=1,2, and 4; the three rows correspond to the
weight function associated to the random matrix model. Other weight functions have also been
consideredfor example, the uniform weight on the unit circle corresponds to the circular en-
sembles

Zirnbauer® and lvanov? produced a more general taxonomy of random matrix models. Their
characterizationg§‘tenfold,” and “twelvefold,” respectively) are based on symmetric spaces, and
include Hermite, Laguerre, and Jacobi cases, and also the circular ensésallesf their models
can be associated with=1,2 or 4.

We propose a random matrix program of study that would generglireyond the above-
mentioned threefold way, thus generalizing the 3 Cartesian product to>8e, making the leap
from discrete characterizations to continuous ones. A step in this direction has been initiated by
Forreste?'°who studied thgg-ensembles in connection with multivariate orthogonal polynomials
and Calogero—Sutherland-type quantum systems. Furthermore, in the case of the classical La-
guerre and Jacobi models, our program goes beyond the quantized exponents forced by the
classical models, and proposes continuous ones.

For the benefit of the reader we have expanded the& 3able with detailed information in
Fig. 1.
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Technical name Traditional name | § Field Property \ \ Invariance Connected Matrix Problem
Hermite bl G ble: (EIG)
Voy=e M2 GOE | R | Symmetric A QTAQ Symmetric

GUE 2 C Hermitian A—= UHAU Eigenvalue Problem
GSE 4 H Self-Dual A— SDAS
Laguerre bles| Wishart bl S VD)
a —h/2 .
vy =Ate M Wishart real 1 R Positive A— QTAQ |:Smgular Ya'luejl
a :%(n —m+1)—1] Wishart complex 2 C Semi-Definite A— UHAU Decomposition
Wishart quaternion | 4 H A—SPas
Jacobi ensembles | MANOVA ensembles (QZ)
a b - X QTTXQI
VO = A (1-3) MANOVA real 1 Positive Y—= QTYQ, |:Generalized Symmetric]
a=5m, —m+l)—1 [MANOVA complex | 2 C Semi-Definite ’é: Hﬁ’;g. Eigenvalue Problem
|
b =£(n2— m+1)— 1 | MANOVA quaternion| 4 X~= SP XS |
Y— SPYS,
\ Type of ensemble | B | MATLAB code \
Hermite 1 | A=randn(n); A=(A+A’)/2;
2 | A=randn(n) +i *randn(n); A=(A+A’)/2;
4 | X =randn(n) +1i* randn(n); Y =randn(n) +i * randn(n};
A=[X Y; —conj(Y) conj(X)l; A=(A+A")/2;
Laguerre I | A=randn(m, n); A=A*A’;
2 | A=randn(m, n) +i *randn{m,n); A=A*A’;
4 | X =randi{(m, n) +i * randn(m, n); Y = randn{m, n}) + i * randn(m, n);
A=[X Y; —conj(Y) coni(X)]; A=A*A’;
Jacobi 1 | X =randn(m, n D) Y= randn(m, n,) A=(X*X)/(X*X+Y*Y"),
2 | X =randn(m, nl)+i*randn(m,n|); Y =randn(m, nz)+i*randn(m,n2); A=X*X)/I(X*X +Y*Y’)
4 X| =randn(m, n ) +i * randn(m, n ); X2= randn(m, n)+ i * randn(m, n B3
Yl = randn(m, nz) +i*randn(m, n,); Y2= randn(m, nz) +1 * randn(m, n,)%
X ={X \ Xz; -conj(Xz) conj(X I)]; Y = [Y1 Yz; —conj(Yz) conj(Y‘ )IB
A=(X*X)/(X*X+Y*Y");

FIG. 1. Random matrix ensembles. As a guidemLAaB notation, randnf,n) produces armXn matrix with i.i.d.
standard normal entries, coXj( produces the complex conjugate of the maXixand the apostrophé) operator produces
the conjugate transpose of a matrix. A[9¢ Y; Z W] produces a X2 block matrix.

B. Background

The Gaussiarfor Hermite ensembles arise in physics, and are identified by Dysgrthe
group over which they are invariant: Gaussian Orthogonal or for short G@& real entrieg
Gaussian Unitary or GUEwith complex entries and Gaussian Symplectic or G9Eith quater-
nion entrie. The Wishart ensembles arise in statistics, and the three corresponding models could
be named Wishart real, Wishart complex, and Wishart quaternion.

The three Gaussian ensembles have joint eigenvalue probability density function

n
HERMITE: fﬁ(x)zcﬁiﬂj INE NI exp( —2,1 x?/z), (1)

with 8=1 corresponding to the real8=2 to the complexes3=4 to the quaternions, and with

B
n T 1+2)

=1 B.\

ch= (277)*“’2j 2
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The best references are Metftand the original paper by Dysdn.
Similarly, the Wishart(or Laguerré models have joint eigenvalue p.d.f.

n
LAGUERRE: fﬁ(x):c{”vai];[j |>\i—>\j|ﬁ1_i[ A?‘pexp(zl )\i/Z), 3

with a= (B/2)n andp=1+ (B/2) (m—1). Again, 8=1 for the reals,3=2 for the complexes,
and 8=4 for the quaternions. The constant

142

Fits

m
Cf,azz—maH
j=1

4
145

Fi+3

r

a—g(m—j))

Good references are Refs. 21, 8, and 13, an3fed, Ref. 17.

To complete the triad of classical orthogonal polynomials, we will mentionSth&ANOVA
ensembles, which are associated with the multivariate analysis of varit#dOVA ) model.
They are better known in the literature as the Jacobi ensembles, with joint eigenvalue p.d.f.

n
JACOBI: f4(\)=cF2%2] T [nj— NPT A P(1—n))%P, (5)
i<j j=1

with a;=(B8/2)n,, a,=(B/2)n,, andp=1+ (B/2) (m—1). As usual,8=1 for real andB=2
for complex; also

, m r 1+§ r a1+a2—§(m—j))
cherfe—I] . (6)
(e Sy rla- S a2—§<m—j>)

The MANOVA real and complex case@& 1 and 2 have been studied by statisticiafsee Ref.
21).

Though “Gaussian,” “Wishart,” and “MANOVA’ are the traditional names for the three
types of B-ensembles, we prefer the sometimes used and technically more informative names
“Hermite,” “Laguerre,” and “Jacobi” ensembles. These technical names reflect the fact that the
p.d.f.s for the ensembles correspond to the p.d.f.s—eiq2), det@)® Petr(—A/2), and
det@)® Pdet(—A)*2"P over their respective spaces of matrices. In turn, these functions corre-
spond to three sets of orthogonal polynomigermite, Laguerre, JacobiThroughout this paper,
we will use the term “generaB-Hermite, -Laguerre, -Jacobi ensembles” for gengaih the
p.d.f.s(2), (3), (5).

Though it was believed that no other choice @fwould correspond to a matrix model
constructed with entries from a classical distribution, there have been studies of g&henathite
ensembles as theoretical eigenvalue distributions. They turn out to have important applications in
lattice gas theorysee Refs. 10 and)2

The general@ ensembles appear to be connected to a broad spectrum of mathematics and
physics, among which we list lattice gas theory, quantum mechanics, and Selberg-type integrals.
Also, the 8 ensembles are connected to the theory of Jack polynoiwidtls the correspondence
a= 2/B where « is the Jack parameterwhich are currently objects of intensive reseafsbe
Refs. 27, 17, and 23
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TABLE I. Random matrix constructions.

Hermite matrix N(©0,2)  x(n-1)p
nelN
Xin-1g N2 Xwn-2)p
HBNE K .
X2p N(0,2) X
xs N2
Laguerre matrix Lg=BgBL, where
meN
aeR X2a
B
>—(m— XBm-1)  X2a—
a 2(m 1) By~ B(m—-1) .a B
XB  X2a—p(m-1)

C. Our results

Dyson’s original threefold way is a byproduct of the invariance assumptions as in the “In-
variance” column of Fig. 1. By necessity, any invariant distribution is generically dense. Further,
the invariance approach forces the consideration of the complex and quaternion division algebras.

In this paper, we drop the invariance requirement. What we gain are “sparse” med#is
only O(n) nonzero parameterover the reals numbersnly. As an additional bonus, we go
beyond the quantizations of the classical cg8esl,2,4 and obtain continuous exponefgse
Sec. IV for further discussion of this pojnt

We provide real tridiagonal random matrix models for gHGaussian(or Hermite and
B-Wishart (or Laguerre ensembles, and we discuss the possibility of constructing a real matrix
model for the-MANOVA (or Jacobi ensembles.

We obtain our results by extrapolating the classical cases, thereby providing concrete models
for what have previously been considered purely theoretical distributions.

In Sec. Il we establish results for symmetric tridiagonal matrices, and we use them to con-
struct tridiagonal models for th8-Hermite ensembles. Along the way, we obtain a short proof
based on random matrix theory for the Jacobian of the transformatieiq,\), whereT is a
symmetric tridiagonal matrix\ is its set of eigenvalues, armgis the first row of its eigenvector
matrix. In Sec. lll we construct tridiagonal models for tgd.aguerre ensembles, by building on
the same set of ideas that we use in Sec. Il. In Sec. IV we present some immediate applications of
the new classes of ensembles and we discusg+becobi ensembles and other interesting open
problems.

We display our random matrix constructions in Table I.

II. THE B-HERMITE (GAUSSIAN) ENSEMBLES

A. Motivation: Tridiagonalizing the GOE, GUE, and GSE

The joint distributionf g(\) of the eigenvalues for the GOE, GUE, and GSE is

fa(A)=cflA\)|P ex —%Z x?), (7)

where=1,2,4'® Here the Vandermonde determinant notatin) stands forll; . ;(\;—X;), and
ch is given by(2).
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A=QAQ"

[GOE, Wishart real]

Eigenvalues &
First Eigenvector Row

Tridiagonal
Reduction

Bijection }\’
T = (4, M)
1-H Tr‘itdialgolilsflguerre & asin
—Hermite, -
ensemble Theorem 2.1, 3.1

FIG. 2. A dense symmetric matri can be tridiagonalizefeft-hand sid¢ or diagonalizedright-hand sidg In brackets,
we provide the distributions starting with that Af(GOE or Wishart real

We will prove in Sec. Il B that the tridiagong@-Hermite random matrix displayed in Table |
has the joint eigenvalue p.d.f. given by genegain (7). For motivation, we will begin with a
quick “back-door” proof for 8=1 by tridiagonalizing the GOE; then we will extend the result to
the GUE and GSE.

To illustrate the proof and help the reader follow it more easily, we have included the diagram
of Fig. 2.

Theorem 2.1:1f A is an nXn matrix from the GOE, then reduction of A to tridiagonal form
shows that the matrix T from the 1-Hermite ensemble has joint eigenvalue p.d.f. given by (7) with
B=1.

Proof: We write Az(f‘(ln XBT). Herea, is a standard Gaussiar,is a vector of o—1) i.i.d.
Gaussians of mean 0 and variance 1/2, Brid an (hn— 1) X (n—1) matrix from the GOEa,,, X
andB are all independent from each other.

Let H be any fi—1)x(n—1) orthogonal matriXdepending only orx) such that

Hx=[|Ixll> 0...01" =[x &1,
wheree;=[1,0,..,0]". Then clearly
1 0\(a, x"\/1 ©
0 H/\x BJ\0o HT/
SinceA is from the GOE andd depends only o, we can readily identify the distributions
of a,, ||x|,, andHBHT (these three quantities are clearly independefiie entrya, is un-
changed and thus a standard normal with variance 1. Being the length of a multivariate Gaussian

of mean 0 and entry variance 1|, has the distribution (¥2) x,_,. It is worth mentioning
that the p.d.f. of|x|, is given by

a,  [xlef
[Ix]| €1 HBHT/)'

Finally, by the orthogonal invariance of the GOEBHT is an (1—1)Xx (n—1) matrix from the
GOE.

Proceeding by induction completes the tridiagonal construction.

Because the only operations we perform Anare orthogonal similarity transformations,
which do not affect the eigenvalues, the conclusion of the theorem follows. O
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We recall that matrices from the GOE have the following properties:

Property 1: The joint eigenvalue density isy|A(M)|exp(—3ZA\2).18

Property 2:The first row of the eigenvector matrix is distributed uniformly on the sphere, and
it is independent of the eigenvalues.

The second property is an immediate consequence of the fact that the eigenvector matrix of a
GOE matrix is independent from the eigenval{iBef. 18,(3.1.3 and(3.1.16, pp. 55-58, and
has the Haafuniform) distribution because of the orthogonal invariance.

The following corollary is easily established.

Corollary 2.2: If T is a matrix from the 1-Hermite ensemble, with eigendecomposition T
=QAQT, then the first row q of the eigenvector matrix Q is independent, @fnd is distributed
uniformly on the sphere

Proof: If A=Q1AQI andT=HAHT, thenQ=HQ,. Since each one of the reflectors which
form H has first rowe;, multiplication byH does not affect the first row &,. The conclusion
follows. O

Reduction to tridiagonal form is a familiar algorithm which solves the symmetric eigenvalue
problem. The special “reflector” matrixi used in practice for a vector=[xy,...X,_1]" is

whereu=x=*x, e;. This special matrit is known as the “Householder reflecto(3ee Ref. 11,
p. 209.

The tridiagonal reduction algorithm can be applied to any real symmetric, complex hermitian,
or quaternion self-dual matrix; the resulting matrix is always a real, symmetric tridiagonal. Using
the algorithm similarly on a GUE or GSE matrix one gets the following.

Corollary 2.3: Whens= 2,4, reduction to tridiagonal form of matrices from the GUE, respec-
tively, GSE, shows that the tridiagonal 2-Hermite, respectively, 4-Hermite, random matrix has the
distribution given by (7). Note tha “counts” the number of independent Gaussians in each entry
of the matrix

Remark 2.4: The observation that numerical linear algebra algorithms may be performed
statistically is not new; it may be found in the literature (see Trotter—Ref. 31, Silverstein—Ref. 26,
and Edelman—Ref. 8)

B. Tridiagonal matrix lemmas

In this section we prove lemmas that will be used in our constructions in Secs. Il C and 111 B.

Given a tridiagonal matrixT defined by the diagona=(a,,...,a;) and subdiagonab
=(b,_1,....b;), with all b; positive, letT=QAQ" be the eigendecomposition &fas in Theo-
rem 2.12. Letg be the first row ofQ and A =diag(A).

Lemma 2.5: Under the above-given assumptions, starting from g\amhe can uniquely
reconstruct Q and T

Proof: This is a special case of the more general Theorem 7.2.1 in Prlett. O

Remark 2.6: It follows that, except for sets of meagutbe map T-(q,\) is a bijection from
the set of tridiagonal matrices of size n with positive subdiagonal, to the set of (mai$, with
g a unit norm ndimensional vector of positive real entries, ana strictly increasingly ordered
sequence of n real numbers. Let the bijection’s Jacobian be denoted by J

[ aa,b)
J‘[ (AN ]

Our next lemma establishes a formula for the Vandermonde determinant of the eigenvalues of
a tridiagonal matrix.

Lemma 2.7: The Vandermonde determinant for the ordered eigenvalues of a symmetric tridi-
agonal matrix with positive subdiagonaHyb,,_,,...,b;) is given by
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o]
AN)= Ni—N)=—=——,
) 11;[1 (MR YT

where(qy,...,d,) is the first row of the eigenvector matrix
Proof: Let A\, i=1..k, be the eigenvalues of tHex k lower right-corner submatrix of .
ThenPy(x)=I1*_,(x— A ) is the associated characteristic polynomial of that submatrix.
Fork=1,...n we have the three-term recurrence

Pr(X)=(X—a) Py 1(X) —bZ_ 1Py 5(x), (8)

and the two-term relation

k k—1
IT IO D=TT [P [=TT [P D). 9
EnbiN =1 =1

From (8) we get

k-1 k—1
IT Pun )| =B 0 TT P a0 ). 0
By repeatedly applying8) and(2.9) we obtain
n-1 n-2
I1 1Pa™ =020 ] P2 (") (1)
n—2

=b 0 b I PaaM™?) (12

n—-1
=]] b7 (14)

i=1

Finally, we use the following formula due to Paige, found in Ref. 24, as the more general
Theorem 7.9.2:

o |PasO)] | PooaA(™)| s
PO ] Ri®) |
It follows that
] qpeMealPooaI™I_ Moo 16
SN A2 INONE

which proves the result.

Remark 2.8: The Vandermonde determinant formula of Lemma 2.7 can also be obtained from
the Heine formula, as presented in Deift (Ref. 5, p.. 44)

The next lemma computes the Jacobiaby relating the tridiagonal and diagonal forms of a
GOE matrix, as in Fig. 2.

Lemma 2.9: The Jacobian J can be written as
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] "= b,
T

Proof: To obtain the Jacobian, we will study the transformation from GOE to 1-Hermite
ensemblgsee Fig. 2 Note that) doesnot depend ong; hence computing the Jacobian for this
case is sufficient.

Let T be a 1-Hermite matrix. We know from Sec. Il A that the eigenvalu€eE afe distributed
as the eigenvalues of a symmetric GOE makixfrom whichT can be obtained via tridiagonal
reduction T=HAHT for some orthogonaH, which is the product of the consecutive reflections
described in Sec. Il A

The joint element distribution for the matrik is

l n n . n
,u(a,b)zcaybexp(—zz a?)H [ 1exp(—2 b,z)

=1 i=1 =1

where
2n71
C&b: i
<2w)”’2H{‘-fF<§)

Let

da=0"_,da;, do=0""jdb;, d\=0O",\;,

and dj be the surface element of thhedimensional sphere. Let(a(q,\),b(q,\)) be the expres-
sion for u(a,b) in the new variableg,\. We have that

u(a,b)dadb=J wu(a(q,\),b(g,\))dgdh=w(qg,\) dgdA. (17)

We combine Properties 1 and 2 of Sec. Il A to get the joint pal.fj,\) of the eigenvalues
and first eigenvector row of a GOE matrix, and rewrite it as

2“—1r(E
2 1
v(q,\)dg dxzn!cﬁTA(A)ex _Ezi Aiz)dq d\.

We have introduced the! and removed the absolute value from the Vandermonde, because the
eigenvalues are ordered. We have also included the distributiqr{@$ mentioned in Property 2,
it is uniform, but only on the all-positive 2'th of the sphere because of the conditie=0.)

Since orthogonal transformations do not change the Frobenius fltp= Eﬂjzlaﬁ of a
matrix A, from (17), it follows that

o

2

' l

Cwgh) THTTET A
u(a,b) Cap  ILib

All constants cancel, and by Lemma 2.7 we obtain

I b
IHESYe T
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Note that we have not expressgda,b) in terms ofg and A in the above, and have thus
obtained the expression for the Jacobian neither in the varigldesi\, nora andb, solely; but
rather in a mixture of the two sets of variables. The reason for this is that of simplicity. (I

Remark 2.10: Our derivation of the Jacobian is a true random matrix derivation. Alternate
derivations of the Jacobian can be obtained either via symplectic maps or through direct calcu-
lation.

The last lemma of this section computes one more Jacobian, which will be needed in Sec.
I B.

Let B be a bidiagonal matrix with positive diagonet (X,,...,X;) and positive subdiagonal
Y=(Ym-1.....y1). Let T=BBT; denote bya=(ay,,...,a;) andb=(by_1,...,0,), respectively,
the diagonal and the subdiagonal parflofSinceT is a positive definite matrix, the transforma-
tion B—T is a bijection from the set of bidiagonal matrices with positive entries to the set of
positive definite tridiagonal matrices.

Lemma 2.11: The Jacobiangl. ) is

m -1
Je-1)= ( melizl_lz XIZ) :

Proof: We compute]g_.1) from the formula
dx dy=J_mydadb,

where @=J;dz; for all ze{a,b,x,y}.
We have that

am: Xﬁ’] ’ (18)
a=y>+x2, (19
Di=YiXii1, (20)

foralli=m—-1m-2,...,1.
Hence by computing differentials we get

da,= 2%y, dXpm,
daiZZ(Xi dXi+yi dyi)1 V|:m_l,m_2,,1
dbi=Xi+1dyi+yi dXi+1, Vi=m—-1m-2,..,1,

from which the formula follows. O

C. The eigendistribution of the  B-Hermite ensemble

Let H; be a random real symmetric, tridiagonal matrix whose distribution we schematically
depict as

N(0,2)  Xx(n-1)s
Xin-1g N(0,2)  X(n-2)p
Hy . .

V2 N(0,2)

X2p XB

xs N2
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By this we mean that the diagonal elements and the—1 subdiagonals are mutually
independent, with standard normals on the diagonal, a{){_)uﬁ on the subdiagonal.

Theorem 2.12:Let Hg =QAQT be the eigendecomposition OfﬁHfIX the signs of the first
row of Q to be non- negatlve and order the eigenvalues in increasing order on the diagonal of
N=diag(\). Then\ and g, the first row of Q are independent. Furthermore, the joint density of
the eigenvalues is

n

E ) cﬁ|A(>\)|ﬁexp(—%Elx?),

1

I\)

fﬁ(x)=cﬁi];[j |>\i—>\j|ﬁexp( 2
and g=(qy,...,d,) is distributed as(x,...,xg), Nnormalized to unit length

Proof of Theorem 2.12just as before, we denote ay-(a,,...,a;) the diagonal oH;, and
by b=(b,_4,...,b1) the subdiagonal. The differentialadlb,dq,d\ are the same as in Lemma
2.9.

For generalB, we have that

n-1

(dH g)=p(a,b)da db= cabH ble- 1exp<——||T1|,: da db

n—-1
~coo3 ]I b ex] ~ 31Tl |daan,
where
2n—1

(277)“’2H'k‘—ir(§k)

Cab=

With the help of Lemmas 2.7 and 2.9 this identity becomes

Z1by "

o H b~ 1exp( - —||T1||F)dq dr (21)

(dH ) Ca an

> x?)dq d\. (22)

I\)Il—‘

bkﬁ n
Caan B Hqﬁ lex;{
Thus
i 1
(dHﬁ):(Céﬂ qi‘“dq)(n!CﬁA(k)ﬁexp(—zE A?)dx).
i=1 .

Since the joint density function @f and\ separatesy and\ are independent. Moreover, once
we drop the ordering imposed on the eigenvalues, it follows that the joint eigenvalue density of
Hy is cfj|A(N)|Pexp(-3=\?), andq is distributed as ¥g,...,x), normalized to unit length.
From (22), it also follows that
2n 11’*( )
CB_

Nlm

(23
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lll. THE B-LAGUERRE (WISHART) ENSEMBLES

A. Motivation: Tridiagonalizing the Wishart ensembles

The preceding section gives tridiagonal random matrix models fgB-alermite ensembles.
In the following we define thg-Laguerre ensembles, and give tridiagonal random matrix models
for them.

The Wishart ensembles have joint eigenvalue density

fﬁ()\)ch*a|A()\)|ﬁi]:[1 )\?pexp( —Z,l xi/z), (24

again witha= (B/2) n, p=1+ (B/2) (m—1), and with, respectively3=1 for real, ands=2 for
complex. Herer:f"’j1 as the same as i@).

From now onp will always denote the quantity# (8/2) (m— 1), following the notation of
Muirhead for3=1 (Ref. 21, Chap. Yand Forrestéf (Forrester uses 4 (1/a) (m—1), where
a=2/B is the Jack parameterts presence is implicit in the p.d.f. of gli-Laguerre ensembles;
hence we will identify the ensembles Iyand bya (we call the latter the “Laguerre” parameter,
generalizing from the univariate cage=1, m=1).

As in Sec. Il A, we will provide the most basic case for our construction: the gas& and
Wishart real exponentn(—m—1)/2 (also referred to as the cags=1 and Laguerre parameter
a=n/2).

Theorem 3.1: Let G be an nxn matrix of i.i.d. standard Gaussians; then¥GG' is a
Wishart real matrix. By reducing G to bidiagonal form B one obtains that the matsBB"
from the 1-Laguerre ensemble of Laguerre parameterrd2 (defined as in Table I) has the joint
eigenvalue p.d.f. given by (24)

Proof: We write

XT

G= G,

with x™ a row multivariate standard Gaussian of lengtland G, a (m—1)Xxn matrix of i.i.d.
standard Gaussians. L& be a right reflector corresponding to the vectdr (R™x=||x||, e])
which is independent o&,. HenceG R is a matrix of i.i.d. standard Gaussians.

Write G;R=[Y,G,], wherey is a column multivariate standard Gaussian of length1 and
G, isa (m—1)X(n—1) matrix of i.i.d. standard Gaussians. llebe a left reflector correspond-
ing toy (Ly=|ly|l, e;) which is independent o&,. Then we have that

(1 0) ( Ixl, 0 )
GR= )
0L lyll, e; LG,

As we have seen beforlx||, is distributed likex,,_1, ||yll, is distributed likex,,—1, andLG, is
a matrix of i.i.d. standard Gaussiat@ncelL andG, are independeit

We proceed inductively to finish the bidiagonal constructiorBof

Because the operations we have performeare orthogonal left and right multiplications,
which do not affect the singular values, it follows that the singular valu€s afdB are the same.
Since the squares of the singular value&adindB, respectively, are the eigenvaluesvgfandT,
respectively, the conclusion of the theorem follows. O

Remark 3.2: The bidiagonalization process presented above is part of a familiar numerical
linear algebra algorithm for computing the singular values of a matrix

Corollary 3.3: The same process of bidiagonalization performed gnaGnatrix of i.i.d.

standard complex (standard quaternion) Gaussians, shows that the matiG®/ and the
matrix T from the 2-Laguerre (4-Laguerre) ensemble of parametenga=2n) has the joint
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eigenvalue p.d.f. given by (24). In all three cases (real, complex, quaternion) we say that T
represents the tridiagonalization of the Wishart (real, complex, quaternion) ensemble
In Sec. Il B we prove the general form of the theorem.

B. The Eigendistribution of  B-Laguerre ensemble

Let

X2a

Xp(m-1) X2a-—
BBN B(m—1) .aﬁ

XB X2a—p(m-1)

by this we mean that all of then2— 1 diagonal and subdiagonal elements are mutually indepen-
dent with the corresponding distribution.
LetLg= BBB/T; be the corresponding tridiagonal matrix.
Theorem 3.4:Let LﬁzQAQT be the eigendecomposition of L fix the signs of the first row
of Q to be non-negative and order the eigenvalues increasingly on the diagofallbienA and
the first row q of Q are independent. Furthermore, the joint density of the eigenvalues is

fﬁ(x):cﬁam()\)wi]:]l N3P exp( —i; xi/z),

where p=1+ (B/2) (m—1), and q is distributed agxg,...,xg) normalized to unit length

Proof of Theorem 3.4We will use throughout the results of Lemma 2.7, Lemma 2.9, Lemma
2.11, and Remark 2.6, which are true in the context of tridiagonal symmetric matrices with
positive subdiagonal entries. By definitidng is such a matrix.

We will again use the notations of Lemma 2.9 and 2.11 for the differentalsid, dq, di,
dx, and ¢.

We define (IBg) to be the joint element distribution d,

m—1 m-1

(dBg)=pu(x,y)dx dy=c,, i:]_[o X2 A texp(—x212) il:[l yP ™ texp(—y2/2)dx dy.
By using Lemma 24 we obtain the joint element distributionLonas

(dLg)=Jg  rue(x,y)dx dy (25)

m—2
- 2a- B(m-1)—2 2 a-Bi-3
=2~ Mg, x5AAMD exp(—xl/Z)iHO xmff'

m—1
xexp —x2/2) [T y#~ 'exp —y?/2)dx dy, (26)
i=1
where
1l B B
H{‘Lllr(|§)n{11r a—§(|—1)>
Cxy= 22m-1

We rewrite(26) in terms ofx,y,\, andq:
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m
1
(dL5)=2mcxlyex;{—Z xi2/2) exp( 2 y2/2)ﬂ 2a- f(m-1)-2

= i=1Mi
m—2 m-1

x I im0 11y daan
i=0 i=1
m
=2""cyy ex;{ -> xi2/2)
=1

m-1 mm X2a B(m—i)— 2Hm 1y3.
xexp(—Z y?/z) (=0 " dqg d\.
i=1

ST
Since the Vandermonde with respectit@ndq and the ordered eigenvaluksan be written
as
!
AN =T,
VYT

it follows that

T (X 41y
A()\)= |—l:|;[r(n |+1y|) .
i=10i

This means that we can rewrite

m—1 m—1 .
H,: (X‘ y)BI
(dLg)=2" cxyexp< Z /2)exp(—21 y?/z)'lm—”lﬂ'

l_[|=lqi

- m-1
=2""c, , ex p( E /Z)exp(—z inIZ)A()\)ﬁ
=0 =1

m—1 2a—pB(m-1)-2
) dg di.

m—1
XH qiﬁ_l( H Xm—i
i=1 i=0

The trace and the determinant are invariant under orthogonal similarity transformations, so
tr(Lg)=tr(A), and det 5)=det(A). This is equivalent to

m—1 m—1

m
.E Xo i T ;1 Yizzigl Ai,

m—1 m
[T« =11 »
1=0 =1
Using this, and substituting for 1+ B/2(m—1), we obtain that
m—1 m
(dLp)= (CBH qfldq) ( micfae*EN2A (VAT 2PN |,
=1 =1
Wherecg is the same as if23).
From the above we see thatand\ are independent, and once we drop the ordering the joint

eigenvalue density is given by theLaguerre ensemble of parametgrwhile q is distributed like
a normalized vector of's.
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This concludes the proof of Theorem 3.4. O

IV. APPLICATIONS AND OPEN PROBLEMS

As we mentioned in Sec. |, we believe that there should be many applications for the new
tridiagonal ensembles. Here we illustrate sofimSec. IV A), in the hope that researchers will
find many more. Some of the applications we believe are new reégydfsications 1, 3, 5, and)6
and some are simplifications of known resuigplications 2 and %

We discuss the open problem of constructing a matrix model fogthacobi ensembles in the
beginning of Sec. IV B. To facilitate the finding of new results, we conclude with a few open
“general B-ensemble” problems.

A. Applications
1. Interpolating Laguerre exponents

Our p-Laguerre ensembles have “continuous” Laguerre paramedevghich, even in the
casesB=1,2,4, interpolate the Wishart parameters. Thoggbaguerre ensembles with general
(“continuous”) parametera have been studied by many research@sfs. 2, 14, and 21 no
nonquantized matrix realizatiorige., explicit random matrix modelof g-Laguerre ensembles
are found in the literature. By “quantized” we mean that the expomeisteither an even integer,
an integer, or a half-integédepending on the value @). In particular, all models corresponding
to a Laguerrgor Jacobj weight found in Refs. 33 and 12 are quantized.

Thus, ourB-Laguerre random matrix constructions extend the pre-existing ones in two ways:
through B8 and through the Laguerre parameger

2. The expected characteristic polynomial

The result in the following might be seen as an extension of the classical Heine th@saem
Szegd® and Deiff) which hasg=2. Note that for3#2, A(\)”? can no longer be written as the
determinant of a Vandermonde matrix times its transpose, and the proof cannot be duplicated.

The same result is found in a slightly more general form in Ref. 8, and its Jacobi case was first
derived by Aomotd.

Theorem 4.1: The expected characteristic polynomial,(§) =det/l,—S over S in the
B-Hermite andB-Laguerre ensembles, respectively, are proportional to

y _
H , L(2a/,8) n
"( @) "

Here H, and L'(fa’ﬁ) ~"are, respectively, the Hermite and Laguerre polynomials, and the constant
of proportionality accounts for the fact that,By) is monic

Proof: Both formulas follow immediately from the 3-term recurrence for the characteristic
polynomial of a tridiagonal matrixsee formula8)) and from the independence of the variables
involved in the recurrence. (I

y

2p

3. Expected values of symmetric polynomials

Using the three-term recurrence for the characteristic polynomial of a tridiagonal matrix, we
obtain Theorem 4.2.

Theorem 4.2:Let p be any fixed (independent @f multivariate symmetric polynomial on n
variables. Then the expected value of p over ShAdermite or 8-Laguerre ensembles is a poly-
nomial in S.

We remark that it is difficult to see this from the eigenvalue density.

Proof: The elementary symmetric functions

€i(X1,X9,... Xp) = 2 Xj Xje e X i=0,1,..,n,
1<j;<--<ji=n
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can be used to generate any symmetric polynomial of deyr@e particularp).

The g; evaluated at the eigenvalues of a matrix are the coefficients of its characteristic poly-
nomial, and hence they can be written in terms of the matrix entries. ftoas be written as a
polynomial of then X n tridiagonal matrix entrieswhich corresponds, respectively, to the Hermite
and Laguerre casgs

To obtain the expected value pfover theB-Hermite orB-Laguerre ensemble, one can write
p in terms of the corresponding matrix entries, use the symmetry to condense the expression, then
replace the powers of the matrix entries by their expected values.

The diagonal matrix entries are either normal random variables in the Hermite case or sums of
x? random variables in the Laguerre case. The subdiagonal entries appear only raised at even
powers in thes; and hence ip (this is an immediate consequence of the three-term recurrence for
the characteristic polynomia(8)). Since all even moments of the involveddistributions are
polynomials ing/2, it follows that the expectation qf will be a polynomial ing. O

As an easy consequence we have the following corollary.

Corollary 4.3 All moments of the determinant of@Hermite matrix are integer-coefficient
polynomials ing/2.

Proof: Note that even moments of thg; distribution are integer-coefficient polynomials in
B2, and that the determinant & . O

4. A new proof for Hermite and Laguerre forms of the Selberg integral

Here is a quick proof for the Hermite and Laguerre forms of the Selberg intégedl 18,
using respectively, th@-Hermite, andgB-Laguerre ensembles.
The Hermite Selberg integral is

H(ﬁ,n)ELn|A(>\)|/3exp( —21 x?/z) d\

We have that

IH(Ian):n!( JOSA . <0€A()\ Bexp( Z ?/2) dx)(cqﬁjsnliﬂl qiﬁldCI>,

wherecﬁ is as in(23). We introduce then! because in the first integral we have ordered the
elgenvaluesSn ! signifies that allg; are positive.

Note thatcg can easily be computed independently of fielermite ensembles.

Using the formula for the Vandermonde given by Lemma 2.7, the formula for the Jacbbian
given in Lemma 2.9, and the fact that the Frobenius norm of a matrix in the tridiagonal 1-Hermite
ensemble is the same as the Frobenius norm of its eigenvalue matrix, one obtains

a7 S
lu(B,n)=n!ck ST H qf~ p(—zl biz—iz,l ai2/2) dadb

jﬁ"x(mc)" I b ' ,qf i=1
B B.
n-1 B
2 F(2n> n—1 F(Z

=n!cq5(27r)”’2_]_[f bfi’le*bizdbsn!ﬁ(zw)"’z‘ﬂ 5=
e eta e

The same reasoning yields the Laguerre Selberg integral formula

I /Li,a,n_ 1
,a
cf
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5. Moments of the discriminant

The discriminant of a polynomial equation of order is the square of the Vandermonde
determinant of then zeroes of the equation. Thus, the discriminant of the characteristic polyno-
mial of a 8-Hermite orB-Laguerre ensemble matrix is simpB(\) =A(\)2.

A simple calculation shows that theh moment ofD(\) is, respectively,

B
CB n 1+ EJ -
H kj
B+2k:_]._.[ )
Ch j=1 :3)
1+§
k
B. .
cha m 1+§J a_E(m_]) ‘
L :ka(mfl)]-_[ Kj k(j—1)
, — - 7
Cf}+2Ra+Rim 1) =1 :8
1+ =
2 k

wheren and m are, respectively, the matrix sizes for the Hermite and Laguerre cases, and the
rising factorial &),=T"(x+k)/T"(x).
Using the Selberg integral, one obtains that the moments of the discriminant f8rJheobi

case are
B. B : B .
JUEHES m |1+351] (&= 5(m=j) a;~ 5 (m=j)
J _ Kj k(i—1) k(j—1)
CB+2k,a1+ k(m—1),a2+k(m—1) _jljl B ,8 .
J 1+5 a1+a2—§(m—j))
k k(m+j—-2)
6. Software for application 3: Computing eigenvalue statistics for the B-ensembles

Application 3 suggests that integrals of the form

Eglpl=cf] JRnp(k)IA(A)Iﬁexp( —gl A$/2> dn

may be evaluated with software.

One example of this would be computing moments of the determinant oves-Hermite
ensemble. There are explicit formulas for the cg8esl,2 and 4, due to Mehtdand to Delannay
and Le Cag® which can be used to evaluate these moments.

In the absence of a closed-form, explicit formula, like the onesferl provided in Ref. 6, the
computation of these moments cannot be made polynomial; thus it is inherently slow.

For the generalB case, one can compute the moments in terms of a multivariate Hermite
polynomial evaluated at (see Refs. 4 and)2Using this technique, the complexity of the com-
putation might exceed that of symbolically taking the determinant of a tridiagonal matrix, expand-
ing the power, and replacing all powers of the entries by their expected vailsh are all
known). Writing a Mathematica code to implement this algorithm is an easy exercise, and such a
code would allow the author to compute these moments in a reasonable amount of time, provided
that the product between the power and the size of the matrix is not very large. A template for a
special case wheg=1 can be found in Ref. 9, Appendix A.
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B. Open problems

1. B-Jacobi (MANOVA) ensembles

Sections Il and Il of the paper provide tridiagonal matrix models for fhlermite and
B-Laguerre ensembles. The natural question is whether such models exist for the last member of
the classical triplet, Jacobi. The-Jacobi ensembles have been intensively studied as theoretical
distributions, especially in connection with Selberg-type integrals and (aclack—Selbeng
polynomials(see Refs. 1, 15, 16, and. Finding a random matrix model that corresponds to them
would be of much interest.

If the two matrix factorization problems that are associated with the Hermite and Laguerre
ensembles are the EIG and the SVD, the one associated with the Jacobi should be(the QZ
generalized symmetric eigenvalue probjeirhis idea is supported by the fact that the MANOVA
real and complex distributions, which correspond to the Jagobil,2 ensembles, are indeed
connected to the QZ algorithm. A good reference for QZ is Ref. 11.

Though we have not studied this problem sufficiently, we believe that a congeteaps
sparse, perhaps tridiagohahatrix model may be constructed for tifeJacobi ensembles.

2. Level densities

The level density of an ensemble is the distribution of a random eigenvalue of that ensemble
(and by the Wigner semicircular law we know that the limiting distributiomas~ of such an
eigenvalue is semicircularThe three functions found to be the level densities of the Gaussian
models depend on the univariate Hermite polynomials.

Recently, Forresté? has found a formula for the level densities of fgedermite ensembles
which works forB an even integer. This formula depends on a multivariate Hermite polynomial.

Finding a unified formula for the generglcase would be of interest.

3. Level spacings

The level spacings are the distances between the eigenvalues of an ensemble, usually normal-
ized so that the average consecutive spacing is 1. These spacings have been well-studied in the
case of the Gaussian ensemblgs=(1,2,4). The limiting probability density of a random spacing
in these cases is known in terms of spheroidal functises Ref. 18

A surprising connection exists between the limiting probability density of a GUE random
spacing and the probability density of the zeroes of the Riemann zeta function. Inspired by the
theoretical work of Montgomenr} Odlyzkd?? has shown experimentally that the two probability
densities are very close; the subsequent conjecture that the two probability densities coincide has
been named the Montgomery—Odlyzko law.

To the best of our knowledge, the level spacing of the gengtdermite ensembles has not
been investigated.

4. Bulk and edge scaling limits

Finally, a very important application would be the generalization of the bulk and edge scaling
limits for the GOE, GUE, and GSE obtained by Tracy and Widdnhe latter are known as the
Tracy—Widom distribution$=,, F,, andF,).

The edge scaling limit refers to the distribution of the largest eigenvalue of a matrix in the
ensemble; the bulk scaling limit refers to the distribution of an eigenvalue in the “bulk” of the
spectrum. See Refs. 29, 30 or 28. The Tracy—Widom distributions are defined in terms of Painleve
functions, which are solutions to certain differential equations, with asymptotics given by Airy
functions. For a good treatment of Painlesguations in relationship with Gaussiéidermite),
Laguerre, and Jacobi random matrix models, see Pierre van Moerbeke'sRefe82, Sec. #
Recently, Johnstoréhas found that the limiting distributiors; and F, apply to real(respec-
tively, complex Wishart matrices.
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