
RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRICPOLYNOMIALSRICHARD F. BASS AND KARLHEINZ GR�OCHENIGAbstrat. We investigate when a trigonometri polynomial p of degreeM in dvariables is uniquely determined by its sampled values p(xj) on a random set ofpoints xj in the unit ube (the \sampling problem for trigonometri polynomi-als") and estimate the probability distribution of the ondition number for theassoiated Vandermonde-type and Toeplitz-like matries. The results providea solid theoretial foundation for some eÆient numerial algorithms that arealready in use. 1. IntrodutionThe reonstrution, interpolation or approximation of a funtion (signal, image)from a given data set is a entral task in many problems of data proessing. Themathematial problem is to �nd a funtion f(x) in a suitable funtion spae Vthat interpolates or approximates the given data yj = f(xj). The set X = fxj :j = 1; : : : ; rg � Rd is the sampling set, and the funtion spae V omes from themathematial modeling of signals or images (e.g., band-limitedness, smoothness).The numerial and theoretial analysis of the sampling problem depends, of ourse,heavily on the signal model V .In this paper we fous almost exlusively on multivariate trigonometri poly-nomials as our model. While this is by no means the only possible model, it isonvenient, interesting, and ours in many appliations where standard uniformsampling is not possible. Spei�ally, the model of trigonometri polynomials hasbeen used in ardiology (one-dimensional) [37℄, geophysis (2-dimensional) [29℄,image proessing (2-dimensional) [35℄, as a non-uniform disrete Fourier transform(1- and 2-dimensional) [8, 13, 14, 28, 33℄ and in omputer tomography (2 and 3-dimensional) [3, 27, 32℄. Furthermore the spae of trigonometri polynomials of�xed degree is the appropriate �nite-dimensional model for the approximation ofband-limited funtions from a �nite number of samples [19, 20℄.Clearly, the sampling operator f ! ff(xj) : j = 1; : : : ; rg is linear, and, fora �nite-dimensional model spae, it an therefore be desribed by a matrix. Forthe model of trigonometri polynomials of �xed degree, this matrix possesses an1991 Mathematis Subjet Classi�ation. 94A12,94A20,15A12,15A52,42B99,42A15,42A61,60G50,60G99.Key words and phrases. Sampling, band-limited funtions, multivariate trigonometri polyno-mials, random sampling, blok Toeplitz matrix, Vandermonde matrix, ondition number, metrientropy.The �rst author was partially supported by NSF grant DMS-0244737.1



2 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGadditional struture, namely it is either a retangular Vandermonde-like matrixor a square Toeplitz-like matrix. This struture is the basis for eÆient and fastnumerial algorithms. For dimension d = 1 we refer to [8, 15, 16, 30, 36℄, for higherdimensions to [27,29,32,35℄. These algorithms are fast, stable, and robust, but onlyin dimension d = 1 do the numerial algorithms possess a solid theoretial basis(invertibility, estimates of ondition numbers and rates of onvergene for iterativealgorithms).In higher dimensions, there is only numerial evidene that the existing algo-rithms work; exept for some isolated results [18,22℄ there has been no theoretialjusti�ation for the suess of these numerial methods. The main reason for thisdisparity lies in the nature of zero sets of trigonometri polynomials in one andhigher dimensions. In dimension d = 1 the zero set of a trigonometri polynomialis �nite by the fundamental theorem of algebra, whereas the zero set of a trigono-metri polynomial in several variables is an algebrai variety. This di�erene makesit almost impossible to determine e�etively whether the reonstrution problemff(xj)g ! f is solvable for a �xed multi-dimensional sampling set X � Rd . Itseems even more diÆult to estimate the ondition numbers of the assoiated ma-tries. On the other hand, numerial experiments and suessful appliations makeit plausible that for generi sampling sets X � Rd the sampling problem is solvableand well-onditioned.Our goal is to ahieve some understanding for the suess of existing numerialmethods and to provide more insight into the theoretial issues. To do this weadopt a probabilisti point of view: Instead of seeking analyti statements for a�xed sampling set, we onsider the olletion of all sampling sets of size r andassume that the sampling set onsists of a �nite sequene of independent randomvariables. Instead of worst ase estimates, i.e., inequalities within mathematialanalysis, we will seek probabilisti estimates (from the realm of probability theory).With this underlying philosophy, we will pursue the following objetives:(a) We seek to explain and predit the performane of the existing numerialalgorithms.(b) We estimate the distribution of the ondition numbers of the assoiatedVandermonde-like and Toeplitz-like matries.() We investigate the asymptoti behavior of ondition numbers as the numberof samples r tends to in�nity.The randomization of the sampling points seems to be a new idea in the in-vestigation of numerial sampling algorithms. So far random sampling has beeninvestigated by Seip-Ulanovskii [31℄ and Chistyakov-Lyubarskii-Pastur [9, 10℄ forentire funtions of exponential type of one omplex variable. These results relyon the deep haraterization of deterministi sampling sets [25, 26℄ and, to ourknowledge, annot be extended to higher dimensions.By ontrast, our main ontribution is to sampling theory for funtions of severalvariables. In higher dimensions there is urrently no satisfatory deterministi the-ory, and our analysis provides the �rst lues that existing algorithms and methods



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 3do really work. From a more applied point of view, our results suggest that ran-dom sampling of images or higher-dimensional objets may be a suessful strategyto apture the essential information of multi-dimensional objets while preservingnumerial eÆieny and stability.Desription of Results. We now desribe the main results.Let PM be the spae of trigonometri polynomials on Rd of degree M and period1, that is, PM onsists of all funtions on Rd of the form(1) p(x) = Xk2[�M;M ℄\Zdake2�ik�x :Note that the (distributional) Fourier transform of p 2 PM is p̂ =Pk2[�M;M ℄\Zd akÆk, so supp p̂ � [�M;M ℄d. The parameter M an be interpretedas the \band-width", and indeed trigonometri polynomials have been shown to bethe appropriate �nite-dimensional model for band-limited funtions [19, 20℄.Now assume that the samples p(xj); j = 1; : : : ; r, of some trigonometri polyno-mial p 2 PM are given for some sampling set X = fxj : j = 1; : : : ; rg. By ournormalization, we may assume that the sampling set X is ontained in the unitube [0; 1℄d. Our goal is to reonstrut or to approximate p. Equivalently, we wantto determine the oeÆients ak of p from the samples p(xj). This task an beseen as a non-uniform disrete Fourier transform and is a frequent task in dataproessing [8, 13, 14, 28, 33℄.In its simplest form, the reonstrution of p amounts to solving the r equationsXk2[�M;M ℄d\Zdake2�ik�xj = p(xj) = yj j = 1; : : : ; rfor the oeÆient vetor a = (ak)k2Zd\[�M;M ℄d. This system of equations an bewritten in matrix form as(2) Ua = y ;where U is the matrix with entries Ujk = e2�ik�xj ; k 2 Zd \ [�M;M ℄d; j = 1; : : : ; r,and y is the target vetor y = (yj)j=1;:::;r. Alternatively, one may try to �nd a fromthe normal equations [17℄(3) U�Ua = U�y :In this ase the matrix T = U�U has entriesTkl = rXj=1 e�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd :The matries of these linear systems are highly strutured, U is a Vandermonde-like matrix , and T is a positive semi-de�nite D�D-matrix with a blok-Toeplitzstruture. Both strutures have been suessfully exploited for fast numerial al-gorithms [16, 22, 28, 35℄.



4 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGHowever, before the numerial analysis of the sampling problem an be un-dertaken, we need to settle a fundamental theoretial issue: Is either of the equa-tions (2) or (3) solvable? Note that both matries U and T depend on the samplingpoints xj as parameters. Therefore we ask more preisely for whih sampling setX does U have full rank, or equivalently, when is T invertible?In dimension d = 1, T is invertible if and only if r � 2M + 1 (the number ofsampling points is greater than the dimension of the spae). In higher dimensionsno riterion for the invertibility of T is known, and useful results are sparse. See [22℄for a disussion.In the spirit of probability theory we model the sampling set as a sequene ofindependent, identially distributed random variables (i.i.d. RVs) in [0; 1℄d. Thismeans that we treat the sampling points as a sequene of funtions xj = xj(!) onsome probability spae (
;P). Thus the matries U and T are now random matri-es, and their determinants, eigenvalues, and singular values are random variableson (
;P) that depend on the sampling set in a rather ompliated way.The �rst theorem guarantees the generi invertibility of T .Theorem 1.1. Assume that the �nite sequene of RVs x1; : : : ; xr; satis�es thefollowing properties:(a) r � (2M + 1)d.(b) The xj's are independent.() The distribution �j of eah xj is absolutely ontinuous with respet to Lebesguemeasure on [0; 1℄d.Then with probability one the Toeplitz-like matrix T is invertible.Estimates for the Condition Number. For a stable numerial solution ofeither of the systems (2) and (3) we need e�etive invertibility of T . This isusually measured by the ondition number �(T ) of T . (The ondition number�(M) of a retangular matrix is the ratio of largest to smallest singular value [17℄;for a positive-de�nite square matrix, this is simply the ratio of the largest to thesmallest eigenvalue.)To estimate the ondition numbers of U and T we observe that(4) rXj=1 jp(xj)j2 = hy;yi = hUa;Uai = hU�Ua; ai = hT a; ai :Consequently, if we an prove an inequality of the form(5) Akpk22 � rXj=1 jp(xj)j2 � Bkpk22 8p 2 PMthen the largest (smallest) eigenvalue of T is at most B (at least A), sine kpk2 =kak2. Consequently, (5) implies the estimates(6) �(T ) � BA and �(U) � �BA�1=2 :Our main theorem is the following asymptoti estimate for the ondition numbersof T or U as r!1.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 5Theorem 1.2. Assume that X = fxj : j 2 Ng is a sequene of i.i.d. random vari-ables uniformly distributed over [0; 1℄d. There exist onstants A;B > 0 dependingonly on the band-width M and the dimension d suh that for any � 2 (0; 1), thesampling inequality(7) (1� �)rkpk22 � rXj=1 jp(xj)j2 � (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :Consequently with the same probability estimate the Toeplitz-type matrix T hasondition number �(T ) � 1+�1�� and the Vandermonde-like matrix U has onditionnumber �(U) � p1 + �=p1� �.For a �xed threshold � > 1, the probability that �(T ) � � onverges to 1exponentially fast as the number of samples inreases. With some poeti liense,we may therefore say that oversampling improves the ondition number.We will give two proofs of this result. The �rst proof is by redution to adeterministi result. We estimate the probability that the onditions of an existingdeterministi result from [22℄ are satis�ed. With this approah we obtain expliitestimates for the onstants. The seond proof uses a version of the powerful metrientropy method, see [4,5,12℄ for just a few of its appliations to probability theory.This approah is genuinely asymptoti and does not yield e�etive estimates of theonstants. The main advantage of this method is its exibility and generality. Todemonstrate the power of this approah we will formulate versions of Theorem 1.2for ordinary polynomials in several variables, almost periodi funtions, and forspherial harmonis on the sphere (Setion 6).As a onsequene of Theorem 1.2 we obtain the following law of the iteratedlogarithm.Corollary 1.3. If fxj : j 2 Ng is a sequene of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then(8) lim supr!1 supp2P jPrj=1[jp(xj)j2 � kpk22℄jpr log log rkpk22 = ; a:s:for some positive onstant  of order D = (2M + 1)d.With less preision, but more intuitively, the orollary says that with probabilityone, the ondition number of the sampling problem is�(T ) � (r + pr log log r)=(r � pr log log r) � 1 + 2� log log rr �1=2 ;whenever r is large enough.Our main theorems validate existing numerial algorithms for non-uniform sam-pling sets in higher dimensions. Furthermore, they make preise in whih senserandom sampling of multidimensional objets is better than deterministi sam-pling.



6 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGThe paper is organized as follows. In Setion 2 we ollet some fats about mul-tivariate trigonometri polynomials and explain the idea of the simplest numerialalgorithms. In Setion 3 we prove Theorem 1.1 about the almost ertain solvabilityof the sampling problem. In Setion 4 we provide the �rst proof of Theorem 1.2and show a probabilisti overing result that may be of independent interest. InSetion 5 we develop the metri entropy approah and give a seond proof of The-orem 1.2 for the asymptoti estimate of the ondition number. Furthermore, wedevelop some onsequenes of our main theorem. In Setion 6 we disuss extensionsof the metri entropy method to other sampling problems.2. Sampling of Trigonometri PolynomialsWe �rst ollet the bakground information on sampling of trigonometri poly-nomials and some of the numerial aspets that motivated our investigation.By X = fxj : j = 1; : : : ; rg we denote a sampling set of r (distint) points in[0; 1℄d.The spae of trigonometri polynomials on Rd of degree M and period 1 in eahvariable is(9) PM = fp : p(x) = Xk2[�M;M ℄d\Zdake2�ik�xg :REMARKS: 1. The vetor spae PM has dimension D = (2M + 1)d. This impliesthat we need at least (2M + 1)d data points in order to reover a polynomialp 2 PM .2. The parameter M an be interpreted as the \bandwidth" and measures thepermissible amount of osillation (smoothness). We will assume that M is given,but note that the determination of the optimal bandwidth is an important step inthe pratial appliation of sampling algorithms [36℄.3. On PM the following estimates between equivalent norms hold:kpk22 = Z[0;1℄d jp(x)j2 dx = kak2kpk1 � D1=2 kak2 = D1=2 kpk2(10) kpk44 � kpk21kpk22 � Dkpk42 :The reonstrution of p 2 PM from given samples fp(xj) : j = 1; : : : ; rg amountsto solving the following system of r equations:(11) Xk2[�M;M ℄d\Zdake2�ik�xj = f(xj) = yj j = 1; : : : ; r :Introduing the matries U and T with entriesUjk = e2�ik�xj j = 1; : : : ; r; k 2 [�M;M ℄d \ Zd(12) Tkl = (U�U)kl = rXj=1 e�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd ;(13)



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 7we an then formulate the sampling problem for PM in several distint ways.Lemma 2.1. The following are equivalent:(i) The equations (11) possess a unique solution in PM .(ii) The Vandermonde-type matrix has full rank and r � D.(iii) There exist A;B > 0 suh thatAkak2 � kUak2 � Bkak2 8a 2 C D :(iv) The D �D Toeplitz-like matrix T is invertible.(v) There exist A;B > 0 suh that(14) Akpk2 � rXj=1 jp(xj)j2 � Bkpk2 8p 2 PM :If any of (i)-(v) hold, we say that X is a set of stable sampling for PM [24℄.Despite its lak of mathematial substane, this lemma is useful beause eahof the riteria may be used as a starting point for the theoretial or numerialinvestigation of the sampling problem. For the mathematial analysis the samplinginequality (14) is most appropriate, beause it is invites the use the analyti meth-ods. For the numerial solution of the sampling problem, the linear algebra riteria(ii), (iii), and (iv) are most useful, beause the theory of strutured matries o�ersfast solution tehniques.A numerial algorithm for the solution of (11) ould then be based on the fol-lowing steps:ALGORITHMInput. Given a sampling set X = fxj : j = 1; : : : ; rg � [0; 1℄d and a data vetory = fyj : j = 1; : : : ; rg. Assume that T de�ned in (13) is invertible.Step 1. Compute b = U�y, i.e.,(15) bk = rXj=1 e�2�ik�xj yj for k 2 [�M;M ℄d \ Zd :Step 2. Solve the system of equations(16) a = T �1b :Step 3. Compute p 2 PM by(17) p(x) = Xk2IM ake2�ik�x :Then p is the (unique) least square approximation of the given data vetor y inthe sense that(18) rXj=1 jyj � p(xj)j2 = minq2PM rXj=1 jyj � q(xj)j2 :



8 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGIf y arises as the sampled vetor of a polynomial p 2 PM , i.e., yj = p(xj), thenthis algorithm provides the exat reonstrution of p.REMARKS: 1. The numerial implementation of this idea is often referred to asthe ACT-algorithm. The deisive step is the solution of matrix equation T a = bin Step 2. Sine T is a positive-de�nite Toeplitz-like matrix, the exploitation ofthis struture in onjuntion with blok Toeplitz solvers and onjugate gradientalgorithms have led to fast and eÆient reonstrution algorithms in higher dimen-sions [29, 35℄. For numerial issues and real appliations we refer to [22℄.2. Sine the ondition numbers of U and T are related by �(T ) = �(U)2, it maybe better to solve the Vandermonde-type system Ua = y diretly; see the work ofPotts and Steidl [27℄. 3. Invertibility Almost SurelyWe �rst establish that the reonstrution algorithm disussed in Setion 2 worksalmost surely. In dimension d = 1, T is invertible if and only if r � 2M + 1.In higher dimensions, a omplete and e�etive haraterization of the invertibilityseems out of reah. For this reason we use a probabilisti approah.First a lemma in whih � will denote Lebesgue measure.Lemma 3.1. Let p 2 PM be a trigonometri polynomial in d variables. Then itszero set Z(p) = fx 2 [0; 1℄d : p(x) = 0g has Lebesgue measure 0.Proof. This fat is well known; we provide its easy proof for the sake of omplete-ness.Fix x1; : : : ; xd�1 2 [0; 1℄d; then P (x1; : : : ; xd�1; xd) is a trigonometri polynomialin one variable xd of degree M and has thus at most 2M + 1 zeros. The setfx 2 [0; 1℄ : (x1; : : : ; xd�1; x) 2 Z(p)g has Lebesgue measure 0. This is true forevery hoie of x1; : : : ; xd�1, so by Fubini's Theorem, we obtain that�(Z(p)) = Z[0;1℄d�1 �Z[0;1℄ �Z(p)(x1; : : : ; xd�1; x) dx� dx1 : : : dxd�1 = 0 ;as desired.The following result is a �rst indiation why in pratie no serious problems haveourred in the appliation of multidimensional sampling algorithms.Theorem 3.2. Assume that the random variables fx1; : : : ; xrg are independent andthat the distribution �j of eah xj is absolutely ontinuous with respet to Lebesguemeasure on [0; 1℄d.Then the Vandermonde-like matrix U is of full rank almost surely. If, in addition,r � D = (2M + 1)d, then the Toeplitz-like matrix T = U�U is invertible almostsurely.Proof. Let m1; : : : ; mD be an enumeration of the index set [�M;M ℄\Zd over whihwe are summing, and let CN be the N �N -matrix with entriesC`j = eim`�xj 1 � `; j � N :



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 9Then CN depends on the sampling points x1; : : : xN , and we may de�ne the \bad"set BN = f(x1; : : : ; xN) 2 ([0; 1℄d)N : detCN = 0g :We laim that �(BN ) = 0 for all N � min(r;D), and prove this by indutionover N . This is ertainly true for N = 1. So assume that N < min(r;D) and that(x1; : : : ; xN) =2 BN .Let a` = (C`;1; : : : ; C`;N), ` � N , be the `-th row of CN and let aN+1 =(CN+1;1; : : : ; CN+1;N). Sine CN is invertible, there exist oeÆients b`= b`(x1; : : : xN) 2 C ; not all 0, suh thataN+1 = b1a1 + � � � bNaN :By looking at the (N +1)-st olumn of CN+1, we �nd that CN+1 is invertible if andonly if CN+1;N+1 6= b1C1;N+1 + � � �+ bNCN;N+1, or if and only ifeimN+1 �xN+1 6= b1eim1�xN+1 + � � �+ bNeimN �xN+1 :In other words, CN+1 is invertible if xN+1 is NOT in the setDN = DN(x1; : : : ; xN) = fx 2 [0; 1℄d : eimN+1 �x = b1eim1�x + � � �+ bNeimN �xg :For �xed (x1; : : : ; xN) 2 ([0; 1℄d)N , DN is the zero set of some trigonometri poly-nomial and by Lemma 3.1 DN has Lebesgue measure 0 in [0; 1℄d.Sine the bad set BN+1 is ontained in f(x1; : : : ; xN ; xN+1) 2 ([0; 1℄d)N+1 : xN+1 2DN(x1; : : : ; xN)g, we see by Fubini's Theorem that�(BN+1) = Z([0;1℄d)N �Z[0;1℄d �BN+1(x1; : : : ; xN ; xN+1) dxN+1� dx1 : : : dxN� Z([0;1℄d)N Z[0;1℄d �(DN(x1; : : : ; xN))dx1 : : : dxN = 0 :The indution step is proved.If r � D, then Cr is invertible for almost every hoie of x1; : : : ; xD, where\almost every" is with respet to Lebesgue measure �. Consequently, the r � Dmatrix U has full rank. If r � D, this also implies that the D �D square matrixT = U�U is invertible for almost every hoie of x1; : : : ; xD.Sine the distribution �j of xj is absolutely ontinuous with respet to �, thebad set BD also has measure 0 with respet to �1 � � � � � �D.Corollary 3.3. The Toeplitz-like matrix T is invertible under eah of the followinghypotheses on the sampling set:(a) The xj; j = 1; : : : ; r, are i.i.d. random variables, eah of whih is uniformlydistributed over [0; 1℄d.(b) The sampling set is a random perturbation of a uniform sampling set, i.e., itis some enumeration of f 1N k + Æk : k 2 Zd \ [0; N � 1℄dg where N � 2M + 1 andthe Æk are i.i.d. random variables uniformly distributed over a neighborhood of 0.



10 RICHARD F. BASS AND KARLHEINZ GR�OCHENIG4. A Covering Results and Redution to Deterministi EstimatesTheorem 1.1 guarantees that an implementation of Algorithm 2 will work inpriniple. However, numerial invertibility requires a reasonable bound on theondition number of T or of U .This is already a serious problem in dimension d = 1. It is easy to onstrutsampling sets in [0; 1℄ for whih the orresponding Toeplitz matrix has onditionnumber of the order 1015 [16℄. While suh a matrix is invertible in theory, forpratial purposes it may be onsidered to be non-invertible.As a next step we therefore turn to estimates for the ondition number of theblok Toeplitz matrix T . For this we ombine a deterministi result with a proba-bilisti statement on overings.We work with the metri d(x; y) = mink2Zd kx�y+kk1 on the torus Td � [0; 1)dand the assoiated ubes of side-length 2�B(x; �) = fy 2 [0; 1℄d : d(y; x) � �g = x + [��; �℄d :To every sequene of sampling points fxj : j 2 Ng � [0; 1℄d, let fVjg we assign the\distane funtion"(19) Æ(r) = inffs : r[j=1B(xi; s) � [0; 1℄dg :The quantity 2Æ(r) an be interpreted as the maximum distane of any of the �rstr sampling points xj to its next neighbor. Let Vj; j = 1; : : : ; r; be Voronoi regionsVj = fy 2 [0; 1℄d : d(y; xj) � d(y; xk); k 6= j; 1 � j; k � rgand wj = �(Vj) and onsider the weighted Toeplitz-like matrix T w with entriesT wkl = (U�U)kl = rXj=1 wje�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd :Then it is possible to show the following deterministi theorem [18, 22℄.Theorem 4.1. If(20) Æ(r) < log 22�Md ;then, for all p 2 PM ,(21) (2� e2�dMÆ)2kpk22 � rXj=1 jp(xj)j2wj = ha; T wai � 4kpk22 :Consequently, the ondition number of T w an be estimated by(22) �(T w) � 4(2� e2�dMÆ)2 ;and both T and T w are invertible.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 11REMARKS: 1. The spei� hoie of weights wj is ruial for the expliit esti-mate (22). In the numerial implementation of the algorithm of Setion 2, theyserve as a simple and heap preonditioner.2. In higher dimensions (22) is far from being optimal, sine it depends on thedimension d. It is an open problem to obtain improvements to this estimate. Fora related result for band-limited funtions, see [7℄.We next suppose that the sampling points form an in�nite sequene of i.i.d. in-dependent random variables xj; j 2 N . We �rst investigate how the distributionof the assoiated sequene of random variables Æ(r) depends on the number ofsampling points r.Theorem 4.2. If X = fxj : j 2 Ng is a sequene of i.i.d. random variablesuniformly distributed over [0; 1℄d, then for every r;N 2 N(23) P�Æ(r) > 1=N� � Nd(1�N�d)r � Nde�r=Nd :Consequently, �(T w) � 4(2 � e2�Md=N )�2 and both T w and T are invertible withprobability at least 1�Nd(1�N�d)r � 1�Nde�r=Nd :Proof. Divide [0; 1℄d into Nd disjoint sububes of side length 1=N , i.e., [0; 1℄d =Srj=1B(j; 12N ), where the j are the enters of these sububes. Note that if asubube ontains a point xj, then that subube is ontained in B(xj; 1=N). So ifeah of these sububes ontains at least one of the xj, we onlude Æ(r) � 1=N .Sine the xj; j = 1; : : : ; r; are hosen independently and uniformly, the numberof xj's in any ube is a binomial random variable. Thus the probability that apartiular subube is empty is (1�N�d)r ;(sine N�d is the probability that any partiular xj is in this subube and thereare r points). Sine there are Nd sububes altogether, the probability that at leastone of the sububes is empty is bounded by(24) Nd(1�N�d)r :If Æ(r) > 1=N , then at least one of the sububes must be empty, whih provesthe left-hand inequality of (23). The right-hand side follows from the obviousinequality (1�N�d)r = er log(1�N�d) � e�r=Nd .The estimate for the ondition number of T w and the invertibility of T nowfollow from Theorem 4.1.REMARK: For (20) we need that 1N < log 22�Md ; this means that we need at leastr = Nd � �2�Mdlog 2 �d � � �dlog 2�dD sampling points before Theorem 4.2 beomese�etive.Next we derive an asymptoti result for Æ(r), whih may be of independentinterest.



12 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGTheorem 4.3. Assume that fxj : j 2 Ng is a sequene of i.i.d points uniformlydistributed in [0; 1℄d. Then(25) lim supr!1 Æ(r)(log r=r)1=d =  ; a.s.for some onstant  2 [14 ; 21+1=d℄.Thus for r sampling points the maximum distane to the nearest neighbor isroughly (log r=r)1=d. For omparison, for the r = Nd equispaed points f kN : k 2[0; N ℄ \ Zdg, we have Æ(r) = 12N = 12r�1=d. For r randomly distributed points weneed an additional logarithmi term.Proof of Theorem 4.3. Step 1. We �rst show that(26) lim supr!1 Æ(r)(log r=r)1=d � 21+1=d; a.s.Choose rk = 2k as the number of points, and let Nk be the greatest integer less than� rk2 log rk�1=d. We divide [0; 1℄d into Ndk disjoint sububes of side length N�1k . Let Akbe the event that at least one of the sububes ontains none of the xj; j = 1; : : : ; rk.By (24) we have(27) P(Ak) � Ndk e�rk=Ndk � rk2 log rk e�2 log rk = 12rk log rk = 12k+1k log 2 :ThereforeP1k=1 P(Ak) <1, and so the Borel-Cantelli lemma [11℄ implies that theprobability of Ak in�nitely often is 0. This means for almost every ! 2 
 there isa k0 depending on ! suh that for k � k0, eah of the sububes of side length N�1kwill ontain at least one of the points of x1; : : : ; xrk .Now for r arbitrary and suÆiently large (depending on !), hoose k suh thatrk � r < rk+1. Then eah of the sububes of side length N�1k will ontain at leastone of the points x1; : : : ; xrk , hene at least of the points x1; : : : ; xr. ConsequentlyÆ(r) � 1Nk ;and thus� rlog r�1=dÆ(r) � � rk+1log rk+1�1=dÆ(r) � 21=d(2Nk + 1)Æ(r) � 21=d(2 + 1Nk ) :Taking r !1 proves (26).We prove the onverse inequality(28) lim supr!1 Æ(r)(log r=r)1=d � 14 ; a.s.in several steps.Step 2. Assume for the moment that we have already hosen a sequene rk(number of sampling points) and Nk. Then we divide [0; 1℄d into Ndk sububes ofside length N�1k , and we enumerate the ubes as C1; C2; : : : ; CNdk . Let Dj be the



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 13event that the ube Cj does not ontain any of the points xrk�1+1; : : : ; xrk . As in(24) the probability of Dj is given by(29) P(Dj) = (1�N�dk )rk�rk�1 :For j 6= k, Dj \ Dk is the event that the region Cj [ Ck does not ontain any ofthe points xrk�1+1; : : : ; xrk . Therefore as in (24) we obtain thatP(Dj \Dk) = (1� 2N�dk )rk�rk�1 �� (1�N�dk )2(rk�rk�1) = P(Dj)P(Dk) ;(30)sine 1� 2x � (1� x)2 for x 2 [0; 1℄.Step 3. Now let Bk be the event that at least one of the �rst Nk (out of a totalof Ndk ) ubes C1; : : : ; CNk does not ontain any of the points xrk�1 ; : : : ; xrk . (Indimension d = 1 we take the �rst N�k of Nk ubes for some �; 1=2 < � < 1 � 1=eand modify the following argument slightly.) If we de�ne the random variable Ykby Yk = NkXj=1 1Dj ;then Bk = fYk > 0g. To �nd a lower estimate for the probability of Bk, we use anargument due to Kohen-Stone [23℄. Using Cauhy-Shwarz we �nd thatE Yk = NkXl=1 l P(Yk = l)� � NkXl=1 l2P(Yk = l)�1=2 � NkXl=1 P(Yk = l)�1=2= (E Y 2k )1=2(P(Yk > 0))1=2 ;whene(31) P(Bk) = P(Yk > 0) � (E Yk)2E Y 2k :On the other hand, E Yk = NkXj=1 P(Dj) = NkP(Dj)and by (30) E Y 2k = NkXj=1 P(Dj) +Xk 6=j P(Dj \Dk)� E Yk +Xk 6=j P(Dj)P(Dk)� E Yk + (E Yk)2:



14 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGSubstituting into (31), we obtain(32) P(Bk) � E Yk1 + E Yk :Step 4. Finally we hoose rk = eek and Nk the least integer � (2drk= log rk)1=d.Then P(Dj) = (1�N�dk )rk�rk�1 � �1� log rk2drk �rk :Sine limx!1 x1=2d�1� logx2dx �x = 1, we have �1� logx2dx �x � 12x�1=2d for x suÆientlylarge, and onsequently(33) E Yk = NkP(Dj) � � 2drklog rk�1=d 12r�1=2dk = r 1d� 12dk = log rk � 1for suÆiently large k (k � 3). Now (32) implies that P(Bk) � 1=2 and soP1k=1 P(Bk) =1. Finally we observe that the events Bk are independent, beausethey depend on disjoint segments of the sequene xj; j 2 N . Therefore the seondpart of the Borel-Cantelli lemma [11℄ implies that the probability of Bk in�nitelyoften is 1. This means that for almost every ! there is an in�nite subsequene ofk's (depending on !) suh that ! 2 Bk.Step 5. It remains to onsider the event Ek that one of the points x1; : : : ; xrk�1is in SNkj=1 Cj. Sine the volume of SNkj=1Cj is Nk � N�dk , the probability that apartiular xj is in this set is N1�dk . There are rk�1 points to onsider, so as in (24)P(Ek) � rk�1N1�dkBy our hoies of rk andNk, we haveP1k=1 P(Ek) <1, and so by the Borel-Cantellilemma one again, the probability of Ek in�nitely often is 0.Combining Steps 4 and 5 we onlude that with probability 1, in�nitely often atleast one of the C` with ` � Nk will ontain none of the points x1; : : : ; xrk . Sine C`ontains none of these xj, the enter of C` is not ontained in Srkj=1B(xj; 1=(2Nk)).Consequently Æ(rk) > 1=(2Nk) for in�nitely many k almost surely. SoÆ(rk)� rklog rk�1=d � Æ(rk)Nk=2 � 1=4and (28) is proved.Step 6. It is lear that if we omit the �rst M points x1; : : : ; xM for any �xedinteger M , then this will not a�et the value of lim sup Æ(r)=(log r=r)1=d. Thereforethis random variable is measurable with respet to the tail �-�eld of the sequenex1; x2; : : : By the Kolmogorov's zero-one law, the value of this random variablemust be onstant almost surely [11, p. 254℄. This ompletes the proof.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 155. Asymptoti Estimates of the Condition NumberIn the previous setion we have ombined a deterministi argument with a ov-ering argument. Essentially we have alulated the probability that a randomsampling set satis�es the suÆient ondition already known from deterministisampling theory.In this setion we develop an alternative approah that is based on a metrientropy argument suh as the ones used in [12℄. This approah does not relyon deterministi sampling results and an therefore be adapted to other samplingmodels. On the other hand, it is diÆult to keep trak of the onstants involved,and thus the results are only eÆient for large sampling sets.One again we start with an in�nite sequene of i.i.d. random variables fxj : j 2Ng, eah of whih is uniformly distributed over [0; 1℄d. Our goal is to estimate thequantity Prj=1 jp(xj)j2 � rkpk22 and its distribution as a funtion of the number ofsampling points r.For every p 2 PM we introdue the random variable Yj(p) = jp(xj)j2 � kpk22. Toobtain a sampling inequality of the form Akpk22 �Prj=1 jp(xj)j2 � Bkpk22, we haveto estimate the probability distribution of the random variablesupp2PM ;kpk2=1 rXj=1 Yj(p) :This is aomplished in the following theorem.Theorem 5.1. If fxj : j 2 Ng is a sequene of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then there exist onstants A;B > 0 depending ond and M , suh that(34) P� supp2PM ;kpk2=1 sups�r ��� sXj=1 Yj(p)��� � �� � A exp��B �2r + ��for r 2 N and � � 0.For the distribution of a sum of random variables we use Bernstein's inequality [6℄in the following form.Proposition 5.2. Let Yj; j = 1; : : : ; r, be a sequene of bounded, independentrandom variables with E Yj = 0, VarYj = �2, and kYjk1 � M for j = 1; : : : ; r.Then(35) P���� rXj=1 Yj��� � �� � 2 exp�� �22r�2 + 23M�� :To apply (35) to the Yj(p), we need several simple estimates. It suÆes to workwith the unit ball of PM , whih we denote by P0 = fp 2 PM : kpk2 � 1g.



16 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGLemma 5.3. Let p; q 2 P0 and j 2 N. Then the following identities and inequali-ties hold: E Yj (p) = 0(36) VarYj(p) = kpk44 � kpk42 � D � 1 ;(37) Var (Yj(p)� Yj(q)) � 8kp� qk21 ;(38) kYj(p)k1 � kpk21 � kpk22 � (D � 1) ;(39) kYj(p)� Yj(q)k1 � 2(D1=2 + 1)kp� qk1 :(40)Proof. Sine eah xj is uniformly distributed over [0; 1℄d, we haveE (Yj (p)) = Z[0;1℄d �jp(x)j2 � kpk22� dx = 0and onsequently (also using (10))VarYj(p) = E [Yj (p)2℄ = Z[0;1℄d �jp(x)j2 � kpk22�2 dx= kpk44 � kpk42 � D � 1 :sine kpk2 = 1. Similarly, we obtainkYj(p)k1 = sup!2
 ��� jp(xj(!))j2 � kpk22��� � ���kpk21 � kpk22��� � D � 1Next, sine E Yj (p) = 0, we obtainVar�Yj(p)� Yj(q)� = E �(Yj(p)� Yj(q))2�= Z[0;1℄d �jp(x)j2 � jq(x)j2�2 dx� �kpk22 � kqk22�2� kp� qk21 k jpj+ jqj k22 + kp� qk22�kpk22 + kqk22�� 8kp� qk21The last estimate follows similarly fromkYj(p)� Yj(q)k1 � sup!2
 ��� jp(xj(!))j2 � jq(xj(!))j2���+ ���kqk22 � kpk22���� kp� qk1�kpk1 + kqk1� + kq � pk2�kpk2 + kqk2�� kp� qk1D1=2�kpk2 + kqk2� + kq � pk1�kpk2 + kqk2�= 2(D1=2 + 1) kp� qk1Proof of Theorem 5.1. Step 1: A Metri Entropy Argument. For a givenÆ > 0, we onstrut a Æ-net for P0 with respet to the L1-norm as follows. Givenp 2 P0 with oeÆients a = (ak)k2Zd\[�M;M ℄d and kak2 � 1, we approximate thereal and imaginary part of eah ak by a number Æp2D`; ` 2 Z; in other words, we



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 17hoose a vetor b of the form b = Æp2D (`+ im); `;m 2 Zd, to approximate a. Thenfor eah oordinate ak; k 2 [�M;M ℄d \ Zd, we havejak � bkj � ÆD ;and so ka� bk2 � �Dmaxk jak � bkj2�1=2 = ÆpD :Setting q(x) =Pk2IM bke2�ik�x, we obtainkp� qk1 � D1=2kp� qk2 � D1=2ka� bk2 = Æ :We denote the Æ-net of all q 2 P0 with oeÆients of the form b = Æp2D (` +im); `;m 2 Zd; kbk2 � 1; by A(Æ). The ardinality of A(Æ) is estimated as follows:ardA(Æ) = ard fb = Æp2D (`+ im); `;m 2 ZD; kbk2 � 1g= ard fk 2 Z2D : kkk2 � p2DÆ g� 1Æ�2D :where the onstant 1 � (2�)DD D2D is roughly the number of integer lattie pointsin a ball of radius p2D in R2D .Given p 2 P0, let pj be the polynomial in A(2�j) that is losest to p in L1 norm,with some onvention for breaking ties. Sine kp� pjk2 ! 0, we an writeYj(p) = Yj(p0) + (Yj(p1)� Yj(p0)) + (Yj(p2)� Yj(p1)) + � � � :If supp2P sups�r jPsj=1 Yj(p)j � �, then either(a) sups�r jPsj=1 Yj(p)j � �=2 for some p 2 A(1); or(b) for some ` � 1 and some p 2 A(2�`) and some q 2 A(2�`+1) with kp�qk1 �3 � 2�` we have sups�r jPsj=1 �Yj(p)� Yj(q)�j � �=2(`+ 1)2.(Possibly both (a) and (b) hold.)If this were not the ase, thensups�r ��� sXj=1 Yj(p)��� � sups�r ��� sXj=1 Yj(p0)��� + sups�r 1X̀=1 ��� sXj=1 �Yj(p`)� Yj(p`�1)����� 1X̀=1 �2`2 = �212� < � :So far the onstrution is purely deterministi. Now we estimate the probabilityof eah of the events in (a) and (b).



18 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGStep 2. For �xed p 2 A(1), the probability of the event in (a) is bounded, usingBernstein's inequality (35) and Lemma 5.3, by2 exp�� �22rVarYj(p) + 23�kYj(p)k1�� 2 exp�� �22r(D � 1) + 23(D � 1)�� :There are at most 1 polynomials in A(1), so the probability of (a) is bounded by(41) 21 exp�� �2(D � 1)(2r + 23�)� :Step 3. We estimate (b) in a similar fashion using Lemma 5.3, (38) and (40).If p 2 A(2�`) and q 2 A(2�`+1) with kp� qk1 � 3 � 2�`, we haveP� sups�r j sXj=1(Yj(p)� Yj(q))j > �2(`+ 1)2�� 2 exp�� �2=4(`+ 1)4144r2�2` + 4 � 2�`D1=2�=(`+ 1)2)�� 2 exp�� 2` �23(r(`+ 1)42�` +D1=2�(`+ 1)2)� :There are 12(2`�2)D trigonometri polynomials in A(2�`+1), and for eah q thenumber of trigonometri polynomials p 2 A(2�`) satisfying kp � qk1 � 3 � 2�` isbounded by a onstant 2 independent of q and j (Similar to the ount in Step 1,2 � (6�)DD D2D is roughly the number of integer lattie points in a ball of radius3p2D in R2D ). Finally, this an happen for any `. So the probability in (b) isbounded by(42) 1X̀=1 2122(2`�2)D exp �� 2` �23(r(`+ 1)42�` +D1=2�(`+ 1)2)� :Step 4. Estimate of the sum (42).Sine (`+1)42�` is bounded above and 2`=2=(`+1)2 is bounded below, the abovesum is bounded by(43) 1X̀=1 4 exp�� 2`=2 �25(r + �) + (2`� 2)D log 2� = (?) :We distinguish two ases. Either(44) �25(r + �) � 64D ;then 2`=2 �25(r + �) � 2(2`� 2)D log 2; for all ` � 1 ;



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 19and so (?) � 1X̀=1 4 exp �� 2`=2 �225(r + �)� :Now we use the fat that P1̀=1 e�a`x � 6e�x for any a > 1 and x � 1 (with 6depending only on a). Consequently the sum in (43) is bounded by(?) � 7 exp�� �28(r + �)�:In the seond ase, (44) does not hold. But then the probability of the event in (b)is at most 1 whih is ertainly less than or equal toe64D exp �� �28(r + �)�:In either ase, we have that the probability of the event in (b) is bounded by9 exp�� �28(r + �)�:Step 5. The statement now follows by ombining the bounds for (a) and (b),and so we have(45) P� supp2P sups�r j sXj=1 Yj(p)j � �� � A exp�� B �2r + �� :Corollary 5.4. If fxj : j 2 Ng is a sequene of i.i.d. random variables that areuniformly distributed over [0; 1℄d and 0 < � < 1, then the sampling inequality(46) (1� �)rkpk22 � rXj=1 jp(xj)j2 � (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :Consequently with the same probability estimate the Toeplitz-type matrix T hasondition number �(T ) � 1+�1�� and also �(U) � �1+�1���1=2Proof. Choose � = r� in Theorem 5.1 and observe that the inequality��� rXj=1 jp(xj)j2 � r��� � r�for all p 2 P0 is equivalent to the sampling inequality (46) for all p 2 PM .From Theorem 5.1 it is straightforward to obtain a law of the iterated logarithm.



20 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGCorollary 5.5. If fxj : j 2 Ng is a sequene of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then(47) lim supr!1 supp2P jPrj=1[jp(xj)j2 � kpk22℄jpr log log r kpk22 = ; a:s:for some onstant  2 [� 2��dD � 1;1).Proof. Let rk = 2k and �k = 2pBprk log log rk, where B is the onstant from (34).Let Ck = f supp2P0 sups�rk ��� sXj=1 Yj(p)��� > �kg:Then for k large enough, we have rk > �k. So the probability of Ck is bounded byP(Ck) � A exp��B �2krk + �k�� A exp��B �2k2rk�� A exp��B 4B rk log log rk2rk �= A exp�� 2 log k� = Ak2 :So P1k=1 P(Ck) < 1, and by the Borel-Cantelli lemma, the probability of Ckhappening in�nitely often is 0.If jPrj=1 Yj(p)j > 2pBpr log log r for some r, we hoose k so that rk�1 � r < rkand observe that Ck holds. (This is the only plae where we need the estimate forsups�r jPsj=1 Yj(p)j instead of just jPrj=1 Yj(p)j.) So this inequality annot happenfor in�nitely many r and we therefore havelim supr!1 supp2P0 jPrj=1[jp(xj)j2 � rjpr log log r � 0; a:s:for some onstant 0 > 0.For �xed p 2 P0 the lassial law of the iterated logarithm [11, p. 232℄ says thatlim supr!1 ���Prj=1 Yj(p)���p2r log log r =qVarYj(p) = kpk44 � 1; a.s.Choosing p(x) = D�1=2Pk2[�M;M ℄d\Zd e2�ik�x, we have kpk2 = 1 and the elementaryestimate kpk4 � 2�D1=4. Solim supr!1 supp2P0 jPrj=1[jp(xj)j2 � r℄jpr log log r � � 2��4D � 1 :The onlusion follows as in the proof of Theorem 4.3 by applying Kolmogorov'szero-one law.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 21This result an be summarized by saying that for large enough r (r dependingon !) we always have the sampling inequality(48) (r�pr log log r)kpk22 � rXj=1 jp(xj)j2 � (r+pr log log r)kpk22 8p 2 PM :The ondition number of the random matrix T is therefore� � (r + pr log log r)=(r � pr log log r) � 1 + 2� log log rpr �1=2almost surely for some onstant  of order D.6. A Universal Sampling Theorem and ExamplesThe main statements (Theorems 4.2, 5.1, Cor. 5.4) reah similar onlusions. At�rst glane, Theorem 4.2 seems preferable beause of its elementary proof and theexpliit onstants. In this setion we fous on the merits of the metri entropymethod. This method is extremely exible and works for many other samplingproblems. We formulate a general framework for �nite-dimensional sampling the-orems and derive a universal sampling theorem in the style of Corollary 5.4. Wethen will disuss several examples of pratial interest.To begin, we note that the proofs of Theorem 5.1 and Corollary 5.4 do not useany spei� properties of trigonometri polynomials. In fat, we have used onlythe following (interrelated) properties of PM .(a) The spae PM is �nite-dimensional and possesses a basis of ontinuous fun-tions.(b) All norms on PM are equivalent; in the proofs we have used the normskpk2; kpk4; kpk1 and kak2 and the assoiated equivalene onstants. As a onse-quene the RVs related to the samples jp(xj)j2 satisfy the uniform estimates ofLemma 5.3.() The unit ball of PM is ompat. This fat enables the onstrution of theÆ-nets A(Æ) and suitable estimates for their ardinality.It is evident that Theorem 5.1 and Corollary 5.4 an be obtained under muhmore general onditions.A General Framework. We make the following assumptions.1. Let S � Rd be a ompat set and let � a probability measure on S withsupp � = S.2. Let B be a �nite-dimensional subspae of L2(S; �) with a basis fek : k =1; : : : ; Dg of ontinuous funtions. Often this basis is hosen as a �nite subset ofa Riesz basis for L2(S; �) and in this sense B may be interpreted as a spae of\band-limited" funtions in L2(S; �). Sine p = PDk=1 akek for every p 2 B, allfuntions in B are ontinuous.The Sampling Problem in B. The task is now to interpolate or to approxi-mate a given data set f(xj; p(xj)) : j = 1; : : : ; rg by a funtion in B. As in Setion 2



22 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGthis amounts to solving the system of linear equationsDXk=1 akek(xj) = p(xj) = yj j = 1; : : : ; r :Let Ujk = ek(xj) and(49) Tkl = (U�U)kl = rXj=1 ek(xj)el(xj) ;then we need to solve either the r �D systemUa = yor the D �D normal equationsT a = U�Ua = U�y :Assume that we an prove the sampling inequality(50) Akpk22;� � rXj=1 jp(xj)j2 = hT a; ai � Bkpk22;� 8p 2 B :Inserting the norm equivalene �kak2 � kpk2;� � �kak2, (50) then implies theestimates(51) �(T ) � �2B�2A and �(U) � ��2B�2A�1=2for the ondition numbers of these matries. Furthermore, p 2 B is uniquelydetermined by its samples, if and only if T is invertible, or if and only if r � Dand U has full rank.We an now formulate our main theorem for random sampling in �nite-dimen-sional spaes of band-limited funtions.Theorem 6.1. If fxj : j 2 Ng is a sequene of i.i.d. random variables and if eahxj is �-distributed over S, then there exist onstants A;B > 0 depending on S; �,and D, suh that for all � 2 (0; 1), the sampling inequality(52) (1� �)rkpk22;� � rXj=1 jp(xj)j2 � (1 + �)rkpk22;� 8p 2 Bholds with probability at least 1� Ae�Br �21+� :With the same probability estimate the matrix T has ondition number �(T ) ��2(1+�)�2(1��) and also �(U) � ��2(1+�)�2(1��)�1=2Proof. We have already done all the work when we proved Theorem 5.1 and Corol-lary 5.4. The only minor modi�ations our in the onstants in Lemma 5.3and in Step 1 of the proof. We now use the RVs Yj(p) = jp(xj)j2 � kpk22;� =jp(xj)j2 � E [jp(xj )j2℄.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 23We present the following examples where the general hypotheses are satis�edand so Theorem 6.1 is appliable. Eah example yields a new result on randomsampling. In some of these examples it seems to be extremely diÆult to derivequantitative deterministi results in the style of Theorem 4.1.Example 1. Trigonometri Polynomials Revisited.Choose a losed set S � [0; 1℄d of positive Lebesgue measure and a probabilitymeasure � with supp � = S and equivalent to � on S. If p 2 PM vanishes on S,then by Lemma 3.1 p � 0 and onsequently kp�Sk2;� = � RS jp(x)j2 d�(x)�1=2 isequivalent to the L2-norm on PM , i.e., there exist onstants �; � > 0 suh that�kpk2 � kp�Sk2;� � �kpk2 8p 2 PM :We state the onlusion of Theorem 6.1 expliitly.Theorem 6.2. Suppose that fxj : j 2 Ng � S is a sequene of i.i.d. random vari-ables that are �-distributed over S. Then there exist onstants A;B > 0 dependingon S; � and D, suh that for all � 2 (0; 1) the sampling inequality(53) �2(1� �)rkpk22 � rXj=1 jp(xj)j2 � �2 (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :With the same probability estimate we have �(T ) � �2(1+�)�2(1��) .Comparing with Theorem 5.1 we have been able to hange the distribution ofthe RVs xj and the target set S in whih the samples are taken.Example 2. Almost Periodi Funtions and Trigonometri Polynomials withArbitrary Frequenies. Assume that S � Rd is ompat and has positive Lebesguemeasure and that � is equivalent to � on S. Choose exponentials ei�k�x with arbi-trary frequenies �k 2 Rd (�k 2 Zd is the ase of trigonometri polynomials) andonsider the subspae of almost periodi funtions (trigonometri polynomials) onS B = fp 2 L2(S) : p(x) = DXk=1 akei�k�x �S(x) :Then Theorem 6.1 applies.Example 3. Algebrai Polynomials. Again assume that S � Rd has positiveLebesgue measure and that � is equivalent to � on S. Choose a �nite set F �(N\f0g)d and onsider the spae of algebrai polynomials on a ompat set S � Rdde�ned as PF = fp 2 L2(S) : p(x) =Xk2F akx� �S(x)Thus Theorem 6.1 applies also to algebrai polynomials of several variables.



24 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGExample 4. Loal Shift-Invariant Spaes. Let � be a ontinuous funtion onRd with supp � � [��; �℄d � S: The loal shift-invariant spae V (�; S) is de�nedby V (�; S) = ff 2 L2(S) : f(x) = Xk2(S+[��;�℄d)\Zdak�(x� k)gIf we assume that 0 < a �Pk2Zd j�̂(!�k)j2 � b for all ! 2 Rd , then the translates�(x� k); k 2 Zd; form a Riesz basis for the generated subspae, and so any �nitesubset is linearly independent. Thus Theorem 6.1 applies. In dimension d = 1 andfor ertain \generators" � this model is well-understood both numerially [21℄ andtheoretially [1℄. In dimension d > 1, however, there are no quantitative determin-isti estimates. Theorem 6.1 gives the �rst hint that the numerial methods of [21℄also work in higher dimensions. See [2℄ for a survey of sampling in shift-invariantspaes.Example 5. Sampling on the Sphere and Spherial Harmonis.Let Sd = fx 2 Rd+1 : jxj = 1g be the unit sphere in Rd+1 with surfae measure�d. We hoose the sequene J` of suitably normalized spherial harmonis [34℄ as anorthonormal basis for L2(Sd; �d) and onsider the spae of band-limited funtionson the sphere, namely B = fp 2 L2(Sd; �d) : p = DX̀=1 a`J`g :Then the onlusions of Theorem 6.1 hold for every sequene of i.i.d. RVs xj on Sdwith xj being �d-distributed.REMARK: Whereas the asymptoti results for the distribution number hold uni-versally in �nite-dimensional vetor spaes, the generalization of Theorem 3.2 ismore subtle and depends on the support properties of the basis funtions. Thesame proof as in Setion 3 shows that the system matrix T de�ned in (49) is in-vertible with probability 1 in Examples 1, 2, and 3 whenever r � D. On the otherhand, for Example 4 it an be shown that T is always singular with positive prob-ability. As this probability depends on the number of samples r, this observationdoes not ontradit Theorem 6.1. Referenes[1℄ A. Aldroubi and K. Gr�ohenig. Beurling-Landau-type theorems for non-uniform sampling inshift invariant spline spaes. J. Fourier Anal. Appl., 6(1):93{103, 2000.[2℄ A. Aldroubi and K. Gr�ohenig. Nonuniform sampling and reonstrution in shift-invariantspaes. SIAM Rev., 43(4):585{620, 2001.[3℄ A. Averbuh, R. Coifman, D. Donoho, M. Israeli, and S. Y. Fast slant stak: A notionof Radon transform for data in a Cartesian grid whih is rapidly omputible, algebraiallyexat, geometrially faithful and invertible. SIAM J. of Sienti� Computing, To appear.[4℄ R. F. Bass. Law of the iterated logarithm for set-indexed partial sum proesses with �nitevariane. Z. Wahrsh. Verw. Gebiete, 70(4):591{608, 1985.[5℄ R. F. Bass. Probabilisti tehniques in analysis. Probability and its Appliations (New York).Springer-Verlag, New York, 1995.
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