RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC
POLYNOMIALS

RICHARD F. BASS AND KARLHEINZ GROCHENIG

ABSTRACT. We investigate when a trigonometric polynomial p of degree M in d
variables is uniquely determined by its sampled values p(z;) on a random set of
points z; in the unit cube (the “sampling problem for trigonometric polynomi-
als”) and estimate the probability distribution of the condition number for the
associated Vandermonde-type and Toeplitz-like matrices. The results provide
a solid theoretical foundation for some efficient numerical algorithms that are
already in use.

1. INTRODUCTION

The reconstruction, interpolation or approximation of a function (signal, image)
from a given data set is a central task in many problems of data processing. The
mathematical problem is to find a function f(z) in a suitable function space V'
that interpolates or approximates the given data y; = f(z;). The set X = {x; :
j=1,...,7} € R? is the sampling set, and the function space V comes from the
mathematical modeling of signals or images (e.g., band-limitedness, smoothness).
The numerical and theoretical analysis of the sampling problem depends, of course,
heavily on the signal model V.

In this paper we focus almost exclusively on multivariate trigonometric poly-
nomials as our model. While this is by no means the only possible model, it is
convenient, interesting, and occurs in many applications where standard uniform
sampling is not possible. Specifically, the model of trigonometric polynomials has
been used in cardiology (one-dimensional) [37], geophysics (2-dimensional) [29],
image processing (2-dimensional) [35], as a non-uniform discrete Fourier transform
(1- and 2-dimensional) [8,13, 14, 28, 33] and in computer tomography (2 and 3-
dimensional) [3,27,32]. Furthermore the space of trigonometric polynomials of
fixed degree is the appropriate finite-dimensional model for the approximation of
band-limited functions from a finite number of samples [19, 20].

Clearly, the sampling operator f — {f(x;) : j = 1,...,r} is linear, and, for
a finite-dimensional model space, it can therefore be described by a matrix. For
the model of trigonometric polynomials of fixed degree, this matrix possesses an
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additional structure, namely it is either a rectangular Vandermonde-like matrix
or a square Toeplitz-like matrix. This structure is the basis for efficient and fast
numerical algorithms. For dimension d = 1 we refer to [8,15,16,30, 36], for higher
dimensions to [27,29,32,35]. These algorithms are fast, stable, and robust, but only
in dimension d = 1 do the numerical algorithms possess a solid theoretical basis
(invertibility, estimates of condition numbers and rates of convergence for iterative
algorithms).

In higher dimensions, there is only numerical evidence that the existing algo-
rithms work; except for some isolated results [18,22] there has been no theoretical
justification for the success of these numerical methods. The main reason for this
disparity lies in the nature of zero sets of trigonometric polynomials in one and
higher dimensions. In dimension d = 1 the zero set of a trigonometric polynomial
is finite by the fundamental theorem of algebra, whereas the zero set of a trigono-
metric polynomial in several variables is an algebraic variety. This difference makes
it almost impossible to determine effectively whether the reconstruction problem
{f(z;)} — f is solvable for a fixed multi-dimensional sampling set X C R?. It
seems even more difficult to estimate the condition numbers of the associated ma-
trices. On the other hand, numerical experiments and successful applications make
it plausible that for generic sampling sets X C R? the sampling problem is solvable
and well-conditioned.

Our goal is to achieve some understanding for the success of existing numerical
methods and to provide more insight into the theoretical issues. To do this we
adopt a probabilistic point of view: Instead of seeking analytic statements for a
fixed sampling set, we consider the collection of all sampling sets of size r and
assume that the sampling set consists of a finite sequence of independent random
variables. Instead of worst case estimates, i.e., inequalities within mathematical
analysis, we will seek probabilistic estimates (from the realm of probability theory).
With this underlying philosophy, we will pursue the following objectives:

(a) We seek to explain and predict the performance of the existing numerical
algorithms.

(b) We estimate the distribution of the condition numbers of the associated
Vandermonde-like and Toeplitz-like matrices.

(c) We investigate the asymptotic behavior of condition numbers as the number
of samples r tends to infinity.

The randomization of the sampling points seems to be a new idea in the in-
vestigation of numerical sampling algorithms. So far random sampling has been
investigated by Seip-Ulanovskii [31] and Chistyakov-Lyubarskii-Pastur [9, 10] for
entire functions of exponential type of one complex variable. These results rely
on the deep characterization of deterministic sampling sets [25,26] and, to our
knowledge, cannot be extended to higher dimensions.

By contrast, our main contribution is to sampling theory for functions of several
variables. In higher dimensions there is currently no satisfactory deterministic the-
ory, and our analysis provides the first clues that existing algorithms and methods
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do really work. From a more applied point of view, our results suggest that ran-
dom sampling of images or higher-dimensional objects may be a successful strategy
to capture the essential information of multi-dimensional objects while preserving
numerical efficiency and stability.

Description of Results. We now describe the main results.
Let P,; be the space of trigonometric polynomials on R? of degree M and period
1, that is, Pys consists of all functions on R? of the form

(1) p(z) = Z a,e’ k.

ke[—M,MNZ4

Note that the (distributional) Fourier transform of p € Py is p =
Zke[fMmeZd ard, so suppp C [—=M, M]?. The parameter M can be interpreted
as the “band-width”, and indeed trigonometric polynomials have been shown to be
the appropriate finite-dimensional model for band-limited functions [19, 20].

Now assume that the samples p(z;),j =1,...,r, of some trigonometric polyno-
mial p € Py, are given for some sampling set X = {z; : j = 1,...,r}. By our
normalization, we may assume that the sampling set X is contained in the unit
cube [0, 1]¢. Our goal is to reconstruct or to approximate p. Equivalently, we want
to determine the coefficients a; of p from the samples p(z;). This task can be
seen as a non-uniform discrete Fourier transform and is a frequent task in data
processing [8,13,14, 28, 33].

In its simplest form, the reconstruction of p amounts to solving the r equations

Z akezmk-mj — p(:cj) =y, j=1,...,r
ke[—M,M)4nZ4

for the coefficient vector a = (ax)rezani—a,mja- This system of equations can be
written in matrix form as

(2) Ua =y,

where U is the matrix with entries U, = e*™*% ke ZN[-M,M]%,j =1,...,r,
and y is the target vector y = (y;);=1,..r. Alternatively, one may try to find a from
the normal equations [17]

(3) U'lda=U"y.

In this case the matrix 7 = U*U has entries
77“ — Z 6727Ti(k7l).:1:]- I{;,l € [_]\47 M]d N Zd ]

j=1

The matrices of these linear systems are highly structured, ¢ is a Vandermonde-
like matrix , and T is a positive semi-definite D x D-matrix with a block-Toeplitz
structure. Both structures have been successfully exploited for fast numerical al-
gorithms [16,22, 28, 35].
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However, before the numerical analysis of the sampling problem can be un-
dertaken, we need to settle a fundamental theoretical issue: Is either of the equa-
tions (2) or (3) solvable? Note that both matrices i and T depend on the sampling
points z; as parameters. Therefore we ask more precisely for which sampling set
X does U have full rank, or equivalently, when is T invertible?

In dimension d = 1, T is invertible if and only if r > 2M + 1 (the number of
sampling points is greater than the dimension of the space). In higher dimensions
no criterion for the invertibility of 7 is known, and useful results are sparse. See [22]
for a discussion.

In the spirit of probability theory we model the sampling set as a sequence of
independent, identically distributed random variables (i.i.d. RVs) in [0,1]%. This
means that we treat the sampling points as a sequence of functions z; = z;(w) on
some probability space (£2,P). Thus the matrices i and T are now random matri-
ces, and their determinants, eigenvalues, and singular values are random variables
on (2,P) that depend on the sampling set in a rather complicated way.

The first theorem guarantees the generic invertibility of 7.

Theorem 1.1. Assume that the finite sequence of RVs xq,...,x,, satisfies the
following properties:

(a) r > (2M + 1)

(b) The x;’s are independent.

(¢) The distribution p; of each x; is absolutely continuous with respect to Lebesgue
measure on [0, 1]%.

Then with probability one the Toeplitz-like matriz T is invertible.

Estimates for the Condition Number. For a stable numerical solution of
either of the systems (2) and (3) we need effective invertibility of 7. This is
usually measured by the condition number x(7) of 7. (The condition number
k(M) of a rectangular matrix is the ratio of largest to smallest singular value [17];
for a positive-definite square matrix, this is simply the ratio of the largest to the
smallest eigenvalue.)

To estimate the condition numbers of U and T we observe that

(4) > Ip(a)))? = (y.y) = (Ua,Ua) = (U'Ua,a) = (Ta,a).
j=1
Consequently, if we can prove an inequality of the form
(5) Allplls <D In(x;)” < Blpll3 Vp € Py
J=1

then the largest (smallest) eigenvalue of T is at most B (at least A), since ||p||s =
|lal|2. Consequently, (5) implies the estimates

B B\1/2
(6) AT ST and  w(U) < <Z> .

Our main theorem is the following asymptotic estimate for the condition numbers
of T orU as r — oc.
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Theorem 1.2. Assume that X = {x; : j € N} is a sequence of i.i.d. random vari-
ables uniformly distributed over [0,1]%. There exist constants A, B > 0 depending
only on the band-width M and the dimension d such that for any p € (0,1), the
sampling inequality

(7) (1= wrlpls <Y Ip(x)* < A+ wripl; Vo€ Pu
j=1

holds with probability at least
2
w

1— Ae Priw,

Consequently with the same probability estimate the Toeplitz-type matriz T has
condition number k(T) < t—l’j and the Vandermonde-like matriz U has condition

number k(U) < T+ p//1T— p.

For a fixed threshold § > 1, the probability that x(7) < 6 converges to 1
exponentially fast as the number of samples increases. With some poetic license,
we may therefore say that oversampling improves the condition number.

We will give two proofs of this result. The first proof is by reduction to a
deterministic result. We estimate the probability that the conditions of an existing
deterministic result from [22] are satisfied. With this approach we obtain explicit
estimates for the constants. The second proof uses a version of the powerful metric
entropy method, see [4,5,12] for just a few of its applications to probability theory.
This approach is genuinely asymptotic and does not yield effective estimates of the
constants. The main advantage of this method is its flexibility and generality. To
demonstrate the power of this approach we will formulate versions of Theorem 1.2
for ordinary polynomials in several variables, almost periodic functions, and for
spherical harmonics on the sphere (Section 6).

As a consequence of Theorem 1.2 we obtain the following law of the iterated
logarithm.

Corollary 1.3. If {z; : j € N} is a sequence of i.i.d. random variables that are
uniformly distributed over [0,1]¢, then

r 2 2
sup ; P\, p
(8) lim s peP ‘ Z]f]H ( 7)‘ || ||2H c,

P00 Vrloglogr||p|3

for some positive constant ¢ of order D = (2M + 1)4.

With less precision, but more intuitively, the corollary says that with probability
one, the condition number of the sampling problem is

log1 1/2
k(T)<(r+c rloglogr)/(r—cm)z1+2(;(w> ’

r
whenever r is large enough.

Our main theorems validate existing numerical algorithms for non-uniform sam-
pling sets in higher dimensions. Furthermore, they make precise in which sense
random sampling of multidimensional objects is better than deterministic sam-

pling.
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The paper is organized as follows. In Section 2 we collect some facts about mul-
tivariate trigonometric polynomials and explain the idea of the simplest numerical
algorithms. In Section 3 we prove Theorem 1.1 about the almost certain solvability
of the sampling problem. In Section 4 we provide the first proof of Theorem 1.2
and show a probabilistic covering result that may be of independent interest. In
Section 5 we develop the metric entropy approach and give a second proof of The-
orem 1.2 for the asymptotic estimate of the condition number. Furthermore, we
develop some consequences of our main theorem. In Section 6 we discuss extensions
of the metric entropy method to other sampling problems.

2. SAMPLING OF TRIGONOMETRIC POLYNOMIALS

We first collect the background information on sampling of trigonometric poly-
nomials and some of the numerical aspects that motivated our investigation.

By X ={z; : j =1,...,r} we denote a sampling set of r (distinct) points in
[0, 1]4.

The space of trigonometric polynomials on R? of degree M and period 1 in each
variable is

9) Pu={p:plx) = Z ak€27rik-m}.

ke[—M,M4NZd

REMARKS: 1. The vector space Py, has dimension D = (2M + 1)¢. This implies
that we need at least (2M + 1)? data points in order to recover a polynomial
p e PM

2. The parameter M can be interpreted as the “bandwidth” and measures the
permissible amount of oscillation (smoothness). We will assume that M is given,
but note that the determination of the optimal bandwidth is an important step in
the practical application of sampling algorithms [36].

3. On Py, the following estimates between equivalent norms hold:

bl = [ ) de = lal
[0,1]7

(10) Ipllee < D'Y*|all2 = D"* |Ipll,

el < lplEllellz < Dipll;-

The reconstruction of p € Py, from given samples {p(z;) : j =1,...,7} amounts
to solving the following system of r equations:
(11) Z ape’™ % = f(x;) = y; j=1,...,r.

ke[—M,M]dn7.d
Introducing the matrices U and 7 with entries
(12) Upp = e j=1,....rke[-M M Nz’
(13 T = @Uu=Y 605 ki [-M, M 2,

Jj=1
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we can then formulate the sampling problem for P, in several distinct ways.

Lemma 2.1. The following are equivalent:
(i) The equations (11) possess a unique solution in Pyy.
(ii) The Vandermonde-type matriz has full rank and r > D.
(iii) There exist A, B > 0 such that

Allallz < |Uall: < Bllall,  Vae C”.

(iv) The D x D Toeplitz-like matriz T is invertible.
(v) There exist A, B > 0 such that

(14) Allplla <> Ip(ay))” < Bllpll. Vp € Pur .
j=1

If any of (i)-(v) hold, we say that X is a set of stable sampling for Py, [24].

Despite its lack of mathematical substance, this lemma is useful because each
of the criteria may be used as a starting point for the theoretical or numerical
investigation of the sampling problem. For the mathematical analysis the sampling
inequality (14) is most appropriate, because it is invites the use the analytic meth-
ods. For the numerical solution of the sampling problem, the linear algebra criteria
(ii), (iii), and (iv) are most useful, because the theory of structured matrices offers
fast solution techniques.

A numerical algorithm for the solution of (11) could then be based on the fol-
lowing steps:

ALGORITHM

Input. Given a sampling set X = {z;:j=1,...,r} C[0,1]? and a data vector
y={y;:j=1,...,r}. Assume that 7 defined in (13) is invertible.

Step 1. Compute b = U*y, i.e.,

(15) by = 26727”:’9#7 Y, for k € [-M, M]* N2z

J=1
Step 2. Solve the system of equations
(16) a=7T 'b.

Step 3. Compute p € Py, by

(17) p(r) = Z ape’™h T

kel

Then p is the (unique) least square approximation of the given data vector y in
the sense that

(18) D Iy = pla) P = min B Jy; — g(a;)*.
s =1
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If y arises as the sampled vector of a polynomial p € Py, i.e., y; = p(z;), then
this algorithm provides the exact reconstruction of p.

REMARKS: 1. The numerical implementation of this idea is often referred to as
the ACT-algorithm. The decisive step is the solution of matrix equation 7a = b
in Step 2. Since T is a positive-definite Toeplitz-like matrix, the exploitation of
this structure in conjunction with block Toeplitz solvers and conjugate gradient
algorithms have led to fast and efficient reconstruction algorithms in higher dimen-
sions [29,35]. For numerical issues and real applications we refer to [22].

2. Since the condition numbers of ¢ and T are related by «(7) = x(U)?, it may
be better to solve the Vandermonde-type system Ua =y directly; see the work of
Potts and Steidl [27].

3. INVERTIBILITY ALMOST SURELY

We first establish that the reconstruction algorithm discussed in Section 2 works
almost surely. In dimension d = 1, 7 is invertible if and only if » > 2M + 1.
In higher dimensions, a complete and effective characterization of the invertibility
seems out of reach. For this reason we use a probabilistic approach.

First a lemma in which A\ will denote Lebesgue measure.

Lemma 3.1. Let p € Py be a trigonometric polynomial in d variables. Then its
zero set Z(p) = {x € [0,1]¢: p(x) = 0} has Lebesque measure 0.

Proof. This fact is well known; we provide its easy proof for the sake of complete-
ness.

Fix x1,..., 241 €[0,1]% then P(x1,...,74_1,14) is a trigonometric polynomial
in one variable z,; of degree M and has thus at most 2M + 1 zeros. The set
{z €10,1] : (z1,...,24 1,2) € Z(p)} has Lebesgue measure 0. This is true for

every choice of x1,..., 24 1, so by Fubini’s Theorem, we obtain that
AMZ(p)) = / </ Xz (1, g1, 1) dT) dry...drg 1 =0,
[0,1]4=1 * J[0,1]
as desired. [ |

The following result is a first indication why in practice no serious problems have
occurred in the application of multidimensional sampling algorithms.

Theorem 3.2. Assume that the random variables {x1, ..., z,} are independent and
that the distribution p; of each x; is absolutely continuous with respect to Lebesgue
measure on [0, 1]%.

Then the Vandermonde-like matriz U is of full rank almost surely. If, in addition,
r > D = (2M + 1)%, then the Toeplitz-like matriz T = U*U is invertible almost
surely.

Proof. Let my, ..., mp be an enumeration of the index set [~ M, M]NZ? over which
we are summing, and let C'y be the N x N-matrix with entries

Cpj=e™%  1</(j<N.
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Then C'y depends on the sampling points x1,... 2y, and we may define the “bad”
set

By = {(z1,...,2x5) € ([0,])" : det Oy = 0}.

We claim that A(By) = 0 for all N < min(r, D), and prove this by induction
over N. This is certainly true for N = 1. So assume that N < min(r, D) and that

(.Z'l, C ,.Z'N) ¢ BN-

Let a = (Cp1,...,Cen), £ < N, be the (-th row of Cy and let ayy =
(Cni1.1s---,Cny1n). Since Cy is invertible, there exist coefficients by
= by(xq,...zx) € C, not all 0, such that

anNiy1 = blal B bNCLN .

By looking at the (N + 1)-st column of Cy 4, we find that C'y; is invertible if and
only if Cnyi nvg1 # 01Cing1 + -+ bvCn vy, or if and only if

esz+1~:1:N+1 7& blelm1'$N+1 _|_ . _|_ bNelmN'IN+1 .
In other words, Cy 1 is invertible if 1 is NOT in the set

Dy = Dy(z1,....xn5) = {z € [0,1]: ™+ = be"™ ™ + ... 4 bye™ "},

For fixed (z1,...,2x5) € ([0,1]9)Y, Dy is the zero set of some trigonometric poly-
nomial and by Lemma 3.1 Dy has Lebesgue measure 0 in [0, 1]%.
Since the bad set By, is contained in { (21, ..., 2n, 2x41) € ([0, 1]V 12y, €

Dy(z1,...,2N)}, we see by Fubini’s Theorem that

ABys1) = /( (/[ VXBNH(xl,...,xN,xNH)deH) dry ... doy
s 0,1

[0,1))N
< / MDn(z1,...,xn))dzy . ..dey = 0.
(f0,1]4)~ J{0,1]4

The induction step is proved.

If » < D, then C, is invertible for almost every choice of zq,...,xp, where
“almost every” is with respect to Lebesgue measure A. Consequently, the r x D
matrix U has full rank. If » > D, this also implies that the D x D square matrix

T = U*U is invertible for almost every choice of z1,...,xp.
Since the distribution p; of z; is absolutely continuous with respect to A, the
bad set By also has measure 0 with respect to py X - -+ X up. [ |

Corollary 3.3. The Toeplitz-like matriz T is invertible under each of the following
hypotheses on the sampling set:

(a) The z;,j =1,...,r, are i.i.d. random variables, each of which is uniformly
distributed over [0,1]%.

(b) The sampling set is a random perturbation of a uniform sampling set, i.e., it
is some enumeration of {xk + 0 : k € Z°N[0, N — 1]} where N > 2M + 1 and
the Oy are i.i.d. random variables uniformly distributed over a neighborhood of 0.
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4. A COVERING RESULTS AND REDUCTION TO DETERMINISTIC ESTIMATES

Theorem 1.1 guarantees that an implementation of Algorithm 2 will work in
principle. However, numerical invertibility requires a reasonable bound on the
condition number of T or of U.

This is already a serious problem in dimension d = 1. It is easy to construct
sampling sets in [0, 1] for which the corresponding Toeplitz matrix has condition
number of the order 10" [16]. While such a matrix is invertible in theory, for
practical purposes it may be considered to be non-invertible.

As a next step we therefore turn to estimates for the condition number of the
block Toeplitz matrix 7. For this we combine a deterministic result with a proba-
bilistic statement on coverings.

We work with the metric d(z,y) = mingcza |2 —y +k||s on the torus T¢ ~ [0, 1)¢
and the associated cubes of side-length 2p

B(x,p) ={y €[0,1]*: d(y,x) < p} = 2+ [-p, p]*.

To every sequence of sampling points {z; : j € N} C [0,1]%, let {V,} we assign the
“distance function”

(19) §(r) = inf{s : U B(z;,s) D [0,1]%}.

The quantity 25(r) can be interpreted as the maximum distance of any of the first
r sampling points x; to its next neighbor. Let V}, 7 =1,...,r, be Voronoi regions

Vi ={y€[0,1)%: d(y,x;) <d(y,zx),k # 3,1 < j,k <r}

and w; = A(V;) and consider the weighted Toeplitz-like matrix 7" with entries

]gllu _ (u*u)kl _ Z ,wj6727ri(k7l)-mj k,] e [*M, M]d N Zd )

J=1
Then it is possible to show the following deterministic theorem [18,22].

Theorem 4.1. If

log 2
20 0 —
(20) (r) < 2nMd’
then, for all p € Py,
(21) (2 — M2 |pll3 < Y p(es)Pw; = (a, T a) < 4|pll3.
7=1

Consequently, the condition number of T* can be estimated by

4
(2 — e2rdMd)2”’

(22) R(T") <

and both T and T™ are invertible.
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REMARKS: 1. The specific choice of weights w; is crucial for the explicit esti-
mate (22). In the numerical implementation of the algorithm of Section 2, they
serve as a simple and cheap preconditioner.

2. In higher dimensions (22) is far from being optimal, since it depends on the
dimension d. It is an open problem to obtain improvements to this estimate. For
a related result for band-limited functions, see [7].

We next suppose that the sampling points form an infinite sequence of i.i.d. in-
dependent random variables z;,7 € N. We first investigate how the distribution
of the associated sequence of random variables §(r) depends on the number of
sampling points r.

Theorem 4.2. If X = {z; : j € N} is a sequence of i.i.d. random variables
uniformly distributed over [0,1]¢, then for every r, N € N

(23) P(é(r) > 1/N> < NU(1 = N9y < Nl /N

Consequently, k(T") < 4(2 — e*™M4NY=2 gnd both T and T are invertible with
probability at least

1—- N1 — N4 >1-— Nle /N,

Proof. Divide [0,1]¢ into N¢ disjoint subcubes of side length 1/N, i.e., [0,1]¢ =
Uj—: Blcj, L), where the ¢; are the centers of these subcubes. Note that if a
subcube contains a point ;, then that subcube is contained in B(x;, 1/N). So if
each of these subcubes contains at least one of the z;, we conclude 6(r) < 1/N.

Since the zj,7 = 1,...,r, are chosen independently and uniformly, the number
of x;’s in any cube is a binomial random variable. Thus the probability that a
particular subcube is empty is

(1 o Nid)r )
since N~7 is the probability that any particular z; is in this subcube and there
y y J

are r points). Since there are N subcubes altogether, the probability that at least
one of the subcubes is empty is bounded by

(24) N1 - N,

If 6(r) > 1/N, then at least one of the subcubes must be empty, which proves
the left-hand inequality of (23). The right-hand side follows from the obvious
inequality (1 — N~9)" = erlos(1=N"") < g=r/N*,

The estimate for the condition number of 7% and the invertibility of 7 now

follow from Theorem 4.1. |
REMARK: For (20) we need that + < 217?%42(1; this means that we need at least
r = N% > (2]7;2/'2‘1)(1 ~ (]gng)dD sampling points before Theorem 4.2 becomes
effective.

Next we derive an asymptotic result for §(r), which may be of independent
interest.
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Theorem 4.3. Assume that {x; : j € N} is a sequence of i.i.d points uniformly
distributed in [0,1]%. Then

o
(25) lim sup (r)

PP Gogrry

for some constant ¢ € [1, 1+1/d].

Thus for r sampling points the maximum distance to the nearest neighbor is
roughly (logr/r)'/?. For comparison, for the » = N? equispaced points {% k€
[0, N] N Z?}, we have §(r) = & = r /% For r randomly distributed points we
need an additional logarithmic term.

Proof of Theorem 4.3. Step 1. We first show that
. d(r) 14+1/d
(26) hl;[i)SOlij S 2 s a.s.
Choose rj, = 2¥ as the number of points, and let N, be the greatest integer less than

1/d
( Lk ) . We divide [0, 1]? into N disjoint subcubes of side length N, '. Let Ay

2logry

be the event that at least one of the subcubes contains none of the z;, 7 = 1,..., 7.
By (24) we have
1 1
97)  P(Ay) < Ne /N < Tk —2logri - .
(27) (Ae) < Nie - 210g7“kP 2rplogr,  2kt1klog?2

Therefore Y, P(A;) < oo, and so the Borel-Cantelli lemma [11] implies that the
probability of Ay infinitely often is 0. This means for almost every w € €2 there is
a ko depending on w such that for £ > kg, each of the subcubes of side length N/,;1
will contain at least one of the points of z;,..., z,, .

Now for r arbitrary and sufficiently large (depending on w), choose k such that
ry < r < riep. Then each of the subcubes of side length N,;l will contain at least

one of the points z;,...,z,, , hence at least of the points z, ..., z,. Consequently
1
o(r) < —
)< 5
and thus
ro\Ud Trer O\ M4 1
5 <( ) 5(r) < 2Y4Q2N, + 1)8(r) < 2Y42 + —).
(ogr) 900 < (ogr=) ™ 8() < 2N+ 1)6(r) < 212 4 )

Taking r — oo proves (26).

We prove the converse inequality

(28) lim sup o)

1
—_ > - .S.
ool logr/myid =40 *°

in several steps.

Step 2. Assume for the moment that we have already chosen a sequence ry
(number of sampling points) and N;. Then we divide [0,1]? into N{ subcubes of
side length N,;], and we enumerate the cubes as Cy,Cs, .. ., CN;j- Let D; be the
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event that the cube C; does not contain any of the points z,, ,41,...,2,,. Asin
(24) the probability of D; is given by

(29) P(D;) = (1~ N

For j # k, D; N Dy, is the event that the region C; U C} does not contain any of
the points z,,  41,...,2,,. Therefore as in (24) we obtain that

P(D; N D) = (1—2N, 4 1 <
(30) < (1= N2 = P(D;)B(Dy)
since 1 — 2z < (1 — z)? for z € [0, 1].
Step 3. Now let By be the event that at least one of the first N, (out of a total
of Nf) cubes Cy,...,Cy, does not contain any of the points =, ,,...,z,,. (In
dimension d = 1 we take the first N} of Ny cubes for some a,1/2 < a < 1—1/e

and modify the following argument slightly.) If we define the random variable Y}
by

N,
Vi = Z Lp;.,
i=1

then By, = {Y} > 0}. To find a lower estimate for the probability of B, we use an
argument due to Kochen-Stone [23]. Using Cauchy-Schwarz we find that

Ny
EY, = Y IP(Y;=1)
=1

< (Lremi-n)" (Lrei-n)"
BV PRV > 0),

whence

(31) P(By) = P(Y, > 0) > (IFEZJQ .

On the other hand,
Ny,
EY, =) P(D;) = NiP(D;)
j=1

and by (30)

Ny
EYY = > P(Dj)+ Y P(D;NDy)
j=1 k#j
EY, + Y P(D,)B(D.)
k#j
EY; + (EY;).

IN

IN
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Substituting into (31), we obtain

E Yy
32 P(By) > ———.
(3 (B > iy

Step 4. Finally we choose 7, = ¢ and Ny the least integer > (297 / logry,)"/®.

Then

1 "
B(D,) = (- Npfyrrer = (18

. . d 1 T 1 T _ d .
Since lim,_,qo 2/ (1 — ;5;) =1, we have (1 — 35;) > %’I“ 12 for z sufficiently

large, and consequently

od 1/d 1 11
( Tk) irkmd:r,: > [logry > 1

33 EY, = N, P(D;
(33 o= NB(D) > ([T

v

for sufficiently large & (kK > 3). Now (32) implies that P(B;) > 1/2 and so
> o2 P(By) = oc. Finally we observe that the events By, are independent, because
they depend on disjoint segments of the sequence z;, 7 € N. Therefore the second
part of the Borel-Cantelli lemma [11] implies that the probability of By infinitely
often is 1. This means that for almost every w there is an infinite subsequence of
k’s (depending on w) such that w € By.

Step 5. It remains to consider the event Ej, that one of the points zy,..., 2, _,

is in U;V:’“] C;. Since the volume of U;V:’“] C; is Ny - N, %, the probability that a
particular z; is in this set is N} % There are 7,_; points to consider, so as in (24)

P(Ey) <rp N,

By our choices of r;, and N, we have Y 7°  P(E}) < oo, and so by the Borel-Cantelli
lemma once again, the probability of Fj infinitely often is 0.

Combining Steps 4 and 5 we conclude that with probability 1, infinitely often at
least one of the Cy with £ < N, will contain none of the points x4, ..., x,, . Since C;
contains none of these x;, the center of Cy is not contained in (Ji*, B(x;,1/(2Ny)).
Consequently 6(ry) > 1/(2Ny) for infinitely many & almost surely. So

5 ()" = 8l v2 2 174
Tk log 7+ = O\Tg)INg [ 4 =2
and (28) is proved.
Step 6. It is clear that if we omit the first M points zq,..., x5 for any fixed

integer M, then this will not affect the value of limsup é(r)/(logr/r)!/®. Therefore
this random variable is measurable with respect to the tail o-field of the sequence
Z1,%9,... By the Kolmogorov’s zero-one law, the value of this random variable
must be constant almost surely [11, p. 254]. This completes the proof. [ |
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5. AsYMPTOTIC ESTIMATES OF THE CONDITION NUMBER

In the previous section we have combined a deterministic argument with a cov-
ering argument. FEssentially we have calculated the probability that a random
sampling set satisfies the sufficient condition already known from deterministic
sampling theory.

In this section we develop an alternative approach that is based on a metric
entropy argument such as the ones used in [12]. This approach does not rely
on deterministic sampling results and can therefore be adapted to other sampling
models. On the other hand, it is difficult to keep track of the constants involved,
and thus the results are only efficient for large sampling sets.

Once again we start with an infinite sequence of i.i.d. random variables {z, : j €
N}, each of which is uniformly distributed over [0, 1]¢. Our goal is to estimate the
quantity Y7 |p(x;)|* — r|[p[|3 and its distribution as a function of the number of
sampling points r.

For every p € Py, we introduce the random variable Y;(p) = |p(z;)|* — ||p||3- To
obtain a sampling inequality of the form A||p[|3 < >7_, [p(z;)|* < B|pll3, we have
to estimate the probability distribution of the random variable

r

sup Y Y(p).
PP lIpll2=1 5=

This is accomplished in the following theorem.

Theorem 5.1. If {z; : j € N} is a sequence of i.i.d. random variables that are

uniformly distributed over [0,1]¢, then there exist constants A, B > 0 depending on
d and M, such that

(34) P( sup sup
PEPM[Ipll2=1 s<r

1] 2) < o (5.2

forr € N and A > 0.

For the distribution of a sum of random variables we use Bernstein’s inequality [6]
in the following form.

Proposition 5.2. Let Y;,j7 = 1,...,r, be a sequence of bounded, independent
random variables with EY; = 0, VarY; = o2, and ||Yjlloo < M for j =1,...,r.
Then

(35) P(‘in

To apply (35) to the Y;(p), we need several simple estimates. It suffices to work
with the unit ball of P,;, which we denote by P° = {p € Py : ||p|l2 < 1}.

)\2
=) <2ew (- g )
3
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Lemma 5.3. Let p,q € P° and j € N. Then the following identities and inequali-
ties hold:

(36) EYj(p) =0

(37) Var Yj(p) = |lplls — llplls < D -1,

(38) Var (Y;(p) — Y;(q)) < 8llp — qll% .

(39) 1Y (D)oo < [IPI% = lIpll5 < (D = 1),

(40) 1Vi(p) = Yi (@)oo < 2(D"* +1)[lp — ql|oo -

Proof. Since each x; is uniformly distributed over [0, 1]¢, we have

BOG) = [ () i) de =0

and consequently (also using (10))

Var¥i) = B = [ ()l IolE)

= |pli—lplls<D-1.

since [|p|l = 1. Similarly, we obtain

<D-1

Y5 (P)lleo = sup ‘ (W) = lIpll3] < ‘Ilpllic = lIpll3
w

Next, since EYj(p) = 0, we obtain
Var (Yi(p) = V(@) = E(((0) ~ Yi0)?)
[, O = o))" e = (1 ~ )

o —all% | 1ol + lal 115 + lp — all3(IIpl13 + |lall3)
8llp — all%

The last estimate follows similarly from

<
<

5(p) = ¥i(@)llo < sup p(z(@)* = la(; () +‘||Q|\§—HP||§
< Al = allso (llpllso + llallsc) + llg = pll2(llpll2 + llgll2)
< Alp — alls D (lipll2 + llallz) + llg — plloo(llpll2 + llall2)

2(DY2+1) |lp — qllw
n

Proof of Theorem 5.1. Step 1: A Metric Entropy Argument. For a given
§ > 0, we construct a d-net for P° with respect to the L>-norm as follows. Given
p € P° with coefficients a = (ax)gezan—m,mje and ||all; < 1, we approximate the
real and imaginary part of each a; by a number ﬁé,ﬁ € 7Z; in other words, we
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choose a vector b of the form b = \/—D (+im),l,m € Z% to approximate a. Then
for each coordinate ay, k € [—M, M]¢ N Z?, we have

)
|ak_bk|§5;

and so

5
la = bll2 < (Dmax|a; - bel?)? = —=

75

Setting q(x) = Y/, bee®™ 7, we obtain

lp = alle < DV2|lp = gll2 < DY?Ja — bl|2 =
We denote the d-net of all ¢ € P® with coefficients of the form b = %(Z +
im),l,m € Z% ||b|l < 1, by A(6). The cardinality of A(J) is estimated as follows:

card A(§) = card{b = (¢+im),6,m € Z”,||b|l < 1}

)
V2D
D
= card {k € Z*" : ||k||, < f—}
S 61672D.

where the constant ¢; = %Dm is roughly the number of integer lattice points

in a ball of radius 2D in R?P.
Given p € P, let p; be the polynomial in A(277) that is closest to p in L norm,
with some convention for breaking ties. Since ||p — p;|ls — 0, we can write

Yi(p) = Y;(po) + (Y;(p1) — Y;(po)) + (Yi(p2) — Yi(p1)) + -
If sup,ep sup,<, [ 327, Yj(p)| > A, then either

(a) sup,<, | > 75, Yi(p)| > A/2 for some p € A(1); or
(b) for some £ > 1 and some p € A(27*) and some g € A(27*!) with ||p—q|e <
3.2 we have sup,c, | 30, (Vi(p) — Yi(a))| > A/2(0+ 1)

(Possibly both (a) and (b) hold.)
If this were not the case, then

sup E Y;(p ‘ < qup‘g Y (po) ‘—i—SllpE ‘E < Y (pe— 1))‘
s<r 17} s<r
j=1 =1 j=
)\ 2
< —:—)\ .
- 202 12 <

(=1

So far the construction is purely deterministic. Now we estimate the probability
of each of the events in (a) and (b).
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Step 2. For fixed p € A(1), the probability of the event in (a) is bounded, using
Bernstein’s inequality (35) and Lemma 5.3, by

2exp (- s )
P 2 Vary; () + 20V, (0)
)\2
< 2 — .
= eXp( 2r(D1)+§(D1))\>

There are at most ¢; polynomials in A(1), so the probability of (a) is bounded by

)\2
(41) 261 exp ( T (D1 + gm) ‘

Step 3. We estimate (b) in a similar fashion using Lemma 5.3, (38) and (40).
If pe A(27%) and ¢ € A(27“1) with ||p — ¢l < 3-27%, we have

S

P 050 V@) > )
N /4(0 +1)*
S 2exp ( 1447272 1 4. 27(DV2) /(L + 1)2))

)\2
< 2 — 2 .
= 2O ( a(r(C+ 1)*2 C+ DI2A(( + 1)2))

20-2) —£+1)

There are ¢;2! D trigonometric polynomials in A(2 , and for each ¢ the
number of trigonometric polynomials p € A(27¢) satisfying ||p — ¢||loc < 3-27% is

bounded by a constant ¢y independent of ¢ and j (Similar to the count in Step 1,

Co R @Dw is roughly the number of integer lattice points in a ball of radius

3v2D in R?P). Finally, this can happen for any ¢. So the probability in (b) is
bounded by

42 92 2(2K72)D o 2[ .
( ) ; C1C2 exp ( 03(7«([ + 1)424 + D]/Q}\(Z + 1)2))

Step 4. Estimate of the sum (42).
Since (¢+1)*27%is bounded above and 2¢2/(¢+1)? is bounded below, the above
sum is bounded by

(43) 2(14 exp ( — 23/2#1)\) + (20 —2)Dlog 2) = (%).

We distinguish two cases. Either
2

(44) e+ )

> 64D,
then
)\2

2[/2
Cs (T + )

> 2(2¢ — 2)Dlog?2, forall ¢ > 1,
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and so
- 0/2 A2
RIS SIS T S
)—;4 P 25(r + \)

Now we use the fact that ) ,° e %" < ¢ge® for any a > 1 and 2 > 1 (with ¢
depending only on a). Consequently the sum in (43) is bounded by

(%) < mexp(ﬁ)

In the second case, (44) does not hold. But then the probability of the event in (b)
is at most 1 which is certainly less than or equal to

P exp ().
Cg (T + )\)
In either case, we have that the probability of the event in (b) is bounded by
)\2
Cg €Xp ( - m)

Step 5. The statement now follows by combining the bounds for (a) and (b),
and so we have

)\2
(45) P(iggigg|zi/j(p)2A) éAexp(—BHA)-

Corollary 5.4. If {z; : j € N} is a sequence of i.i.d. random variables that are
uniformly distributed over [0,1]% and 0 < u < 1, then the sampling inequality

r

(46) (1= wrlpllz < ) Ip(= +urlpll;  Vp € Py

7j=1
holds with probability at least
2
1— Ae Prim
Consequently with the same probability estimate the Toeplitz-type matriz T has

1/2
condition number k(T) < % and also k(U) < (%)

Proof. Choose A = ru in Theorem 5.1 and observe that the inequality

Sl | <
J=1

for all p € PY is equivalent to the sampling inequality (46) for all p € Pyy. [ |

From Theorem 5.1 it is straightforward to obtain a law of the iterated logarithm.
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uniformly distributed over [0,1]¢, then

r 9 9
sup ()2 — |lp
(47) lim sup ”EP‘ZJJH ()] [pll2]] .

r—oc \/TIOgIOgTHpH% 7

for some constant c € [(%)d D —1,00).

Proof. Let r, = 2% and )\, = %\/rk loglog ry, where B is the constant from (34).
Let

Cr = {sup sup
pePO s<rg

SV > Ak

Then for k£ large enough, we have r, > ;. So the probability of C} is bounded by

)\2
P(Cy) < Aexp(Brk:)\k>

< Aexp(—B)\—%)

27"k
< Aexp<_B£rkloglogrk>
B 27"k
A
= Aexp(—?logk)zﬁ.

So > 2, P(Cy) < oo, and by the Borel-Cantelli lemma, the probability of Cj
happening infinitely often is 0.

I3 V()| > %\/rloglogr for some 7, we choose k so that 7,1 < r <y
and observe that Cy holds. (This is the only place where we need the estimate for
Sup,<, | >, Yj(p)| instead of just | 37, Yj(p)|.) So this inequality cannot happen
for infinitely many r and we therefore have

P DY G A
r—00 P T lOg log r = &

for some constant ¢’ > 0.
For fixed p € P the classical law of the iterated logarithm [11, p. 232] says that

V)]
limsup; = \/VarY;(p) = |pll; — 1, a.s.
V2rloglogr '

T—0Q

Choosing p(z) = D~1/? > kel M M)inzd e?™k T we have ||p|ly = 1 and the elementary
estimate ||p|[4 > 2D, So

L0 [ ks E NS
oo vrloglogr - '

The conclusion follows as in the proof of Theorem 4.3 by applying Kolmogorov’s
zero-one law. [ |

™
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This result can be summarized by saying that for large enough r (r depending
on w) we always have the sampling inequality

(48) (r—cy/rloglogr)|pll; < Y Ip(x;)* < (r+ey/rloglogr)llpll;  Vp € Pas.

J=1

The condition number of the random matrix 7 is therefore

logl 1/2
k< (r+4cy/rloglogr)/(r —cy/rloglogr) ~ 1+ 2¢ (%)
r

almost surely for some constant ¢ of order D.

6. A UNIVERSAL SAMPLING THEOREM AND EXAMPLES

The main statements (Theorems 4.2, 5.1, Cor. 5.4) reach similar conclusions. At
first glance, Theorem 4.2 seems preferable because of its elementary proof and the
explicit constants. In this section we focus on the merits of the metric entropy
method. This method is extremely flexible and works for many other sampling
problems. We formulate a general framework for finite-dimensional sampling the-
orems and derive a universal sampling theorem in the style of Corollary 5.4. We
then will discuss several examples of practical interest.

To begin, we note that the proofs of Theorem 5.1 and Corollary 5.4 do not use
any specific properties of trigonometric polynomials. In fact, we have used only
the following (interrelated) properties of Py,.

(a) The space Py, is finite-dimensional and possesses a basis of continuous func-
tions.

(b) All norms on P, are equivalent; in the proofs we have used the norms
IIpl2; |Ip]]4, ||p||sc and ||a||z and the associated equivalence constants. As a conse-
quence the RVs related to the samples |p(z;)|? satisfy the uniform estimates of
Lemma 5.3.

(c¢) The unit ball of Py is compact. This fact enables the construction of the
d-nets A(J) and suitable estimates for their cardinality.

It is evident that Theorem 5.1 and Corollary 5.4 can be obtained under much
more general conditions.

A General Framework. We make the following assumptions.

1. Let S C R? be a compact set and let v a probability measure on S with
suppv = S.

2. Let B be a finite-dimensional subspace of L%*(S,v) with a basis {e, : k =
1,..., D} of continuous functions. Often this basis is chosen as a finite subset of
a Riesz basis for L?(S,v) and in this sense B may be interpreted as a space of
“band-limited” functions in L?(S,v). Since p = 21?:1 aper for every p € B, all
functions in B are continuous.

The Sampling Problem in B. The task is now to interpolate or to approxi-
mate a given data set {(x;, p(z;)) : j =1,...,r} by a function in B. As in Section 2
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this amounts to solving the system of linear equations
D
Zakek(xj):p(xj):yj j=1,...,r.
k=1
Let U, = ex(z;) and
T
(49) T = U U =) ex(aj)en(;) ;

J=1

then we need to solve either the r x D system
Ua =y
or the D x D normal equations
Ta=UUa=U"y.

Assume that we can prove the sampling inequality
T
(50) Allpl3, <Y Ip(x;)]” = (Ta,a) < Blpll, VpeB.
j=1
Inserting the norm equivalence «flalls < ||p|l2, < Sllall2, (50) then implies the

estimates
’B 2B\ 1/2
(51) w(T) < fm and  w(U) < (§2A)
for the condition numbers of these matrices. Furthermore, p € B is uniquely
determined by its samples, if and only if 7 is invertible, or if and only if r > D
and U has full rank.

We can now formulate our main theorem for random sampling in finite-dimen-
sional spaces of band-limited functions.

Theorem 6.1. If {z, : j € N} is a sequence of i.i.d. random variables and if each
xj is v-distributed over S, then there exist constants A, B > 0 depending on S, v,
and D, such that for all p € (0,1), the sampling inequality

(52) (1= wrlpls, <D Ip(e)® < U+ prlpl,  YpeB
j=1

holds with probability at least
2
1— Ae Prim.
With the same probability estimate the matriz T has condition number k(T) <

°(1 21 1/2
S0 and also w(U) < (Z4243)

Proof. We have already done all the work when we proved Theorem 5.1 and Corol-
lary 5.4. The only minor modifications occur in the constants in Lemma 5.3
and in Step 1 of the proof. We now use the RVs Y;(p) = |p(z;)|* — []pll3, =

Ip(2)[* = Blp(x;) ). u
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We present the following examples where the general hypotheses are satisfied
and so Theorem 6.1 is applicable. Each example yields a new result on random
sampling. In some of these examples it seems to be extremely difficult to derive
quantitative deterministic results in the style of Theorem 4.1.

Example 1. Trigonometric Polynomials Revisited.
Choose a closed set S C [0, 1]% of positive Lebesgue measure and a probability
measure v with supprv = S and equivalent to A on S. If p € Pjs vanishes on S,

then by Lemma 3.1 p = 0 and consequently [|pxs|2., = ([ |p(m)|2du(m))1/2 is
equivalent to the L?-norm on Py, i.e., there exist constants a, 3 > 0 such that

allplle < llpxslley < Bllpll2 Vp € P .

We state the conclusion of Theorem 6.1 explicitly.

Theorem 6.2. Suppose that {z; : j € N} C S is a sequence of i.i.d. random vari-
ables that are v-distributed over S. Then there exist constants A, B > 0 depending
on S,v and D, such that for all p € (0,1) the sampling inequality

(53) o® (1= pyrllplls < ) lp(ey)* < B2+ wrlplly Vo € Py
j=1

holds with probability at least
2
1— Ae Prim.

With the same probability estimate we have k(T)

Comparing with Theorem 5.1 we have been able to change the distribution of
the RVs z; and the target set S in which the samples are taken.

Example 2. Almost Periodic Functions and Trigonometric Polynomials with
Arbitrary Frequencies. Assume that S C R? is compact and has positive Lebesgue
measure and that v is equivalent to A on S. Choose exponentials e**'* with arbi-
trary frequencies \, € R? (), € Z? is the case of trigonometric polynomials) and
consider the subspace of almost periodic functions (trigonometric polynomials) on

S

D
B={peL’(S):p(x) =) are™* xs(z).
k=1
Then Theorem 6.1 applies.

Example 3. Algebraic Polynomials. Again assume that S C R? has positive
Lebesgue measure and that v is equivalent to A on S. Choose a finite set F' C
(NN{0})? and consider the space of algebraic polynomials on a compact set S C R?
defined as

Pr = {p € L*(9) : p(z) = Zakx“ xs(x)
keF
Thus Theorem 6.1 applies also to algebraic polynomials of several variables.
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Example 4. Local Shift-Invariant Spaces. Let ¢ be a continuous function on
R? with supp ¢ C [~0,0]¢ C S. The local shift-invariant space V (¢, S) is defined
by

V(6.S) = {feXS): fm) = S aelr -k}

ke(S+[—o,0]")N7Z7

If we assume that 0 < a <37, . (p(w—k)|? < bforallw € R, then the translates
¢(x — k), k € Z¢, form a Riesz basis for the generated subspace, and so any finite
subset is linearly independent. Thus Theorem 6.1 applies. In dimension d = 1 and
for certain “generators” ¢ this model is well-understood both numerically [21] and
theoretically [1]. In dimension d > 1, however, there are no quantitative determin-
istic estimates. Theorem 6.1 gives the first hint that the numerical methods of [21]
also work in higher dimensions. See [2] for a survey of sampling in shift-invariant
spaces.

Example 5. Sampling on the Sphere and Spherical Harmonics.

Let S; = {z € R! : |z| = 1} be the unit sphere in R¥*! with surface measure
v4. We choose the sequence Jy of suitably normalized spherical harmonics [34] as an
orthonormal basis for L?(Sy, v4) and consider the space of band-limited functions
on the sphere, namely

D
B={pe€L*(Sqvq):p= Zang}.
=1
Then the conclusions of Theorem 6.1 hold for every sequence of i.i.d. RVs z; on Sy
with z; being v4-distributed.

REMARK: Whereas the asymptotic results for the distribution number hold uni-
versally in finite-dimensional vector spaces, the generalization of Theorem 3.2 is
more subtle and depends on the support properties of the basis functions. The
same proof as in Section 3 shows that the system matrix 7 defined in (49) is in-
vertible with probability 1 in Examples 1, 2, and 3 whenever » > D. On the other
hand, for Example 4 it can be shown that 7 is always singular with positive prob-
ability. As this probability depends on the number of samples r, this observation
does not contradict Theorem 6.1.
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