
RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRICPOLYNOMIALSRICHARD F. BASS AND KARLHEINZ GR�OCHENIGAbstra
t. We investigate when a trigonometri
 polynomial p of degreeM in dvariables is uniquely determined by its sampled values p(xj) on a random set ofpoints xj in the unit 
ube (the \sampling problem for trigonometri
 polynomi-als") and estimate the probability distribution of the 
ondition number for theasso
iated Vandermonde-type and Toeplitz-like matri
es. The results providea solid theoreti
al foundation for some eÆ
ient numeri
al algorithms that arealready in use. 1. Introdu
tionThe re
onstru
tion, interpolation or approximation of a fun
tion (signal, image)from a given data set is a 
entral task in many problems of data pro
essing. Themathemati
al problem is to �nd a fun
tion f(x) in a suitable fun
tion spa
e Vthat interpolates or approximates the given data yj = f(xj). The set X = fxj :j = 1; : : : ; rg � Rd is the sampling set, and the fun
tion spa
e V 
omes from themathemati
al modeling of signals or images (e.g., band-limitedness, smoothness).The numeri
al and theoreti
al analysis of the sampling problem depends, of 
ourse,heavily on the signal model V .In this paper we fo
us almost ex
lusively on multivariate trigonometri
 poly-nomials as our model. While this is by no means the only possible model, it is
onvenient, interesting, and o

urs in many appli
ations where standard uniformsampling is not possible. Spe
i�
ally, the model of trigonometri
 polynomials hasbeen used in 
ardiology (one-dimensional) [37℄, geophysi
s (2-dimensional) [29℄,image pro
essing (2-dimensional) [35℄, as a non-uniform dis
rete Fourier transform(1- and 2-dimensional) [8, 13, 14, 28, 33℄ and in 
omputer tomography (2 and 3-dimensional) [3, 27, 32℄. Furthermore the spa
e of trigonometri
 polynomials of�xed degree is the appropriate �nite-dimensional model for the approximation ofband-limited fun
tions from a �nite number of samples [19, 20℄.Clearly, the sampling operator f ! ff(xj) : j = 1; : : : ; rg is linear, and, fora �nite-dimensional model spa
e, it 
an therefore be des
ribed by a matrix. Forthe model of trigonometri
 polynomials of �xed degree, this matrix possesses an1991 Mathemati
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2 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGadditional stru
ture, namely it is either a re
tangular Vandermonde-like matrixor a square Toeplitz-like matrix. This stru
ture is the basis for eÆ
ient and fastnumeri
al algorithms. For dimension d = 1 we refer to [8, 15, 16, 30, 36℄, for higherdimensions to [27,29,32,35℄. These algorithms are fast, stable, and robust, but onlyin dimension d = 1 do the numeri
al algorithms possess a solid theoreti
al basis(invertibility, estimates of 
ondition numbers and rates of 
onvergen
e for iterativealgorithms).In higher dimensions, there is only numeri
al eviden
e that the existing algo-rithms work; ex
ept for some isolated results [18,22℄ there has been no theoreti
aljusti�
ation for the su

ess of these numeri
al methods. The main reason for thisdisparity lies in the nature of zero sets of trigonometri
 polynomials in one andhigher dimensions. In dimension d = 1 the zero set of a trigonometri
 polynomialis �nite by the fundamental theorem of algebra, whereas the zero set of a trigono-metri
 polynomial in several variables is an algebrai
 variety. This di�eren
e makesit almost impossible to determine e�e
tively whether the re
onstru
tion problemff(xj)g ! f is solvable for a �xed multi-dimensional sampling set X � Rd . Itseems even more diÆ
ult to estimate the 
ondition numbers of the asso
iated ma-tri
es. On the other hand, numeri
al experiments and su

essful appli
ations makeit plausible that for generi
 sampling sets X � Rd the sampling problem is solvableand well-
onditioned.Our goal is to a
hieve some understanding for the su

ess of existing numeri
almethods and to provide more insight into the theoreti
al issues. To do this weadopt a probabilisti
 point of view: Instead of seeking analyti
 statements for a�xed sampling set, we 
onsider the 
olle
tion of all sampling sets of size r andassume that the sampling set 
onsists of a �nite sequen
e of independent randomvariables. Instead of worst 
ase estimates, i.e., inequalities within mathemati
alanalysis, we will seek probabilisti
 estimates (from the realm of probability theory).With this underlying philosophy, we will pursue the following obje
tives:(a) We seek to explain and predi
t the performan
e of the existing numeri
alalgorithms.(b) We estimate the distribution of the 
ondition numbers of the asso
iatedVandermonde-like and Toeplitz-like matri
es.(
) We investigate the asymptoti
 behavior of 
ondition numbers as the numberof samples r tends to in�nity.The randomization of the sampling points seems to be a new idea in the in-vestigation of numeri
al sampling algorithms. So far random sampling has beeninvestigated by Seip-Ulanovskii [31℄ and Chistyakov-Lyubarskii-Pastur [9, 10℄ forentire fun
tions of exponential type of one 
omplex variable. These results relyon the deep 
hara
terization of deterministi
 sampling sets [25, 26℄ and, to ourknowledge, 
annot be extended to higher dimensions.By 
ontrast, our main 
ontribution is to sampling theory for fun
tions of severalvariables. In higher dimensions there is 
urrently no satisfa
tory deterministi
 the-ory, and our analysis provides the �rst 
lues that existing algorithms and methods



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 3do really work. From a more applied point of view, our results suggest that ran-dom sampling of images or higher-dimensional obje
ts may be a su

essful strategyto 
apture the essential information of multi-dimensional obje
ts while preservingnumeri
al eÆ
ien
y and stability.Des
ription of Results. We now des
ribe the main results.Let PM be the spa
e of trigonometri
 polynomials on Rd of degree M and period1, that is, PM 
onsists of all fun
tions on Rd of the form(1) p(x) = Xk2[�M;M ℄\Zdake2�ik�x :Note that the (distributional) Fourier transform of p 2 PM is p̂ =Pk2[�M;M ℄\Zd akÆk, so supp p̂ � [�M;M ℄d. The parameter M 
an be interpretedas the \band-width", and indeed trigonometri
 polynomials have been shown to bethe appropriate �nite-dimensional model for band-limited fun
tions [19, 20℄.Now assume that the samples p(xj); j = 1; : : : ; r, of some trigonometri
 polyno-mial p 2 PM are given for some sampling set X = fxj : j = 1; : : : ; rg. By ournormalization, we may assume that the sampling set X is 
ontained in the unit
ube [0; 1℄d. Our goal is to re
onstru
t or to approximate p. Equivalently, we wantto determine the 
oeÆ
ients ak of p from the samples p(xj). This task 
an beseen as a non-uniform dis
rete Fourier transform and is a frequent task in datapro
essing [8, 13, 14, 28, 33℄.In its simplest form, the re
onstru
tion of p amounts to solving the r equationsXk2[�M;M ℄d\Zdake2�ik�xj = p(xj) = yj j = 1; : : : ; rfor the 
oeÆ
ient ve
tor a = (ak)k2Zd\[�M;M ℄d. This system of equations 
an bewritten in matrix form as(2) Ua = y ;where U is the matrix with entries Ujk = e2�ik�xj ; k 2 Zd \ [�M;M ℄d; j = 1; : : : ; r,and y is the target ve
tor y = (yj)j=1;:::;r. Alternatively, one may try to �nd a fromthe normal equations [17℄(3) U�Ua = U�y :In this 
ase the matrix T = U�U has entriesTkl = rXj=1 e�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd :The matri
es of these linear systems are highly stru
tured, U is a Vandermonde-like matrix , and T is a positive semi-de�nite D�D-matrix with a blo
k-Toeplitzstru
ture. Both stru
tures have been su

essfully exploited for fast numeri
al al-gorithms [16, 22, 28, 35℄.



4 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGHowever, before the numeri
al analysis of the sampling problem 
an be un-dertaken, we need to settle a fundamental theoreti
al issue: Is either of the equa-tions (2) or (3) solvable? Note that both matri
es U and T depend on the samplingpoints xj as parameters. Therefore we ask more pre
isely for whi
h sampling setX does U have full rank, or equivalently, when is T invertible?In dimension d = 1, T is invertible if and only if r � 2M + 1 (the number ofsampling points is greater than the dimension of the spa
e). In higher dimensionsno 
riterion for the invertibility of T is known, and useful results are sparse. See [22℄for a dis
ussion.In the spirit of probability theory we model the sampling set as a sequen
e ofindependent, identi
ally distributed random variables (i.i.d. RVs) in [0; 1℄d. Thismeans that we treat the sampling points as a sequen
e of fun
tions xj = xj(!) onsome probability spa
e (
;P). Thus the matri
es U and T are now random matri-
es, and their determinants, eigenvalues, and singular values are random variableson (
;P) that depend on the sampling set in a rather 
ompli
ated way.The �rst theorem guarantees the generi
 invertibility of T .Theorem 1.1. Assume that the �nite sequen
e of RVs x1; : : : ; xr; satis�es thefollowing properties:(a) r � (2M + 1)d.(b) The xj's are independent.(
) The distribution �j of ea
h xj is absolutely 
ontinuous with respe
t to Lebesguemeasure on [0; 1℄d.Then with probability one the Toeplitz-like matrix T is invertible.Estimates for the Condition Number. For a stable numeri
al solution ofeither of the systems (2) and (3) we need e�e
tive invertibility of T . This isusually measured by the 
ondition number �(T ) of T . (The 
ondition number�(M) of a re
tangular matrix is the ratio of largest to smallest singular value [17℄;for a positive-de�nite square matrix, this is simply the ratio of the largest to thesmallest eigenvalue.)To estimate the 
ondition numbers of U and T we observe that(4) rXj=1 jp(xj)j2 = hy;yi = hUa;Uai = hU�Ua; ai = hT a; ai :Consequently, if we 
an prove an inequality of the form(5) Akpk22 � rXj=1 jp(xj)j2 � Bkpk22 8p 2 PMthen the largest (smallest) eigenvalue of T is at most B (at least A), sin
e kpk2 =kak2. Consequently, (5) implies the estimates(6) �(T ) � BA and �(U) � �BA�1=2 :Our main theorem is the following asymptoti
 estimate for the 
ondition numbersof T or U as r!1.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 5Theorem 1.2. Assume that X = fxj : j 2 Ng is a sequen
e of i.i.d. random vari-ables uniformly distributed over [0; 1℄d. There exist 
onstants A;B > 0 dependingonly on the band-width M and the dimension d su
h that for any � 2 (0; 1), thesampling inequality(7) (1� �)rkpk22 � rXj=1 jp(xj)j2 � (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :Consequently with the same probability estimate the Toeplitz-type matrix T has
ondition number �(T ) � 1+�1�� and the Vandermonde-like matrix U has 
onditionnumber �(U) � p1 + �=p1� �.For a �xed threshold � > 1, the probability that �(T ) � � 
onverges to 1exponentially fast as the number of samples in
reases. With some poeti
 li
ense,we may therefore say that oversampling improves the 
ondition number.We will give two proofs of this result. The �rst proof is by redu
tion to adeterministi
 result. We estimate the probability that the 
onditions of an existingdeterministi
 result from [22℄ are satis�ed. With this approa
h we obtain expli
itestimates for the 
onstants. The se
ond proof uses a version of the powerful metri
entropy method, see [4,5,12℄ for just a few of its appli
ations to probability theory.This approa
h is genuinely asymptoti
 and does not yield e�e
tive estimates of the
onstants. The main advantage of this method is its 
exibility and generality. Todemonstrate the power of this approa
h we will formulate versions of Theorem 1.2for ordinary polynomials in several variables, almost periodi
 fun
tions, and forspheri
al harmoni
s on the sphere (Se
tion 6).As a 
onsequen
e of Theorem 1.2 we obtain the following law of the iteratedlogarithm.Corollary 1.3. If fxj : j 2 Ng is a sequen
e of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then(8) lim supr!1 supp2P jPrj=1[jp(xj)j2 � kpk22℄jpr log log rkpk22 = 
; a:s:for some positive 
onstant 
 of order D = (2M + 1)d.With less pre
ision, but more intuitively, the 
orollary says that with probabilityone, the 
ondition number of the sampling problem is�(T ) � (r + 
pr log log r)=(r � 
pr log log r) � 1 + 2
� log log rr �1=2 ;whenever r is large enough.Our main theorems validate existing numeri
al algorithms for non-uniform sam-pling sets in higher dimensions. Furthermore, they make pre
ise in whi
h senserandom sampling of multidimensional obje
ts is better than deterministi
 sam-pling.



6 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGThe paper is organized as follows. In Se
tion 2 we 
olle
t some fa
ts about mul-tivariate trigonometri
 polynomials and explain the idea of the simplest numeri
alalgorithms. In Se
tion 3 we prove Theorem 1.1 about the almost 
ertain solvabilityof the sampling problem. In Se
tion 4 we provide the �rst proof of Theorem 1.2and show a probabilisti
 
overing result that may be of independent interest. InSe
tion 5 we develop the metri
 entropy approa
h and give a se
ond proof of The-orem 1.2 for the asymptoti
 estimate of the 
ondition number. Furthermore, wedevelop some 
onsequen
es of our main theorem. In Se
tion 6 we dis
uss extensionsof the metri
 entropy method to other sampling problems.2. Sampling of Trigonometri
 PolynomialsWe �rst 
olle
t the ba
kground information on sampling of trigonometri
 poly-nomials and some of the numeri
al aspe
ts that motivated our investigation.By X = fxj : j = 1; : : : ; rg we denote a sampling set of r (distin
t) points in[0; 1℄d.The spa
e of trigonometri
 polynomials on Rd of degree M and period 1 in ea
hvariable is(9) PM = fp : p(x) = Xk2[�M;M ℄d\Zdake2�ik�xg :REMARKS: 1. The ve
tor spa
e PM has dimension D = (2M + 1)d. This impliesthat we need at least (2M + 1)d data points in order to re
over a polynomialp 2 PM .2. The parameter M 
an be interpreted as the \bandwidth" and measures thepermissible amount of os
illation (smoothness). We will assume that M is given,but note that the determination of the optimal bandwidth is an important step inthe pra
ti
al appli
ation of sampling algorithms [36℄.3. On PM the following estimates between equivalent norms hold:kpk22 = Z[0;1℄d jp(x)j2 dx = kak2kpk1 � D1=2 kak2 = D1=2 kpk2(10) kpk44 � kpk21kpk22 � Dkpk42 :The re
onstru
tion of p 2 PM from given samples fp(xj) : j = 1; : : : ; rg amountsto solving the following system of r equations:(11) Xk2[�M;M ℄d\Zdake2�ik�xj = f(xj) = yj j = 1; : : : ; r :Introdu
ing the matri
es U and T with entriesUjk = e2�ik�xj j = 1; : : : ; r; k 2 [�M;M ℄d \ Zd(12) Tkl = (U�U)kl = rXj=1 e�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd ;(13)



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 7we 
an then formulate the sampling problem for PM in several distin
t ways.Lemma 2.1. The following are equivalent:(i) The equations (11) possess a unique solution in PM .(ii) The Vandermonde-type matrix has full rank and r � D.(iii) There exist A;B > 0 su
h thatAkak2 � kUak2 � Bkak2 8a 2 C D :(iv) The D �D Toeplitz-like matrix T is invertible.(v) There exist A;B > 0 su
h that(14) Akpk2 � rXj=1 jp(xj)j2 � Bkpk2 8p 2 PM :If any of (i)-(v) hold, we say that X is a set of stable sampling for PM [24℄.Despite its la
k of mathemati
al substan
e, this lemma is useful be
ause ea
hof the 
riteria may be used as a starting point for the theoreti
al or numeri
alinvestigation of the sampling problem. For the mathemati
al analysis the samplinginequality (14) is most appropriate, be
ause it is invites the use the analyti
 meth-ods. For the numeri
al solution of the sampling problem, the linear algebra 
riteria(ii), (iii), and (iv) are most useful, be
ause the theory of stru
tured matri
es o�ersfast solution te
hniques.A numeri
al algorithm for the solution of (11) 
ould then be based on the fol-lowing steps:ALGORITHMInput. Given a sampling set X = fxj : j = 1; : : : ; rg � [0; 1℄d and a data ve
tory = fyj : j = 1; : : : ; rg. Assume that T de�ned in (13) is invertible.Step 1. Compute b = U�y, i.e.,(15) bk = rXj=1 e�2�ik�xj yj for k 2 [�M;M ℄d \ Zd :Step 2. Solve the system of equations(16) a = T �1b :Step 3. Compute p 2 PM by(17) p(x) = Xk2IM ake2�ik�x :Then p is the (unique) least square approximation of the given data ve
tor y inthe sense that(18) rXj=1 jyj � p(xj)j2 = minq2PM rXj=1 jyj � q(xj)j2 :



8 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGIf y arises as the sampled ve
tor of a polynomial p 2 PM , i.e., yj = p(xj), thenthis algorithm provides the exa
t re
onstru
tion of p.REMARKS: 1. The numeri
al implementation of this idea is often referred to asthe ACT-algorithm. The de
isive step is the solution of matrix equation T a = bin Step 2. Sin
e T is a positive-de�nite Toeplitz-like matrix, the exploitation ofthis stru
ture in 
onjun
tion with blo
k Toeplitz solvers and 
onjugate gradientalgorithms have led to fast and eÆ
ient re
onstru
tion algorithms in higher dimen-sions [29, 35℄. For numeri
al issues and real appli
ations we refer to [22℄.2. Sin
e the 
ondition numbers of U and T are related by �(T ) = �(U)2, it maybe better to solve the Vandermonde-type system Ua = y dire
tly; see the work ofPotts and Steidl [27℄. 3. Invertibility Almost SurelyWe �rst establish that the re
onstru
tion algorithm dis
ussed in Se
tion 2 worksalmost surely. In dimension d = 1, T is invertible if and only if r � 2M + 1.In higher dimensions, a 
omplete and e�e
tive 
hara
terization of the invertibilityseems out of rea
h. For this reason we use a probabilisti
 approa
h.First a lemma in whi
h � will denote Lebesgue measure.Lemma 3.1. Let p 2 PM be a trigonometri
 polynomial in d variables. Then itszero set Z(p) = fx 2 [0; 1℄d : p(x) = 0g has Lebesgue measure 0.Proof. This fa
t is well known; we provide its easy proof for the sake of 
omplete-ness.Fix x1; : : : ; xd�1 2 [0; 1℄d; then P (x1; : : : ; xd�1; xd) is a trigonometri
 polynomialin one variable xd of degree M and has thus at most 2M + 1 zeros. The setfx 2 [0; 1℄ : (x1; : : : ; xd�1; x) 2 Z(p)g has Lebesgue measure 0. This is true forevery 
hoi
e of x1; : : : ; xd�1, so by Fubini's Theorem, we obtain that�(Z(p)) = Z[0;1℄d�1 �Z[0;1℄ �Z(p)(x1; : : : ; xd�1; x) dx� dx1 : : : dxd�1 = 0 ;as desired.The following result is a �rst indi
ation why in pra
ti
e no serious problems haveo

urred in the appli
ation of multidimensional sampling algorithms.Theorem 3.2. Assume that the random variables fx1; : : : ; xrg are independent andthat the distribution �j of ea
h xj is absolutely 
ontinuous with respe
t to Lebesguemeasure on [0; 1℄d.Then the Vandermonde-like matrix U is of full rank almost surely. If, in addition,r � D = (2M + 1)d, then the Toeplitz-like matrix T = U�U is invertible almostsurely.Proof. Let m1; : : : ; mD be an enumeration of the index set [�M;M ℄\Zd over whi
hwe are summing, and let CN be the N �N -matrix with entriesC`j = eim`�xj 1 � `; j � N :



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 9Then CN depends on the sampling points x1; : : : xN , and we may de�ne the \bad"set BN = f(x1; : : : ; xN) 2 ([0; 1℄d)N : detCN = 0g :We 
laim that �(BN ) = 0 for all N � min(r;D), and prove this by indu
tionover N . This is 
ertainly true for N = 1. So assume that N < min(r;D) and that(x1; : : : ; xN) =2 BN .Let a` = (C`;1; : : : ; C`;N), ` � N , be the `-th row of CN and let aN+1 =(CN+1;1; : : : ; CN+1;N). Sin
e CN is invertible, there exist 
oeÆ
ients b`= b`(x1; : : : xN) 2 C ; not all 0, su
h thataN+1 = b1a1 + � � � bNaN :By looking at the (N +1)-st 
olumn of CN+1, we �nd that CN+1 is invertible if andonly if CN+1;N+1 6= b1C1;N+1 + � � �+ bNCN;N+1, or if and only ifeimN+1 �xN+1 6= b1eim1�xN+1 + � � �+ bNeimN �xN+1 :In other words, CN+1 is invertible if xN+1 is NOT in the setDN = DN(x1; : : : ; xN) = fx 2 [0; 1℄d : eimN+1 �x = b1eim1�x + � � �+ bNeimN �xg :For �xed (x1; : : : ; xN) 2 ([0; 1℄d)N , DN is the zero set of some trigonometri
 poly-nomial and by Lemma 3.1 DN has Lebesgue measure 0 in [0; 1℄d.Sin
e the bad set BN+1 is 
ontained in f(x1; : : : ; xN ; xN+1) 2 ([0; 1℄d)N+1 : xN+1 2DN(x1; : : : ; xN)g, we see by Fubini's Theorem that�(BN+1) = Z([0;1℄d)N �Z[0;1℄d �BN+1(x1; : : : ; xN ; xN+1) dxN+1� dx1 : : : dxN� Z([0;1℄d)N Z[0;1℄d �(DN(x1; : : : ; xN))dx1 : : : dxN = 0 :The indu
tion step is proved.If r � D, then Cr is invertible for almost every 
hoi
e of x1; : : : ; xD, where\almost every" is with respe
t to Lebesgue measure �. Consequently, the r � Dmatrix U has full rank. If r � D, this also implies that the D �D square matrixT = U�U is invertible for almost every 
hoi
e of x1; : : : ; xD.Sin
e the distribution �j of xj is absolutely 
ontinuous with respe
t to �, thebad set BD also has measure 0 with respe
t to �1 � � � � � �D.Corollary 3.3. The Toeplitz-like matrix T is invertible under ea
h of the followinghypotheses on the sampling set:(a) The xj; j = 1; : : : ; r, are i.i.d. random variables, ea
h of whi
h is uniformlydistributed over [0; 1℄d.(b) The sampling set is a random perturbation of a uniform sampling set, i.e., itis some enumeration of f 1N k + Æk : k 2 Zd \ [0; N � 1℄dg where N � 2M + 1 andthe Æk are i.i.d. random variables uniformly distributed over a neighborhood of 0.



10 RICHARD F. BASS AND KARLHEINZ GR�OCHENIG4. A Covering Results and Redu
tion to Deterministi
 EstimatesTheorem 1.1 guarantees that an implementation of Algorithm 2 will work inprin
iple. However, numeri
al invertibility requires a reasonable bound on the
ondition number of T or of U .This is already a serious problem in dimension d = 1. It is easy to 
onstru
tsampling sets in [0; 1℄ for whi
h the 
orresponding Toeplitz matrix has 
onditionnumber of the order 1015 [16℄. While su
h a matrix is invertible in theory, forpra
ti
al purposes it may be 
onsidered to be non-invertible.As a next step we therefore turn to estimates for the 
ondition number of theblo
k Toeplitz matrix T . For this we 
ombine a deterministi
 result with a proba-bilisti
 statement on 
overings.We work with the metri
 d(x; y) = mink2Zd kx�y+kk1 on the torus Td � [0; 1)dand the asso
iated 
ubes of side-length 2�B(x; �) = fy 2 [0; 1℄d : d(y; x) � �g = x + [��; �℄d :To every sequen
e of sampling points fxj : j 2 Ng � [0; 1℄d, let fVjg we assign the\distan
e fun
tion"(19) Æ(r) = inffs : r[j=1B(xi; s) � [0; 1℄dg :The quantity 2Æ(r) 
an be interpreted as the maximum distan
e of any of the �rstr sampling points xj to its next neighbor. Let Vj; j = 1; : : : ; r; be Voronoi regionsVj = fy 2 [0; 1℄d : d(y; xj) � d(y; xk); k 6= j; 1 � j; k � rgand wj = �(Vj) and 
onsider the weighted Toeplitz-like matrix T w with entriesT wkl = (U�U)kl = rXj=1 wje�2�i(k�l)�xj k; l 2 [�M;M ℄d \ Zd :Then it is possible to show the following deterministi
 theorem [18, 22℄.Theorem 4.1. If(20) Æ(r) < log 22�Md ;then, for all p 2 PM ,(21) (2� e2�dMÆ)2kpk22 � rXj=1 jp(xj)j2wj = ha; T wai � 4kpk22 :Consequently, the 
ondition number of T w 
an be estimated by(22) �(T w) � 4(2� e2�dMÆ)2 ;and both T and T w are invertible.
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i�
 
hoi
e of weights wj is 
ru
ial for the expli
it esti-mate (22). In the numeri
al implementation of the algorithm of Se
tion 2, theyserve as a simple and 
heap pre
onditioner.2. In higher dimensions (22) is far from being optimal, sin
e it depends on thedimension d. It is an open problem to obtain improvements to this estimate. Fora related result for band-limited fun
tions, see [7℄.We next suppose that the sampling points form an in�nite sequen
e of i.i.d. in-dependent random variables xj; j 2 N . We �rst investigate how the distributionof the asso
iated sequen
e of random variables Æ(r) depends on the number ofsampling points r.Theorem 4.2. If X = fxj : j 2 Ng is a sequen
e of i.i.d. random variablesuniformly distributed over [0; 1℄d, then for every r;N 2 N(23) P�Æ(r) > 1=N� � Nd(1�N�d)r � Nde�r=Nd :Consequently, �(T w) � 4(2 � e2�Md=N )�2 and both T w and T are invertible withprobability at least 1�Nd(1�N�d)r � 1�Nde�r=Nd :Proof. Divide [0; 1℄d into Nd disjoint sub
ubes of side length 1=N , i.e., [0; 1℄d =Srj=1B(
j; 12N ), where the 
j are the 
enters of these sub
ubes. Note that if asub
ube 
ontains a point xj, then that sub
ube is 
ontained in B(xj; 1=N). So ifea
h of these sub
ubes 
ontains at least one of the xj, we 
on
lude Æ(r) � 1=N .Sin
e the xj; j = 1; : : : ; r; are 
hosen independently and uniformly, the numberof xj's in any 
ube is a binomial random variable. Thus the probability that aparti
ular sub
ube is empty is (1�N�d)r ;(sin
e N�d is the probability that any parti
ular xj is in this sub
ube and thereare r points). Sin
e there are Nd sub
ubes altogether, the probability that at leastone of the sub
ubes is empty is bounded by(24) Nd(1�N�d)r :If Æ(r) > 1=N , then at least one of the sub
ubes must be empty, whi
h provesthe left-hand inequality of (23). The right-hand side follows from the obviousinequality (1�N�d)r = er log(1�N�d) � e�r=Nd .The estimate for the 
ondition number of T w and the invertibility of T nowfollow from Theorem 4.1.REMARK: For (20) we need that 1N < log 22�Md ; this means that we need at leastr = Nd � �2�Mdlog 2 �d � � �dlog 2�dD sampling points before Theorem 4.2 be
omese�e
tive.Next we derive an asymptoti
 result for Æ(r), whi
h may be of independentinterest.



12 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGTheorem 4.3. Assume that fxj : j 2 Ng is a sequen
e of i.i.d points uniformlydistributed in [0; 1℄d. Then(25) lim supr!1 Æ(r)(log r=r)1=d = 
 ; a.s.for some 
onstant 
 2 [14 ; 21+1=d℄.Thus for r sampling points the maximum distan
e to the nearest neighbor isroughly (log r=r)1=d. For 
omparison, for the r = Nd equispa
ed points f kN : k 2[0; N ℄ \ Zdg, we have Æ(r) = 12N = 12r�1=d. For r randomly distributed points weneed an additional logarithmi
 term.Proof of Theorem 4.3. Step 1. We �rst show that(26) lim supr!1 Æ(r)(log r=r)1=d � 21+1=d; a.s.Choose rk = 2k as the number of points, and let Nk be the greatest integer less than� rk2 log rk�1=d. We divide [0; 1℄d into Ndk disjoint sub
ubes of side length N�1k . Let Akbe the event that at least one of the sub
ubes 
ontains none of the xj; j = 1; : : : ; rk.By (24) we have(27) P(Ak) � Ndk e�rk=Ndk � rk2 log rk e�2 log rk = 12rk log rk = 12k+1k log 2 :ThereforeP1k=1 P(Ak) <1, and so the Borel-Cantelli lemma [11℄ implies that theprobability of Ak in�nitely often is 0. This means for almost every ! 2 
 there isa k0 depending on ! su
h that for k � k0, ea
h of the sub
ubes of side length N�1kwill 
ontain at least one of the points of x1; : : : ; xrk .Now for r arbitrary and suÆ
iently large (depending on !), 
hoose k su
h thatrk � r < rk+1. Then ea
h of the sub
ubes of side length N�1k will 
ontain at leastone of the points x1; : : : ; xrk , hen
e at least of the points x1; : : : ; xr. ConsequentlyÆ(r) � 1Nk ;and thus� rlog r�1=dÆ(r) � � rk+1log rk+1�1=dÆ(r) � 21=d(2Nk + 1)Æ(r) � 21=d(2 + 1Nk ) :Taking r !1 proves (26).We prove the 
onverse inequality(28) lim supr!1 Æ(r)(log r=r)1=d � 14 ; a.s.in several steps.Step 2. Assume for the moment that we have already 
hosen a sequen
e rk(number of sampling points) and Nk. Then we divide [0; 1℄d into Ndk sub
ubes ofside length N�1k , and we enumerate the 
ubes as C1; C2; : : : ; CNdk . Let Dj be the
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ube Cj does not 
ontain any of the points xrk�1+1; : : : ; xrk . As in(24) the probability of Dj is given by(29) P(Dj) = (1�N�dk )rk�rk�1 :For j 6= k, Dj \ Dk is the event that the region Cj [ Ck does not 
ontain any ofthe points xrk�1+1; : : : ; xrk . Therefore as in (24) we obtain thatP(Dj \Dk) = (1� 2N�dk )rk�rk�1 �� (1�N�dk )2(rk�rk�1) = P(Dj)P(Dk) ;(30)sin
e 1� 2x � (1� x)2 for x 2 [0; 1℄.Step 3. Now let Bk be the event that at least one of the �rst Nk (out of a totalof Ndk ) 
ubes C1; : : : ; CNk does not 
ontain any of the points xrk�1 ; : : : ; xrk . (Indimension d = 1 we take the �rst N�k of Nk 
ubes for some �; 1=2 < � < 1 � 1=eand modify the following argument slightly.) If we de�ne the random variable Ykby Yk = NkXj=1 1Dj ;then Bk = fYk > 0g. To �nd a lower estimate for the probability of Bk, we use anargument due to Ko
hen-Stone [23℄. Using Cau
hy-S
hwarz we �nd thatE Yk = NkXl=1 l P(Yk = l)� � NkXl=1 l2P(Yk = l)�1=2 � NkXl=1 P(Yk = l)�1=2= (E Y 2k )1=2(P(Yk > 0))1=2 ;when
e(31) P(Bk) = P(Yk > 0) � (E Yk)2E Y 2k :On the other hand, E Yk = NkXj=1 P(Dj) = NkP(Dj)and by (30) E Y 2k = NkXj=1 P(Dj) +Xk 6=j P(Dj \Dk)� E Yk +Xk 6=j P(Dj)P(Dk)� E Yk + (E Yk)2:



14 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGSubstituting into (31), we obtain(32) P(Bk) � E Yk1 + E Yk :Step 4. Finally we 
hoose rk = eek and Nk the least integer � (2drk= log rk)1=d.Then P(Dj) = (1�N�dk )rk�rk�1 � �1� log rk2drk �rk :Sin
e limx!1 x1=2d�1� logx2dx �x = 1, we have �1� logx2dx �x � 12x�1=2d for x suÆ
ientlylarge, and 
onsequently(33) E Yk = NkP(Dj) � � 2drklog rk�1=d 12r�1=2dk = r 1d� 12dk = log rk � 1for suÆ
iently large k (k � 3). Now (32) implies that P(Bk) � 1=2 and soP1k=1 P(Bk) =1. Finally we observe that the events Bk are independent, be
ausethey depend on disjoint segments of the sequen
e xj; j 2 N . Therefore the se
ondpart of the Borel-Cantelli lemma [11℄ implies that the probability of Bk in�nitelyoften is 1. This means that for almost every ! there is an in�nite subsequen
e ofk's (depending on !) su
h that ! 2 Bk.Step 5. It remains to 
onsider the event Ek that one of the points x1; : : : ; xrk�1is in SNkj=1 Cj. Sin
e the volume of SNkj=1Cj is Nk � N�dk , the probability that aparti
ular xj is in this set is N1�dk . There are rk�1 points to 
onsider, so as in (24)P(Ek) � rk�1N1�dkBy our 
hoi
es of rk andNk, we haveP1k=1 P(Ek) <1, and so by the Borel-Cantellilemma on
e again, the probability of Ek in�nitely often is 0.Combining Steps 4 and 5 we 
on
lude that with probability 1, in�nitely often atleast one of the C` with ` � Nk will 
ontain none of the points x1; : : : ; xrk . Sin
e C`
ontains none of these xj, the 
enter of C` is not 
ontained in Srkj=1B(xj; 1=(2Nk)).Consequently Æ(rk) > 1=(2Nk) for in�nitely many k almost surely. SoÆ(rk)� rklog rk�1=d � Æ(rk)Nk=2 � 1=4and (28) is proved.Step 6. It is 
lear that if we omit the �rst M points x1; : : : ; xM for any �xedinteger M , then this will not a�e
t the value of lim sup Æ(r)=(log r=r)1=d. Thereforethis random variable is measurable with respe
t to the tail �-�eld of the sequen
ex1; x2; : : : By the Kolmogorov's zero-one law, the value of this random variablemust be 
onstant almost surely [11, p. 254℄. This 
ompletes the proof.
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 Estimates of the Condition NumberIn the previous se
tion we have 
ombined a deterministi
 argument with a 
ov-ering argument. Essentially we have 
al
ulated the probability that a randomsampling set satis�es the suÆ
ient 
ondition already known from deterministi
sampling theory.In this se
tion we develop an alternative approa
h that is based on a metri
entropy argument su
h as the ones used in [12℄. This approa
h does not relyon deterministi
 sampling results and 
an therefore be adapted to other samplingmodels. On the other hand, it is diÆ
ult to keep tra
k of the 
onstants involved,and thus the results are only eÆ
ient for large sampling sets.On
e again we start with an in�nite sequen
e of i.i.d. random variables fxj : j 2Ng, ea
h of whi
h is uniformly distributed over [0; 1℄d. Our goal is to estimate thequantity Prj=1 jp(xj)j2 � rkpk22 and its distribution as a fun
tion of the number ofsampling points r.For every p 2 PM we introdu
e the random variable Yj(p) = jp(xj)j2 � kpk22. Toobtain a sampling inequality of the form Akpk22 �Prj=1 jp(xj)j2 � Bkpk22, we haveto estimate the probability distribution of the random variablesupp2PM ;kpk2=1 rXj=1 Yj(p) :This is a

omplished in the following theorem.Theorem 5.1. If fxj : j 2 Ng is a sequen
e of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then there exist 
onstants A;B > 0 depending ond and M , su
h that(34) P� supp2PM ;kpk2=1 sups�r ��� sXj=1 Yj(p)��� � �� � A exp��B �2r + ��for r 2 N and � � 0.For the distribution of a sum of random variables we use Bernstein's inequality [6℄in the following form.Proposition 5.2. Let Yj; j = 1; : : : ; r, be a sequen
e of bounded, independentrandom variables with E Yj = 0, VarYj = �2, and kYjk1 � M for j = 1; : : : ; r.Then(35) P���� rXj=1 Yj��� � �� � 2 exp�� �22r�2 + 23M�� :To apply (35) to the Yj(p), we need several simple estimates. It suÆ
es to workwith the unit ball of PM , whi
h we denote by P0 = fp 2 PM : kpk2 � 1g.



16 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGLemma 5.3. Let p; q 2 P0 and j 2 N. Then the following identities and inequali-ties hold: E Yj (p) = 0(36) VarYj(p) = kpk44 � kpk42 � D � 1 ;(37) Var (Yj(p)� Yj(q)) � 8kp� qk21 ;(38) kYj(p)k1 � kpk21 � kpk22 � (D � 1) ;(39) kYj(p)� Yj(q)k1 � 2(D1=2 + 1)kp� qk1 :(40)Proof. Sin
e ea
h xj is uniformly distributed over [0; 1℄d, we haveE (Yj (p)) = Z[0;1℄d �jp(x)j2 � kpk22� dx = 0and 
onsequently (also using (10))VarYj(p) = E [Yj (p)2℄ = Z[0;1℄d �jp(x)j2 � kpk22�2 dx= kpk44 � kpk42 � D � 1 :sin
e kpk2 = 1. Similarly, we obtainkYj(p)k1 = sup!2
 ��� jp(xj(!))j2 � kpk22��� � ���kpk21 � kpk22��� � D � 1Next, sin
e E Yj (p) = 0, we obtainVar�Yj(p)� Yj(q)� = E �(Yj(p)� Yj(q))2�= Z[0;1℄d �jp(x)j2 � jq(x)j2�2 dx� �kpk22 � kqk22�2� kp� qk21 k jpj+ jqj k22 + kp� qk22�kpk22 + kqk22�� 8kp� qk21The last estimate follows similarly fromkYj(p)� Yj(q)k1 � sup!2
 ��� jp(xj(!))j2 � jq(xj(!))j2���+ ���kqk22 � kpk22���� kp� qk1�kpk1 + kqk1� + kq � pk2�kpk2 + kqk2�� kp� qk1D1=2�kpk2 + kqk2� + kq � pk1�kpk2 + kqk2�= 2(D1=2 + 1) kp� qk1Proof of Theorem 5.1. Step 1: A Metri
 Entropy Argument. For a givenÆ > 0, we 
onstru
t a Æ-net for P0 with respe
t to the L1-norm as follows. Givenp 2 P0 with 
oeÆ
ients a = (ak)k2Zd\[�M;M ℄d and kak2 � 1, we approximate thereal and imaginary part of ea
h ak by a number Æp2D`; ` 2 Z; in other words, we
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hoose a ve
tor b of the form b = Æp2D (`+ im); `;m 2 Zd, to approximate a. Thenfor ea
h 
oordinate ak; k 2 [�M;M ℄d \ Zd, we havejak � bkj � ÆD ;and so ka� bk2 � �Dmaxk jak � bkj2�1=2 = ÆpD :Setting q(x) =Pk2IM bke2�ik�x, we obtainkp� qk1 � D1=2kp� qk2 � D1=2ka� bk2 = Æ :We denote the Æ-net of all q 2 P0 with 
oeÆ
ients of the form b = Æp2D (` +im); `;m 2 Zd; kbk2 � 1; by A(Æ). The 
ardinality of A(Æ) is estimated as follows:
ardA(Æ) = 
ard fb = Æp2D (`+ im); `;m 2 ZD; kbk2 � 1g= 
ard fk 2 Z2D : kkk2 � p2DÆ g� 
1Æ�2D :where the 
onstant 
1 � (2�)DD D2D is roughly the number of integer latti
e pointsin a ball of radius p2D in R2D .Given p 2 P0, let pj be the polynomial in A(2�j) that is 
losest to p in L1 norm,with some 
onvention for breaking ties. Sin
e kp� pjk2 ! 0, we 
an writeYj(p) = Yj(p0) + (Yj(p1)� Yj(p0)) + (Yj(p2)� Yj(p1)) + � � � :If supp2P sups�r jPsj=1 Yj(p)j � �, then either(a) sups�r jPsj=1 Yj(p)j � �=2 for some p 2 A(1); or(b) for some ` � 1 and some p 2 A(2�`) and some q 2 A(2�`+1) with kp�qk1 �3 � 2�` we have sups�r jPsj=1 �Yj(p)� Yj(q)�j � �=2(`+ 1)2.(Possibly both (a) and (b) hold.)If this were not the 
ase, thensups�r ��� sXj=1 Yj(p)��� � sups�r ��� sXj=1 Yj(p0)��� + sups�r 1X̀=1 ��� sXj=1 �Yj(p`)� Yj(p`�1)����� 1X̀=1 �2`2 = �212� < � :So far the 
onstru
tion is purely deterministi
. Now we estimate the probabilityof ea
h of the events in (a) and (b).



18 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGStep 2. For �xed p 2 A(1), the probability of the event in (a) is bounded, usingBernstein's inequality (35) and Lemma 5.3, by2 exp�� �22rVarYj(p) + 23�kYj(p)k1�� 2 exp�� �22r(D � 1) + 23(D � 1)�� :There are at most 
1 polynomials in A(1), so the probability of (a) is bounded by(41) 2
1 exp�� �2(D � 1)(2r + 23�)� :Step 3. We estimate (b) in a similar fashion using Lemma 5.3, (38) and (40).If p 2 A(2�`) and q 2 A(2�`+1) with kp� qk1 � 3 � 2�`, we haveP� sups�r j sXj=1(Yj(p)� Yj(q))j > �2(`+ 1)2�� 2 exp�� �2=4(`+ 1)4144r2�2` + 4 � 2�`D1=2�=(`+ 1)2)�� 2 exp�� 2` �2
3(r(`+ 1)42�` +D1=2�(`+ 1)2)� :There are 
12(2`�2)D trigonometri
 polynomials in A(2�`+1), and for ea
h q thenumber of trigonometri
 polynomials p 2 A(2�`) satisfying kp � qk1 � 3 � 2�` isbounded by a 
onstant 
2 independent of q and j (Similar to the 
ount in Step 1,
2 � (6�)DD D2D is roughly the number of integer latti
e points in a ball of radius3p2D in R2D ). Finally, this 
an happen for any `. So the probability in (b) isbounded by(42) 1X̀=1 2
1
22(2`�2)D exp �� 2` �2
3(r(`+ 1)42�` +D1=2�(`+ 1)2)� :Step 4. Estimate of the sum (42).Sin
e (`+1)42�` is bounded above and 2`=2=(`+1)2 is bounded below, the abovesum is bounded by(43) 1X̀=1 
4 exp�� 2`=2 �2
5(r + �) + (2`� 2)D log 2� = (?) :We distinguish two 
ases. Either(44) �2
5(r + �) � 64D ;then 2`=2 �2
5(r + �) � 2(2`� 2)D log 2; for all ` � 1 ;
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4 exp �� 2`=2 �22
5(r + �)� :Now we use the fa
t that P1̀=1 e�a`x � 
6e�x for any a > 1 and x � 1 (with 
6depending only on a). Consequently the sum in (43) is bounded by(?) � 
7 exp�� �2
8(r + �)�:In the se
ond 
ase, (44) does not hold. But then the probability of the event in (b)is at most 1 whi
h is 
ertainly less than or equal toe64D exp �� �2
8(r + �)�:In either 
ase, we have that the probability of the event in (b) is bounded by
9 exp�� �2
8(r + �)�:Step 5. The statement now follows by 
ombining the bounds for (a) and (b),and so we have(45) P� supp2P sups�r j sXj=1 Yj(p)j � �� � A exp�� B �2r + �� :Corollary 5.4. If fxj : j 2 Ng is a sequen
e of i.i.d. random variables that areuniformly distributed over [0; 1℄d and 0 < � < 1, then the sampling inequality(46) (1� �)rkpk22 � rXj=1 jp(xj)j2 � (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :Consequently with the same probability estimate the Toeplitz-type matrix T has
ondition number �(T ) � 1+�1�� and also �(U) � �1+�1���1=2Proof. Choose � = r� in Theorem 5.1 and observe that the inequality��� rXj=1 jp(xj)j2 � r��� � r�for all p 2 P0 is equivalent to the sampling inequality (46) for all p 2 PM .From Theorem 5.1 it is straightforward to obtain a law of the iterated logarithm.



20 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGCorollary 5.5. If fxj : j 2 Ng is a sequen
e of i.i.d. random variables that areuniformly distributed over [0; 1℄d, then(47) lim supr!1 supp2P jPrj=1[jp(xj)j2 � kpk22℄jpr log log r kpk22 = 
; a:s:for some 
onstant 
 2 [� 2��dD � 1;1).Proof. Let rk = 2k and �k = 2pBprk log log rk, where B is the 
onstant from (34).Let Ck = f supp2P0 sups�rk ��� sXj=1 Yj(p)��� > �kg:Then for k large enough, we have rk > �k. So the probability of Ck is bounded byP(Ck) � A exp��B �2krk + �k�� A exp��B �2k2rk�� A exp��B 4B rk log log rk2rk �= A exp�� 2 log k� = Ak2 :So P1k=1 P(Ck) < 1, and by the Borel-Cantelli lemma, the probability of Ckhappening in�nitely often is 0.If jPrj=1 Yj(p)j > 2pBpr log log r for some r, we 
hoose k so that rk�1 � r < rkand observe that Ck holds. (This is the only pla
e where we need the estimate forsups�r jPsj=1 Yj(p)j instead of just jPrj=1 Yj(p)j.) So this inequality 
annot happenfor in�nitely many r and we therefore havelim supr!1 supp2P0 jPrj=1[jp(xj)j2 � rjpr log log r � 
0; a:s:for some 
onstant 
0 > 0.For �xed p 2 P0 the 
lassi
al law of the iterated logarithm [11, p. 232℄ says thatlim supr!1 ���Prj=1 Yj(p)���p2r log log r =qVarYj(p) = kpk44 � 1; a.s.Choosing p(x) = D�1=2Pk2[�M;M ℄d\Zd e2�ik�x, we have kpk2 = 1 and the elementaryestimate kpk4 � 2�D1=4. Solim supr!1 supp2P0 jPrj=1[jp(xj)j2 � r℄jpr log log r � � 2��4D � 1 :The 
on
lusion follows as in the proof of Theorem 4.3 by applying Kolmogorov'szero-one law.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 21This result 
an be summarized by saying that for large enough r (r dependingon !) we always have the sampling inequality(48) (r�
pr log log r)kpk22 � rXj=1 jp(xj)j2 � (r+
pr log log r)kpk22 8p 2 PM :The 
ondition number of the random matrix T is therefore� � (r + 
pr log log r)=(r � 
pr log log r) � 1 + 2
� log log rpr �1=2almost surely for some 
onstant 
 of order D.6. A Universal Sampling Theorem and ExamplesThe main statements (Theorems 4.2, 5.1, Cor. 5.4) rea
h similar 
on
lusions. At�rst glan
e, Theorem 4.2 seems preferable be
ause of its elementary proof and theexpli
it 
onstants. In this se
tion we fo
us on the merits of the metri
 entropymethod. This method is extremely 
exible and works for many other samplingproblems. We formulate a general framework for �nite-dimensional sampling the-orems and derive a universal sampling theorem in the style of Corollary 5.4. Wethen will dis
uss several examples of pra
ti
al interest.To begin, we note that the proofs of Theorem 5.1 and Corollary 5.4 do not useany spe
i�
 properties of trigonometri
 polynomials. In fa
t, we have used onlythe following (interrelated) properties of PM .(a) The spa
e PM is �nite-dimensional and possesses a basis of 
ontinuous fun
-tions.(b) All norms on PM are equivalent; in the proofs we have used the normskpk2; kpk4; kpk1 and kak2 and the asso
iated equivalen
e 
onstants. As a 
onse-quen
e the RVs related to the samples jp(xj)j2 satisfy the uniform estimates ofLemma 5.3.(
) The unit ball of PM is 
ompa
t. This fa
t enables the 
onstru
tion of theÆ-nets A(Æ) and suitable estimates for their 
ardinality.It is evident that Theorem 5.1 and Corollary 5.4 
an be obtained under mu
hmore general 
onditions.A General Framework. We make the following assumptions.1. Let S � Rd be a 
ompa
t set and let � a probability measure on S withsupp � = S.2. Let B be a �nite-dimensional subspa
e of L2(S; �) with a basis fek : k =1; : : : ; Dg of 
ontinuous fun
tions. Often this basis is 
hosen as a �nite subset ofa Riesz basis for L2(S; �) and in this sense B may be interpreted as a spa
e of\band-limited" fun
tions in L2(S; �). Sin
e p = PDk=1 akek for every p 2 B, allfun
tions in B are 
ontinuous.The Sampling Problem in B. The task is now to interpolate or to approxi-mate a given data set f(xj; p(xj)) : j = 1; : : : ; rg by a fun
tion in B. As in Se
tion 2



22 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGthis amounts to solving the system of linear equationsDXk=1 akek(xj) = p(xj) = yj j = 1; : : : ; r :Let Ujk = ek(xj) and(49) Tkl = (U�U)kl = rXj=1 ek(xj)el(xj) ;then we need to solve either the r �D systemUa = yor the D �D normal equationsT a = U�Ua = U�y :Assume that we 
an prove the sampling inequality(50) Akpk22;� � rXj=1 jp(xj)j2 = hT a; ai � Bkpk22;� 8p 2 B :Inserting the norm equivalen
e �kak2 � kpk2;� � �kak2, (50) then implies theestimates(51) �(T ) � �2B�2A and �(U) � ��2B�2A�1=2for the 
ondition numbers of these matri
es. Furthermore, p 2 B is uniquelydetermined by its samples, if and only if T is invertible, or if and only if r � Dand U has full rank.We 
an now formulate our main theorem for random sampling in �nite-dimen-sional spa
es of band-limited fun
tions.Theorem 6.1. If fxj : j 2 Ng is a sequen
e of i.i.d. random variables and if ea
hxj is �-distributed over S, then there exist 
onstants A;B > 0 depending on S; �,and D, su
h that for all � 2 (0; 1), the sampling inequality(52) (1� �)rkpk22;� � rXj=1 jp(xj)j2 � (1 + �)rkpk22;� 8p 2 Bholds with probability at least 1� Ae�Br �21+� :With the same probability estimate the matrix T has 
ondition number �(T ) ��2(1+�)�2(1��) and also �(U) � ��2(1+�)�2(1��)�1=2Proof. We have already done all the work when we proved Theorem 5.1 and Corol-lary 5.4. The only minor modi�
ations o

ur in the 
onstants in Lemma 5.3and in Step 1 of the proof. We now use the RVs Yj(p) = jp(xj)j2 � kpk22;� =jp(xj)j2 � E [jp(xj )j2℄.



RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC POLYNOMIALS 23We present the following examples where the general hypotheses are satis�edand so Theorem 6.1 is appli
able. Ea
h example yields a new result on randomsampling. In some of these examples it seems to be extremely diÆ
ult to derivequantitative deterministi
 results in the style of Theorem 4.1.Example 1. Trigonometri
 Polynomials Revisited.Choose a 
losed set S � [0; 1℄d of positive Lebesgue measure and a probabilitymeasure � with supp � = S and equivalent to � on S. If p 2 PM vanishes on S,then by Lemma 3.1 p � 0 and 
onsequently kp�Sk2;� = � RS jp(x)j2 d�(x)�1=2 isequivalent to the L2-norm on PM , i.e., there exist 
onstants �; � > 0 su
h that�kpk2 � kp�Sk2;� � �kpk2 8p 2 PM :We state the 
on
lusion of Theorem 6.1 expli
itly.Theorem 6.2. Suppose that fxj : j 2 Ng � S is a sequen
e of i.i.d. random vari-ables that are �-distributed over S. Then there exist 
onstants A;B > 0 dependingon S; � and D, su
h that for all � 2 (0; 1) the sampling inequality(53) �2(1� �)rkpk22 � rXj=1 jp(xj)j2 � �2 (1 + �)rkpk22 8p 2 PMholds with probability at least 1� Ae�Br �21+� :With the same probability estimate we have �(T ) � �2(1+�)�2(1��) .Comparing with Theorem 5.1 we have been able to 
hange the distribution ofthe RVs xj and the target set S in whi
h the samples are taken.Example 2. Almost Periodi
 Fun
tions and Trigonometri
 Polynomials withArbitrary Frequen
ies. Assume that S � Rd is 
ompa
t and has positive Lebesguemeasure and that � is equivalent to � on S. Choose exponentials ei�k�x with arbi-trary frequen
ies �k 2 Rd (�k 2 Zd is the 
ase of trigonometri
 polynomials) and
onsider the subspa
e of almost periodi
 fun
tions (trigonometri
 polynomials) onS B = fp 2 L2(S) : p(x) = DXk=1 akei�k�x �S(x) :Then Theorem 6.1 applies.Example 3. Algebrai
 Polynomials. Again assume that S � Rd has positiveLebesgue measure and that � is equivalent to � on S. Choose a �nite set F �(N\f0g)d and 
onsider the spa
e of algebrai
 polynomials on a 
ompa
t set S � Rdde�ned as PF = fp 2 L2(S) : p(x) =Xk2F akx� �S(x)Thus Theorem 6.1 applies also to algebrai
 polynomials of several variables.



24 RICHARD F. BASS AND KARLHEINZ GR�OCHENIGExample 4. Lo
al Shift-Invariant Spa
es. Let � be a 
ontinuous fun
tion onRd with supp � � [��; �℄d � S: The lo
al shift-invariant spa
e V (�; S) is de�nedby V (�; S) = ff 2 L2(S) : f(x) = Xk2(S+[��;�℄d)\Zdak�(x� k)gIf we assume that 0 < a �Pk2Zd j�̂(!�k)j2 � b for all ! 2 Rd , then the translates�(x� k); k 2 Zd; form a Riesz basis for the generated subspa
e, and so any �nitesubset is linearly independent. Thus Theorem 6.1 applies. In dimension d = 1 andfor 
ertain \generators" � this model is well-understood both numeri
ally [21℄ andtheoreti
ally [1℄. In dimension d > 1, however, there are no quantitative determin-isti
 estimates. Theorem 6.1 gives the �rst hint that the numeri
al methods of [21℄also work in higher dimensions. See [2℄ for a survey of sampling in shift-invariantspa
es.Example 5. Sampling on the Sphere and Spheri
al Harmoni
s.Let Sd = fx 2 Rd+1 : jxj = 1g be the unit sphere in Rd+1 with surfa
e measure�d. We 
hoose the sequen
e J` of suitably normalized spheri
al harmoni
s [34℄ as anorthonormal basis for L2(Sd; �d) and 
onsider the spa
e of band-limited fun
tionson the sphere, namely B = fp 2 L2(Sd; �d) : p = DX̀=1 a`J`g :Then the 
on
lusions of Theorem 6.1 hold for every sequen
e of i.i.d. RVs xj on Sdwith xj being �d-distributed.REMARK: Whereas the asymptoti
 results for the distribution number hold uni-versally in �nite-dimensional ve
tor spa
es, the generalization of Theorem 3.2 ismore subtle and depends on the support properties of the basis fun
tions. Thesame proof as in Se
tion 3 shows that the system matrix T de�ned in (49) is in-vertible with probability 1 in Examples 1, 2, and 3 whenever r � D. On the otherhand, for Example 4 it 
an be shown that T is always singular with positive prob-ability. As this probability depends on the number of samples r, this observationdoes not 
ontradi
t Theorem 6.1. Referen
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