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Abstract

We give a simple technique for verifying the Restricted Isometry Property (as introduced by
Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has
two main ingredients: (i) concentration inequalities for random inner products that have re-
cently provided algorithmically simple proofs of the Johnson-Lindenstrauss lemma, (ii) covering
numbers for finite dimensional balls in Euclidean space. This leads to an elementary proof of the
Restricted Isometry Property and brings out connections between Compressed Sensing and the
Johnson-Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s the-
orems on widths of finite balls in Euclidean space (and their improvements due to Gluskin) and
proofs of the existence of optimal Compressed Sensing measurement matrices. In the process
we also prove that these measurements have a certain universality with respect to the sparsity
inducing basis.

1 Introduction

It has recently become clear that matrices and projections generated by certain random processes
provide solutions to a number of fundamental questions in signal processing [2, 8, 10]. In Com-
pressed Sensing (CS) [2, 8], for example, a random projection of a high-dimensional but sparse or
compressible signal vector onto a lower-dimensional space has been shown, with high probability,
to contain enough information to enable signal reconstruction with small or zero error.

However, random matrices and projections have also played a central role in a number of related
fields. In particular, random projections have been used as a fundamental tool in the asymptotic
theory of finite-dimensional normed spaces [18] and approximation theory [16] since the 1970s. For
example, the results of Kashin and Gluskin on n-widths [11, 14] relied heavily on random matrix
constructions. These same constructions were later applied in the study of point clouds in high-
dimensional spaces. Specifically, the well-known Johnson-Lindenstrauss (JL) lemma [13] states
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that with high probability the geometry of a point cloud is not disturbed by certain Lipschitz
mappings onto a space of dimension logarithmic in the number of points. Over the years, simplified
and sharpened forms of both the statement and proof of the JL lemma, as well as simpler and
more efficient algorithms for constructing such embeddings, have been developed using elementary
concentration inequalities for random inner products [1, 7, 9, 12].

The aims of this paper are twofold. First, we show an intimate linkage between the CS theory,
classic results on n-widths, and the JL lemma. Second, we exploit this linkage to provide simple
proofs for a fundamental CS construct, the so-called Restricted Isometry Property (RIP). In partic-
ular, we show how the elementary concentration of measure inequalities for random inner products
used in proving the JL lemma together with simple covering arguments provide a simple and direct
avenue to obtain core results for both n-widths and CS. The concentration inequalities are easy to
verify for standard probability distributions such as Bernoulli, Gaussian, and other distributions [1].

This paper is organized as follows. Sections 2 and 3 recall the appropriate results on n-widths
and CS, while Section 4 reviews the JL theory. Section 5 contains our main result relating the RIP
to the JL lemma through their common dependence on the concentration of measure phenomenon.
Section 6 concludes the paper with a brief discussion of related issues.

2 n-widths

Historically, the circle of ideas of interest to us began with the work of Kashin [14] on widths in the
late 1970s. Kashin proved fundamental results on widths in finite-dimensional spaces. To describe
his results, we recall that the `N

p norm of a vector x ∈ RN is given by

‖x‖`p := ‖x‖`N
p

:=


(∑N

j=1 |xj |p
)1/p

, 0 < p < ∞,

maxj=1,...,N |xj |, p = ∞.
(2.1)

Kashin’s results pertain to Kolmogorov widths. However, they can be equivalently stated in
terms of Gelfand widths, which are dual to the Kolmogorov widths. Given a compact set K in the
Banach space X, its Gelfand width is defined by

dn(K)X := inf
codim(Y )=n

sup
x∈K∩Y

‖x‖X . (2.2)

The best spaces Y in the sense of (2.2) are those that slice through K in the most economical
direction so as to minimize the diameter of the set K ∩ Y .

In finite-dimensional geometry, the asymptotic behavior of the Gelfand widths of the unit ball
U(`N

p ) in `N
q , dn(U(`N

p ))`N
q

are known for all 1 ≤ p, q ≤ ∞ except for the case p = 1, q = ∞.
The deepest result among these is the theorem of Kashin [14], who determined the behavior of
dn(U(`N

1 ))`N
2

. The result, when put in the final form by Gluskin and Garnaev [11], states that
there exists a constant C0 > 0 such that for all 0 < n < N we have

C−1
0

√
log(N/n) + 1

n
≤ dn(U(`N

1 ))`N
2
≤ C0

√
log(N/n) + 1

n
. (2.3)

Kashin proved only the upper bounds in (2.3) and did not achieve the best exponent in the
logarithm. It was Gluskin and Garnaev [11] who provided the lower bounds and the correct expo-
nent. Kashin’s constructions involved n×N random matrices Φ whose entries φi,j are independent
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realizations of a 0/1 Bernoulli process. Gluskin and Garnaev’s improvement used matrices with
Gaussian entries. It was not until quite recently that it was understood that the Bernoulli processes
also yield the upper bound in (2.3) [17, 19]. The paper [17] also generalizes (2.3) to an arbitrary
compact, convex body K ⊂ RN .

3 Compressed Sensing (CS)

Similar to n-widths, CS exploits the fact that many signal classes have a low-dimensional structure
compared to the high-dimensional ambient space. CS has been recently brought to the forefront
by the work of Candès, Romberg, and Tao [2] and Donoho [8], who have shown the advantages of
random projections for capturing information about sparse or compressible signals. Both groups
have noted the connection between CS and n-widths.

In the discrete CS problem, we are interested in economically recording information about a
vector (signal) x ∈ RN . We allocate a budget of n nonadaptive questions to ask about x. Each
question takes the form of a linear functional applied to x. Thus, the information we extract from
x is given by

y = Φx (3.1)

where Φ is an n×N matrix and y ∈ Rn. The matrix Φ maps RN , where N is generally large, into
Rn, where n is typically much smaller than N .

To extract the information that y holds about x, we use a decoder ∆ that maps from Rn back
into RN . The role of ∆ is to provide an approximation x̄ := ∆(y) = ∆(Φx) to x. The mapping
∆ is typically nonlinear. The central question of CS is: what are the good encoder-decoder pairs
(Φ,∆)?

To measure the performance of an encoder-decoder pair (Φ,∆), we introduce a norm ‖ · ‖X in
which we measure error. Then,

E(x,Φ,∆)X := ‖x−∆(Φx)‖X (3.2)

is the error of the encoder-decoder on x. More generally, if K is any closed and bounded set
contained in RN , then the error of this encoder-decoder on K is given by

E(K, Φ,∆)X := sup
x∈K

E(x,Φ,∆)X . (3.3)

Thus, the error on the set K is determined by the largest error on K. To address the question of
what constitute good encoder-decoder pairs, we introduce An,N := {(Φ,∆) : Φ is n × N}. The
best-possible performance of an encoder-decoder on K is given by

En,N (K)X := inf
(Φ,∆)∈An,N

E(K, Φ,∆)X . (3.4)

This is the so-called “minimax” way of measuring optimality that is prevalent in approximation
theory, information-based complexity, and statistics.

The decoder ∆ is important in practical applications of CS. In particular, we often seek de-
coders that can be efficiently implemented numerically. However, in the theoretical setting of this
paper, the role of the decoder is less important, and one could always view the decoder to be the
theoretically best one chosen for the task at hand.
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There is a simple and direct relationship between n-widths and optimal CS. If K ⊂ RN is any
set for which K = −K and for which there is a C1 > 0 such that K + K ⊂ C1K, then

dn(K)X ≤ En,N (K)X ≤ C1 dn(K)X , 1 ≤ n ≤ N. (3.5)

The proof of (3.5) is quite straightforward. Given any CS matrix Φ, we can use its null space N
as a candidate for Y in computing dn(K)X . Conversely, given any Y of codimension n used in
computing dn(K)X , we can take any basis for the orthogonal complement of Y and use these basis
vectors as the rows of a CS matrix Φ for estimating En,N (K)X . This correspondence between Y
and Φ leads easily to the proof of (3.5) (see for example [5] for the simple details).

As an example, consider the unit ball U(`N
1 ) in `N

2 . Since U(`N
1 ) + U(`N

1 ) ⊂ 2U(`N
1 ), we have

from (2.3) and (3.5) that for all 0 < n < N

C−1
0

√
log(N/n) + 1

n
≤ En,N (U(`N

1 ))`N
2
≤ 2C0

√
log(N/n) + 1

n
(3.6)

with C0 from (2.3). There are numerous variants of (3.6) where `N
1 and `N

2 are replaced by other
`N
p spaces.

One of the main problems in CS is to understand which encoder-decoder pairs (Φ,∆) provide
estimates like (3.6). Independently Donoho [8] and Candès, Romberg, and Tao [3] have given
sufficient conditions on the matrix Φ for (3.6) to hold. Both approaches show that certain random
constructions generate matrices Φ with these properties. Moreover, in both of these settings, they
show that the decoding can be accomplished by the linear program

∆(y) := argmin
x : Φx=y

‖x‖`N
1

. (3.7)

Candès and Tao [4] introduced the following isometry condition on matrices Φ and established its
important role in CS. Given a matrix Φ and any set T of column indices, we denote by ΦT the
n × #(T ) matrix composed of these columns. Similarly for a vector x ∈ RN , we denote by xT

the vector obtained by retaining only the entries in x corresponding to the column indices T . We
say that a matrix Φ satisfies the Restricted Isometry Property (RIP) of order k if there exists a
δk ∈ (0, 1) such that

(1− δk)‖xT ‖2
`N
2
≤ ‖ΦT xT ‖2

`n
2
≤ (1 + δk)‖xT ‖2

`N
2

, (3.8)

holds for all sets T with #T ≤ k. The condition (3.8) is equivalent to requiring that the Grammian
matrix Φt

T ΦT has all of its eigenvalues in [1− δk, 1 + δk] (here Φt
T denotes the transpose of ΦT ).

The “good” matrices for CS should satisfy (3.8) for the largest possible k. For example, Candès
and Tao [4] show that whenever Φ satisfies the RIP of order 3k with δ3k < 1, then

‖x−∆(Φx)‖`N
2
≤

C2σk(x)`N
1√

k
, (3.9)

where σk(x)`N
1

denotes the `1 error of the best k-term approximation, and the constant C2 depends
only on δ3k. The proof of (3.9) is quite elementary; see [2] for the original proof and [5] for this
particular formulation. Since σk(x)`N

1
≤ ‖x‖`N

1
, we see that we obtain the best possible performance

(in the sense of (3.6)) if we can find matrices that satisfy the RIP for k of the order n/(log(N/n)+1).
The question now before us is how can we construct matrices Φ that satisfy the RIP for the

largest possible range of k. For a fixed value of δk, the lower bound in (2.3) for widths combined
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with (3.9) shows that the widest range possible is k ≤ C3 n/(log(N/n) + 1). The only known
constructions yielding matrices that satisfy the RIP for this range are based on random matrices.
Basically, one shows that matrices built using random entries from certain probability distributions
will have the RIP with high probability.

It is important to note that verifying the RIP may be a difficult task. First, this property
requires bounded condition number for all submatrices built by selecting k := #(T ) arbitrary
columns. Thus, there are

(
N
k

)
such matrices to check. Second, the spectral norm of a matrix is

not generally easy to compute. In some cases, spectral norms can be bounded by using diagonal
dominance, but this will not be the case for the random constructions we are interested in because
subtle cancelations help control these norms.

The main point of this paper is to show that for certain random constructions of Φ, the RIP
follows in a simple way from the same concentration of measure inequalities for inner products
that have been employed to prove the JL lemma [1, 13], and in fact can even be viewed as a
straightforward consequence of the JL lemma.

4 The Johnson-Lindenstrauss (JL) lemma and concentration of
measure

The Johnson-Lindenstrauss (JL) lemma is concerned with the following problem. We are given a
set Q of points in RN with N typically large. We would like to embed these points into a lower
dimensional Euclidean space Rn while approximately preserving the relative distances between any
two of these points. The question is how small can we make n (relative to #(Q)) and which types
of embeddings work. The original formulation of Johnson and Lindenstrauss [13] is as follows.

Lemma 4.1 [Johnson-Lindenstrauss] Let ε ∈ (0, 1) be given. For every set Q of #(Q) points in
RN , if n is a positive integer such that n > n0 = O(ln(#(Q))/ε2), there exists a Lipschitz mapping
f : RN → Rn such that

(1− ε)‖u− v‖2
`N
2
≤ ‖f(u)− f(v)‖2

`n
2
≤ (1 + ε)‖u− v‖2

`N
2

(4.1)

for all u, v ∈ Q.

In the past several years, various improvements have been made in both the statement and the
proof of this lemma (see for example [1,7,9,12]). In particular, there are now rather simple proofs
of the lemma that show that f can be taken as a linear mapping represented by an n×N matrix
Φ whose entries are randomly drawn from certain probability distributions. A concise description
of this evolution is provided in [1].

To describe these probabilistic constructions, let (Ω, ρ) be a probability measure space and r
be a random variable on Ω. Given n and N , we can generate random matrices Φ by choosing the
entries φi,j as independent realizations of r. This yields the random matrices Φ(ω), ω ∈ ΩnN . It
was shown in [1] that, starting with any random variable satisfying certain moment conditions, for
most draws ω, the matrix Φ(ω) can be used as the function f in the JL lemma. More precisely,
given any set of points Q, with high probability the matrix f = Φ(ω) will satisfy (4.1) provided n
satisfies the conditions of the lemma.

Without going into complete detail, let us mention how one proves the JL lemma using such
random matrices. One first proves that for any x ∈ RN , the random variable ‖Φ(ω)x‖2

`n
2

has
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expected value ‖x‖2
`N
2

; that is,

E(‖Φ(ω)x‖2
`n
2
) = ‖x‖2

`N
2

. (4.2)

Next one must show that for any x ∈ RN , the random variable ‖Φ(ω)x‖2
`n
2

is strongly concentrated
about its expected value (thanks to the moment conditions); that is,

Pr(| ‖Φ(ω)x‖2
`n
2
− ‖x‖2

`N
2
| ≥ ε‖x‖2

`N
2

) ≤ 2e−nc0(ε), 0 < ε < 1, (4.3)

where the probability is taken over all n×N matrices Φ(ω) and c0(ε) is a constant depending only
on ε and such that for all ε ∈ (0, 1), c0(ε) > 0. To prove the JL lemma one then applies (4.3) using
the union bound to the set of differences between all possible pairs of points in Q.

The study of concentration of measure inequalities like (4.3) is an important subject in prob-
ability and analysis. There is now a vast literature on this subject that is described in [15]. The
proof of the RIP given in the next section can begin with any random matrices that satisfy (4.3).
However, in the case of CS, it is of interest to have specific examples for which one can easily
establish (4.3) and for which there are reasonable bounds on the constants. We point out some
examples of this type.

Perhaps the most prominent example is the n × N random matrices Φ whose entries φi,j are
independent realizations of Gaussian random variables

φi,j ∼ N
(

0,
1
n

)
. (4.4)

The verification of (4.3) with c0(ε) = ε2/4−ε3/6 is elementary using tail bounds for Gamma random
variables (see [1]).

One can also use matrices where the entries are independent realizations of ± Bernoulli random
variables

φi,j :=

{
+ 1√

n
with probability 1

2 ,

− 1√
n

with probability 1
2 ,

(4.5)

or related distributions such as

φi,j :=


+

√
3
n with probability 1

6 ,

0 with probability 2
3 ,

−
√

3
n with probability 1

6 .

(4.6)

Again these matrices satisfy (4.3) with c0(ε) = ε2/4 − ε3/6 which is proved in [1] and can also be
simply derived from Hoeffding’s inequality (see [6]).

5 Verifying the RIP from concentration inequalities

We shall now show how the concentration of measure inequality (4.3) can be used together with
covering arguments to prove the RIP for random matrices. To begin, we restrict our attention to
the action of random Φ matrices on fixed k-dimensional subspaces. Specifically, given any set of
indices T with #T ≤ k, denote by XT the set of all vectors in RN that are zero outside of T . This
is a k-dimensional linear space to which we endow the `2 norm.
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Our general approach will be to construct nets of points in each k-dimensional subspace, apply
(4.3) to all of these points through a union bound, and then extend the result from our finite set of
points to all possible k-dimensional signals. This approach is a common strategy in analysis and
probability. A similar construction is used, for example, in modern proofs of Dvoretsky’s Theorem
(see [15,18]). In our case, we have to add a certain bootstrapping argument to handle the fact that
we do not begin with a favorable bound on the norm of Φ on these finite dimensional spaces (in
fact we are trying to derive one).

Lemma 5.1 Let Φ(ω), ω ∈ ΩnN be a random matrix of size n × N drawn according to any dis-
tribution that satisfies the concentration inequality (4.3). Then, for any set T with #(T ) = k < n
and any 0 < δ < 1, we have

(1− δ)‖x‖`N
2
≤ ‖Φ(ω)x‖`n

2
≤ (1 + δ)‖x‖`N

2
, for all x ∈ XT (5.1)

with probability
≥ 1− 2(12/δ)k e−c0(δ/2)n. (5.2)

Proof: First note that it is enough to prove (5.1) in the case ‖x‖`N
2

= 1, since Φ is linear.
Next, we choose a finite set of points QT such that QT ⊆ XT , ‖q‖`N

2
≤ 1 for all q ∈ QT , and for all

x ∈ XT with ‖x‖`N
2
≤ 1 we have

min
q∈QT

‖x− q‖`N
2
≤ δ/4. (5.3)

It is well known from covering numbers and easy to prove (see for example Chapter 13 of [16]) that
we can choose such a set QT with #(QT ) ≤ (12/δ)k. We next use the union bound to apply (4.3)
to this set of points with ε = δ/2, with the result that, with probability exceeding the right side of
(5.2), we have

(1− δ/2)‖q‖2
`N
2
≤ ‖Φq‖2

`n
2
≤ (1 + δ/2)‖q‖2

`N
2

, for all q ∈ QT , (5.4)

which trivially gives us

(1− δ/2)‖q‖`N
2
≤ ‖Φq‖`n

2
≤ (1 + δ/2)‖q‖`N

2
, for all q ∈ QT . (5.5)

We now define A as the smallest number such that

‖Φx‖`n
2
≤ (1 + A)‖x‖`N

2
, for all x ∈ XT , ‖x‖`N

2
≤ 1. (5.6)

Our goal is to show that A ≤ δ. For this, we recall that for any x ∈ XT with ‖x‖`N
2
≤ 1, we can

pick a q ∈ QT such that ‖x− q‖`N
2
≤ δ/4. In this case we have

‖Φx‖`n
2
≤ ‖Φq‖`n

2
+ ‖Φ(x− q)‖`n

2
≤ 1 + δ/2 + (1 + A)δ/4. (5.7)

Since by definition A is the smallest number for which (5.6) holds, we obtain A ≤ δ/2+(1+A)δ/4.
Therefore A ≤ 3δ/4

1−δ/4 ≤ δ, as desired. We have proved the upper inequality in (5.1). The lower
inequality follows from this since

‖Φx‖`n
2
≥ ‖Φq‖`n

2
− ‖Φ(x− q)‖`n

2
≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ, (5.8)

which completes the proof. 2

7



Theorem 5.2 Suppose that n, N , and 0 < δ < 1 are given. If the probability distribution generat-
ing the n×N matrices Φ(ω), ω ∈ ΩnN , satisfies the concentration inequality (4.3), then there exist
constants c1, c2 > 0 depending only on δ such that the RIP (3.8) holds for Φ(ω) with the prescribed
δ and any k ≤ c1n/ log(N/k) with probability ≥ 1− e−c2n.

Proof: We know that for each of the k dimensional spaces XT , the matrix Φ(ω) will fail to
satisfy (5.1) with probability

≤ 2(12/δ)ke−c0(δ/2)n. (5.9)

There are
(
N
k

)
≤ (eN/k)k such subspaces. Hence, the RIP (5) will fail to hold with probability

≤ 2(eN/k)k(12/δ)ke−c0(δ/2)n = e−c0(δ/2)n+k[log(eN/k)+log(12/δ)]+log(2). (5.10)

Thus, for a fixed c1 > 0, whenever k ≤ c1n/ log(N/k), we will have that the exponent in the
exponential on the right side of (5.10) is ≤ −c2n provided that c2 > c0(δ/2) − c1[1 + (1 +
log(12/δ))/ log(N/k)]. Hence, we can always choose c1 > 0 sufficiently small to ensure that c2 > 0.
This proves the theorem. 2

From the validity of the theorem for the range of k ≤ c1n/ log(N/k), one can easily deduce its
validity for k ≤ c′1n/[log(N/n) + 1] for c′1 > 0 depending only on c1.

6 Discussion

In the proof of Lemma 5.1, we directly applied (4.3) to the set of points QT . An alternative way
to derive this result would have been to simply add the origin to our set QT and then apply the JL
lemma. This would have yielded a similar result with only slightly worse constants (since the JL
lemma seeks to preserve not only the norms, but also the interpoint distances). While we find our
direct approach to be somewhat simpler, this alternative proof clearly illustrates that the RIP can
be thought of as a straightforward consequence of the JL lemma, and that any distribution that
yields a satisfactory JL-embedding will also generate matrices satisfying the RIP.

Furthermore, we prove above that the RIP holds for Φ(ω) with high probability when the matrix
is drawn according to one of the distributions (4.4), (4.5), or (4.6). However, we are often interested
in signals that are sparse or compressible in some orthonormal basis Ψ 6= I, in which case we would
like the RIP to hold for the matrix Φ(ω)Ψ. In this setting it is easy to see that by choosing our
net of points in the k-dimensional subspaces spanned by sets of k columns of Ψ, Theorem 5.2 will
establish the RIP for Φ(ω)Ψ for each of the distributions (4.4), (4.5), and (4.6). This universality of
Φ with respect to the sparsity-inducing basis is an attractive feature that is known for the Gaussian
distribution (4.4) (based on symmetry arguments), but to our knowledge the universality of the
distributions (4.5) and (4.6) has not been previously shown. Indeed, we see that any distribution
satisfying a concentration inequality analogous to that of (4.3) will provide both the canonical RIP
and the universality with respect to Ψ. More generally, it follows that with high probability such
a Φ will simultaneously satisfy the RIP with respect to an exponential number of fixed bases.

In addition to streamlining the proofs underlying the theories of n-widths and CS, the bridge to
the JL lemma could enable new lines of research. For instance, simplifying the verification that a
random matrix Φ satisfies the RIP could aid the design of new kinds of CS measurement systems.
One promising direction is towards new CS Φ that can be efficiently applied to vectors x, since a
major application of the JL lemma has been in large database systems where efficiency is critical [1].
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For example, the random matrix defined by (4.6) requires 2/3 fewer additions and multiplies than
either (4.5) or (4.4).
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