
Chapter 7

Accessible information

In this chapter we prove our first important result in quantum information
theory, namely Holevo’s bound. This is a general bound on the information
on the preparation of a mixed state, that can be extracted from the mixed
state by a measurement process. We will see in a later chapter that it has an
important applications in channel coding theory.

7.1 Notion of accessible information

We argued in chapter 2 that non-orthogonal quantum states are not perfectly
distinguishable. The Holevo bound quantifies this statement. Suppose a
system with Hilbert space H is prepared in a mixed state {px, ρx} where ρx

are density matrices (hence the preparation of the system is a mixture of
mixed states). The total density matrix of the system is

ρ =
∑

x

pxρx

We imagine that Alice has prepared the mixture {px, ρx} but gives only ρ to
Bob who wants to extract information about the preparation by performing
measurements on ρ. Let us formalize the problem.

• The preparation of Alice is described by a classical random variable X
taking value x with Prob(X = x) = px.

For example Alice flip a coin: if Face is obtained with pF = 1
2

she
prepares a photon in state ρF = |0〉〈0|, while if Tail is obtained with
pT = 1

2
she prepares a photon in state ρT = 1√

2
(|0〉+ |1〉)( 1√

2
(〈0|+ 〈1|).
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• Bob is given ρ =
∑

x pxρx but does not know the preparation {px, ρx}.
He has full access to ρ in the sense that he can manipulate and measure
the state.

In the example

ρ =
1

2
|0〉〈0|+ 1

2

1√
2
(|0〉+ |1〉)( 1√

2
(〈0|+ 〈1|)

=
3

4
|0〉〈0|+ 1

4
|0〉〈1|+ 1

4
|1〉〈0|+ 1

4
|1〉〈1|

=

[
3
4

1
4

1
4

1
4

]
• Bob makes measurements with an apparatus corresponding to a mea-

surement basis {Py} where P 2
y = Py are projectors and

∑
y Py = 1.

The outcome of the measurement is a random variable Y such that

Prob(Y = y|X = x) = TrρxPy (= py|x)

This follows by the measurement postulate. We can now define a joint
probability distribution

Prob(X = x, Y = y) = pxpy|x = pxTrρxPy (= px,y)

and the marginal

Prob(Y = y) =
∑

x

pxTrρxPy = TrρPy (= py)

Note that the last equation also follows directly from the measurement
postulate applied to ρ.

In the example, suppose that Bob uses the canonical basis {|0〉〈0|; |1〉〈1|}.
For the conditional distribution one obtains

py|x =

[
0 1

2

0 1
2

]
, (7.1)

for the joint distribution

px,y =

[
1
2

1
4

0 1
4

]
, (7.2)

and for the marginal

py =

[
3
4
1
4

]
. (7.3)
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• The mutual information I(X;Y ) defined from px,y is the information
about X that Bob can extract from ρ by his measurements outcomes Y .
We define the accessible information as the maximum possible mutual
information obtained by the best possible measurement

Acc({px, ρx}) = sup{Py}I(X;Y )

In the example we have H(X) = ln 2, H(Y ) = ln 4 − 3
4
ln 3 and

H(X, Y ) = 3
2
ln 2. Thus for the particular measurement in the canoni-

cal basis I(X;Y ) = 3
2
ln 2− 3

4
ln 3 = 0.215. This equals 0.31 ln 2 so Bob

retrieves 0.31 bits from this type of measurement. He can do better
by choosing a more clever basis but, since the states ρF and ρT are
not perfectly distinguishable, his accessible information will always be
strictly smaller than 1 bit (the entropy of X). An interesting question
partly answered in the next paragraph is : how much smaller is it ?

Note that if ρx are pure orthogonal states they form a subset of a basis
of the Hilbert space. Thus by choosing this basis as a measurement basis
Bob gets Y = X so that I(X;Y ) = H(X). This means that a mixture
of orthogonal states behaves as a classical probability distribution and
can be perfectly known by suitable measurements.

7.2 The Holevo bound

In general it is very difficult to compute the supremum over all possible
measurement basis, involved in the definition of the accessible information.
Holevo (following pioneering works of Gordon and levitin) gave a bound
which gives us an estimate that is independent measurement basis. In gen-
eral this bound is loose and is not achievable by a measurement basis. The
achievability holds for special mixtures, as briefly discussed in the next para-
graph, and plays an important role in channel coding theorems.

Theorem [Holevo bound]. Let X be a classical random variable {px =
Prob(X = x)} and {px, ρx} a mixture of mixed quantum states. Let Y
be the random variable describing outcomes of measurements on the state
ρ =

∑
x pxρx in the basis {Py} (these can be measuerements of any observable

that has the spectral decomposition A =
∑

y ayPy). Then

I(X;Y ) ≤ χ({px, ρx}), so also Acc({px, ρx}) ≤ χ({px, ρx})

where
χ({px, ρx}) = S(ρ)−

∑
x

pxS(ρx)
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In the example ρF and ρT are pure so their individual entropies vanish,
and χ({px, ρx}) = S(ρ). The eigenvalues of ρ are ρ± = 1

2
±

√
2

4
. So the von

Neuman entropy is

S(ρ) = −(
1

2
+

√
2

4
) ln(

1

2
+

√
2

4
)− (

1

2
−
√

2

4
) ln(

1

2
−
√

2

4
) = 0.41 = 0.59 ln 2

We can conclude that there are no measurements that would retrieve more
than 0.59 bits of information from X. Exercise: compute Acc({px, ρx}).

Proof of the Holevo Bound. Bob is given the mixed state ρQ =
∑

x pxρx

which we view as a state belonging to HQ. We introduce a larger Hilbert
space HX ⊗HQ ⊗HY and a state

ρXQY =
∑

x

px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|

The interpretation of this state is as follows: |x〉〈x| are mutual orthogonal
states describing Alice’s preparation (or r.v X) and |0〉〈0| is a blank state
where Bob will record his measurement outcomes. Note that dimHX =
number of values of x, dimHQ is the dimension of the Hilbert space in which
Bob’s state lives (e.g 2 if this is a single Qbit) and dimHY = dimHQ since
HY records the measurement outcomes. For the measurement basis of Bob
we take {Py = |y〉〈y|}.

We introduce the unitary operation

UXQY = Id⊗ UQY

where
UQY |φ〉Q ⊗ |a〉Y =

∑
y

Py|φ〉Q ⊗ |a⊕ y〉Y

Here a⊕ y is computed modulo dimHY . Let us check that this is a unitary
operation. We have

〈ψ| ⊗ 〈b|U †
QYUQY |φ〉 ⊗ |a〉 =

∑
y,y′

〈ψ|Py′ ⊗ 〈b⊕ y′|Pyφ〉 ⊗ |a⊕ y〉

=
∑
y,y′

〈ψPy′Py|φ〉〈b⊕ y′|a⊕ y〉

=
∑
y,y′

δy,y′〈ψPy|φ〉〈b⊕ y|a⊕ y〉

= 〈ψ|φ〉〈b|a〉

Thus Id⊗ UQY preserves the inner product and is unitary.
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Now we define

ρ′XQY = UXQY ρXQYU
†
XQY =

∑
x,y,y′

px|x〉〈x| ⊗ PyρxPy′ ⊗ |y〉〈y′|

The two density matrices ρXQY and ρ′XQY have the same eigenvalues (since
they are unitarily related) therefore their von Neumann entropies are the
same

S(ρXQY ) = S(ρ′XQY )

The two partial density matrices

ρQY = TrXρXQY =
∑

x

pxρx ⊗ |0〉〈0| = ρ⊗ |0〉〈0|

and
ρ′QY = TrXρ

′
XQY =

∑
x

pxPyρxPy ⊗ |y〉〈y′|

are also unitarily related because of the tensor product form of UXQY =
Id⊗ UQY . Thus we also have

S(ρQY ) = S(ρ′QY )

From the strong subadditivity

S(ρ′XQY )− S(ρ′QY ) ≤ S(ρ′XY )− S(ρ′Y ),

thus we get
S(ρXQY )− S(ρQY ) ≤ S(ρ′XY )− S(ρ′Y ).

The rest of the proof is a computation of all the entropies appearing in
this last inequality. For the first one we have

S(ρXQY ) = S
(∑

x

px|x〉〈x| ⊗ ρx

)
To compute this entropy we use the spectral decomposition ρx =

∑
ax
λax|ax〉〈ax|.

Then ∑
x

px|x〉〈x| ⊗ ρx =
∑
x,ax

pxλax|x〉〈x| ⊗ |ax〉〈ax|

Since this is a convex combination of mutualy orthogonal states we have that
its entropy is

−
∑
x,ax

pxλax ln pxλax = H(X)−
∑

x

px

∑
ax

λax lnλax (7.4)

= H(X) +
∑

x

pxS(ρx)
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Thus
S(ρXQY ) = H(X) +

∑
x

pxS(ρx)

For the second entropy since ρQY = ρ⊗ |0〉〈0| we simply have

S(ρQY ) = S(ρ).

For the third one, we first compute the reduced density matrix

ρ′XY = Trρ′XQY =
∑
x,y,y′

px|x〉〈x| ⊗ |y〉〈y′|TrQPyρxPy′

By the cyclicity of the trace

TrQPyρxPy′ = TrQPy′Pyρx = δyy′TrQPyρx = δyy′py|x

Thus we find
ρ′XY =

∑
x,y

px,y|x〉〈x| ⊗ |y〉〈y|

The states |x〉〈x| ⊗ |y〉〈y| are mutualy orthogonal (so they can be perfectly
distinguished, fo example by performing measurements in a basis containing
them). Thus this density matrix is just another representation for the random
variable (X, Y ). The von Neumann entropy is

S(ρ′XY ) = H(X, Y )

Now it remains to compute the last entropy S(ρ′Y ). We have

ρ′Y = Trρ′XY =
∑
x,y

px,y|y〉〈y| =
∑

y

py|y〉〈y|

therefore
S(ρ′Y ) = H(Y )

Collecting all these entropies and replacing them in the strong subaddi-
tivity inequality we obtain

H(X) +
∑

x

pxS(ρx)− S(ρ) ≤ H(X, Y )−H(Y )

which is the same as

I(X;Y ) ≤ S(ρ)−
∑

x

pxS(ρx) = χ(X; ρ)

This ends the proof of Holevo’s bound.
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7.3 Remarks on the achievability of Holevo’s

bound

Given a measurement basis {Py} we have

I(X;Y ) =H(Y )−H(Y |X)

=−
∑

y

(TrPyρ) ln(TrPyρ) +
∑

x

px

∑
y

(TrPyρx) ln(TrPyρx)

The Holevo bound states that for any {Py} this expression is less than

S(ρ)−
∑

x

pxS(ρx)

In general, given a mixture {px, ρx} it is difficult to assess if there exists a
measurement basis {Py} such that the bound is achieved. A positive answer
can be given in special important cases.

For a mixture of pure states {px, |φx〉〈φx|} and a measurement basis Py =
|y〉〈y| we have

I(X;Y ) =−
∑

y

(∑
x

px|〈y|x〉|2) ln(
∑

x

px|〈y|x〉|2
)

+
∑

x

px

∑
y

|〈y|x〉|2 ln |〈y|x〉|2

If we have a mixture of orthonormal states and we choose a measurement
basis containing all these states we find

I(X;Y ) = H(X)

But since S(ρ) ≤ H(X)+
∑

x pxS(ρx) (a general bound proved in chapter 6)
we always have

χ(px; ρx) ≤ H(X)

Therefore we see that the equality is achieved for mixtures of orthonormal
states, by a measurement basis containing these states. This result is an
expression of the fact that orthonormal states can be perffectly distinguished:
we gain the maximum possible amount of mutual information by doing the
right measurements.

These arguments can be generalized to the case of a mixture such that
the density matrices ρx are mutually orthonormal in the sense that

Trρxρx′ = 0, x 6= x′
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This means that for no zero eigenvalues the eigenprojectors of ρx and ρx′ are
mutually orthogonal. If we set ρx =

∑
j λjPj,x for the spectral decomposition,

we have (for non zero λj’s)

TrPj,xPj′,x′ = δj,j′δx,x′

This can be checked by replacing the spectral decompositions of the density
matrices in the trace and noting that all terms in the sum are non-negative.
We leave it as an exercise for the reader to check that if the measurement
basis {Py} contains {Pj,x} one gets

I(X;Y ) = S(ρ)−
∑

x

pxS(ρx)

Summarizing, when the density matrices are mutually orthogonal, the Holevo
bound can again be attained by an appropriate measurement basis.

This last fact has an important application in channel coding as we will
see in chapter 8. There one shows that in a high dimensional Hilbert space
H⊗, n → ∞ it is possible to show the existence of mixed tensor product
states that are mutualy orthogonal,

Tr(ρx1 ⊗ · · · ⊗ ρxn)(ρx′
1
⊗ · · · ⊗ ρx′

n
) = 0

The proof uses the probababilistic method, in the spirit of Shannon’s theory.


