Exercises september 25, 2009. Quantum Information Theory and Computation.

Problem 1. Polarisation measurements and uncertainty relation.

If we pass photons through a polariser at an angle θ they are prepared in the state $|\theta\rangle = \cos \theta |x\rangle + \sin \theta |y\rangle$. We are going to analyse them with two different analysers: one at an angle α and the other at an angle β . A detector records the photons just after the analyser. For the analyser α we record the number $p_{\alpha} = \pm 1$ according to the fact that a photon is detected or not detected. For the analyser β we record the number $p_{\beta} = \pm 1$ according to the fact that a photon is detected or not detected.

a) Compute the probabilities of detection and non detection, $Prob(p_{\alpha} = \pm 1)$ and $Prob(p_{\beta} = \pm 1)$ for both analysers.

b) Compute the expectation value and variance of the random variables p_{α} , p_{β} .

c) Consider now the "observables" $P_{\alpha} = (+1)|\alpha\rangle\langle\alpha| + (-1)|\alpha_{\perp}\rangle\langle\alpha_{\perp}|$ and $P_{\beta} = (+1)|\beta\rangle\langle\beta| + (-1)|\beta_{\perp}\rangle\langle\beta_{\perp}|$. Check that the expectation and variance of $p_{\alpha,\beta}$ are equal to (here $\phi = \alpha, \beta$)

$$Exp[p_{\phi}] = \langle \theta | P_{\phi} | \theta \rangle, \qquad Var[p_{\phi}] = \langle \theta | P_{\phi}^2 | \theta \rangle - \langle \theta | P_{\phi} | \theta \rangle^2$$

d) Compute the commutator $[P_{\alpha}, P_{\beta}] = P_{\alpha}P_{\beta} - P_{\beta}P_{\alpha}$. Check that Heisenberg's uncertainty principle is satisfied for any $|\theta\rangle$.

$$\Delta P_{\alpha} \Delta P_{\beta} \ge \frac{1}{2} |\langle \theta | [P_{\alpha}, P_{\beta}] | \theta \rangle|$$

Here $\Delta P = (Var[p])^{1/2}$.

Remark: you can write the matrices corresponding to P_{α} and P_{β} in the computational basis to see how they look like. But the above calculations are more easily done directly in Dirac notation instead of matrix form.