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Problem 1. (a) Given the observation (y1, y2), the maximum likelihood receiver com-
putes for each hypothesis x

score(x) = p((y1, y2)|x) = p(y1|x)p(y2|y1, x)

and chooses the x with the highest score. If p(y2|y1, x) = p(y2|y1), then

score(x) = p(y1|x)p(y2|y1).

Since the factor p(y2|y1) is common to the score of each x, the ranking of the x’s will
not change if it is based on the modified score

score′(x) = p(y1|x).

As score′ can be computed from y1 alone, the receiver does not need y2 to make its
decision.

(b) (i). With Y1 = X+N1, Y2 = X+N2, Y3 = X+N1 +N2 with independent X,N1, N2,

Pr(Y3 ≤ y3|Y1 = y1, X = x) = Pr(X +N1 +N2 ≤ y3|Y1 = y + 1, X = x)

= Pr(N2 ≤ y3 − y1|Y1 = y1, X = x)

= Pr(N2 ≤ y3 − y1) (*)

= Pr(Y3 ≤ y3|Y1 = y1)

where (*) follows from the independence of N2 from X and N1. Thus, p(y3|y1, x) =
p(y3|y1) and we conclude that y3 is irrelevant given only y1.

(ii). Given Y1 and Y2, the knowledge of Y3 would let us determine X exactly as
X = Y1 + Y2 − Y3. Such exact determination is in general not possible from Y1 and
Y2 alone, so Y3 is not irrelevant.

Under special circumstances the pair Y1, Y2 may determine X exactly, and Y3 is
irrelevant. Some examples: (1) X is a constant; (2) N1 = 0 with probability 1;
or perhaps more interestingly, (3) X takes only values in {0, 1, 2, 3, 4, 5}, N1 takes
only values in even integers and N3 is always a multiple of 3, then, from Y1 we
know (X mod 2), from Y2 we know (X mod 3), so we can find (X mod 6) and thus
determine X.

(c) The conditional cumulative distribution of Y2,

Pr(Y2 ≤ y2|Y1 = y1, X = x) = Pr(N2 ≤ y2 − x)

is a function that depends on the value of x. If P (Y2 ≤ y2|Y1 = y1, X = x) were equal
to P (Y2 ≤ y2|Y1 = y1) this would not have been the case. So, Y2 is not irrelevant.



(d) Observe that

logP (y1, y2|x) = logPN1(y1 − x) + logPN2(y2 − x) = −
[
|y1 − x|+ |y2 − x|

]
− log 2.

Thus the optimum decision rule is
+1 |y1 − 1|+ |y2 − 1| < |y1 + 1|+ |y2 + 1|
−1 |y1 − 1|+ |y2 − 1| > |y1 + 1|+ |y2 + 1|
either |y1 − 1|+ |y2 − 1| = |y1 + 1|+ |y2 + 1|

=


+1 g(y1) + g(y2) > 0

−1 g(y1) + g(y2) < 0

either g(y1) + g(y2) = 0

with

g(y) = |y + 1| − |y − 1|

=


−2 y < −1

2y −1 ≤ y ≤ 1

+2 y > 1.

The decision regions are shown in the figure
with the gray zones indicating the when the
decision is arbitrary.

(+1, +1)

(−1,−1)

Decide +1

Decide −1

(e) Since the rule agrees with the rule derived in part (d) it is optimum for the case of
equally likely messages. By symmetry, the probability of error can be computed as
P (error) = P (error|X = −1), with is the same as

Pr(Y1 + Y2 ≥ 0|X = −1) = Pr(N1 +N2 ≥ 2).

Writing the above as ∫
pN1(n1)P (N2 > 2− n1) dn1,

observing that

P (N2 > x) =

{
exp(−x)/2 x ≥ 0

1− exp(x)/2, x < 0,

and substituting pN1(x) = exp(−|x|)/2, lets us evalute the error probability as
3 exp(−2)/4.

(f) The MAP rule is given by decision = arg max
x∈{+1,−1}

P (y1, y2|x)p(x),

which, with q = Pr(X = +1), simplifies to
+1 g(y1) + g(y2) > log((1− q)/q)
−1 g(y1) + g(y2) < log((1− q)/q)
either g(y1) + g(y2) = log((1− q)/q)

With q > 1/2, this has the effect of eliminat-
ing the gray zone, and shrinking the decision
region for X = −1 as shown.
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Problem 2.
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. The whitening filter will be

W (D) =
1− 2−1D−2

a+ bD−1
.

This anti casual filter will lead to a casual channel at the output of the whitening filter,
one could also consider the filter

W (D) =
1− 2−1D2

a+ bD1
.

which is casual, which means its implementable, and will lead to a anti causual channel at
its output. Both answers are acceptable.

Problem 3. (a) As the constellation has M points in N = M dimensions is spectral
efficiency is log2(M)/N = log2(M)/M . The energy per bit is Eb = E/ log2M .

(b) The distance between signals i and j with i 6= j is

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉 = 2E − 2Eδij = 2E

So the distance between any two points is
√

2E . Thus, d2
min = 2E , and since for any

constellation point i all the other (M − 1) points are at this distance, each point has
(M − 1) nearest neighbors.

(c) If signal i is sent, an error will be made if the received point is closer to some other
point j. Thus,

Pr(Error|i) = Pr(∪j 6=iEij|i) ≤
∑
j 6=i

Pr(Eij|i)

where Eij is the event that the received point lies closer to j than i. Since

Pr(Eij|i) = Q(dij/(2σ)) = Q(
√
E/(2σ2))

we find that

Pr(Error) ≤ (M − 1)Q
(√ E

2σ2

)
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(d) Writing E = (log2M)Eb, and using Q(x) ≤ (2πx2)−1/2 exp(−x2/2), we find

Pr(Error) ≤MQ(
√

(Eb/2σ2) log2M)

≤M exp
(
− Eb

4σ2
log2M

)
/
√
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≤ exp
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)
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√
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Observe now that if Eb/σ
2 > 4 ln 2, the term in square brackets is positive and as M

gets large the right hand side goes to zero exponentially fast in logM .

Note that this result is shows that for reliable communication (i.e., to make Pr(Error)
as small as we wish), it is not necessary to use larger and large amounts of enery per
bit. As long as the amount of energy we use is larger than a fixed threshold (in our
derivation 4σ2 ln 2) the error probability can be made arbitrarily small. With a more
careful derivation we can improve this threshold to 2σ2 ln 2, in fact this turns out to
be best possible.

The spectral efficiency in the limit of large M is (log2M)/M which approaches zero.

Problem 4. (a) The bandwidth of ŝ is the same as the bandwidth of p. The minimum
bandwith pulse p that avoids intersymbol interference is the sinc pulse of bandwidth
1/(2T ) = 0.5 MHz

(b) With p(t) = sinc(t/T ), being real

s(t) = Re
{∑

k

p(t− kT )xke
j2πfct

}
=
∑
k

p(t− kT ) Re
{
xke

j2πfct
}

=
∑
k

p(t− kT )
[
Re{xk} cos(2πfct)− Im{xk} sin(2πfct)

]
=
∑
k

Re{xk}p(t− kT ) cos(2πfct)−
∑
k

Im{xk}p(t− kT ) sin(2πfct)
]
.

This would be of the form∑
k

Re{xk}pI(t− kT ) +
∑
k

Im{xk}pQ(t− kT )

with pI(t) = p(t) cos(2πfct) and pQ(t) = −p(t) sin(2πfct) if fcT is an integer (so that
cos(2πfc(t− kT )) = cos(2πfct) and similarly for the sin()).

(c) Observe that ŝ occupies bandwidth [−0.5, 0.5] MHz, so ŝ(t)ej2πfct occupies bandwith
[fc − 0.5, fc + 0.5]. We need to ensure that this lies in [0, 50] MHz, so, fc needs to lie
between 0.5 MHz and 49.5 MHz.

(d) Observe that (h ∗ s)(t) = s(t) and it occupies frequencies f with |f | ∈ [fc − 0.5, fc +
0.5] MHz. The total bandwidth occupied by the signal is 2 MHz (taking into account
both positive and negative f ’s). Thus the total noise power in these bands is 2 MHz×
0.5× 10−11 W/Hz = 10−5 W, making the signal to noise ratio 105. We thus have

d2(M − 1)/6 = 105σ2,
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equivalently
[d/(2σ)]2 = 1.5× 105/(M − 1) (*)

Using the hint, to upper bound the probability of error by 10−7 it suffices to ensure
4Q(d/(2σ)) ≤ 10−7, which requires a d/(2σ) slightly larger than 5.45. Plugging this
in to (∗) gives M = 5051 as the maximum possible size of a M-QAM constellation.
Requiring M to be the square of an even number makes M = 702 = 4900 as the
size of largest M-QAM constellation that satisfies the error probability requirement.
Since each constellation points carries log2(M) = 12.25 bits of information, the data
rate is R = 12.25 Mbit/s.

(e) The bandwidth occupied by ŝ is [−1/(2T ), 1/(2T )] is an interval of length 1/T . If the
signal s is to fit in [−50, 50] MHz we then require the bandwidth of ŝ to occupy at
most an interval of size 50 MHz, which constraints T ≥ 20nsec. Denoting B = 1/T ,
and mesuring it in MHz, the computation just as in part (d) above gives the signal
to noise ratio as 105/B. Also just as above, we find that we need

1.5× 105

B(M − 1)
≥ (5.45)2

which limits M to 1 + 5050/B (ignoring the square of an even number constraint).
The data rate is thus

R = (1/T ) log2M = B log2(1 + 5050/B),

which is an increasing function of B, and thus is attained at the largest possible value
of B which is 50. Thus corresponding M = 102, T = 20ns, and R = 333 Mbits/s. (If
we set M = 100 to make it equal an even square, we get R = 332 Mbits/s.)
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