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Chapter 1

Introduction and Objectives

The evolution of communication technology during the past few decades has been im-
pressive. In spite of an enormous progress, many of the challenges still lay ahead of us.
While any prediction of the next big technological revolution is likely to be wrong, it is
safe to say that communication devices will become smaller, lighter, more powerful, more
integrated, more ubiquitous, and more reliable than they are today. Perhaps one day the
input/output interface and the communication/computation hardware will be separated.
The former will be the only part that we will carry on us and it will communicate wire-
lessly with the latter. Perhaps the communication/computation hardware will be part of
the infrastructure. It will be built into cars, trains, airplanes, public places, homes, offices,
etc. With the input/output device that we carry around we will have virtually unlimited
access to communication and computation facilities. Search engines may be much more
powerful than they are today, giving instant access to any information digitally stored.
The input/output device may contain all of our preferences so that, for instance, when we
sit down in front of a computer, we see the environment that we like regardless of location
(home, office, someone else’s desk) and regardless of the hardware and operating system.
The input device may also allow us to unlock doors and make payments, making keys,
credit cards, and wallets obsolete. Getting there will require joint efforts from almost all
branches of electrical engineering, computer science, and system engineering.

In this course we focus on the system aspects of digital communications. Digital commu-
nications is a rather unique field in engineering in which theoretical ideas have had an
extraordinary impact on actual system design. Our goal is to get acquainted with some of
these ideas. Hopefully, you will appreciate the way that many of the mathematical tools
you have learned so far will turn out to be exactly what we need. These tools include
probability theory, stochastic processes, linear algebra, and Fourier analysis.

We will focus on systems that consist of a single transmitter, a channel, and a receiver as
shown in Figure 1.1. The channel filters the incoming signal and adds noise. The noise
is Gaussian since it represents the contribution of various noise sources.1 The filter in

1Individual noise sources do not necessarily have Gaussian statistics. However, due to the central limit
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2 Chapter 1.

-i Transmitter
si(t)
- Linear

Filter
- lY (t)

- Receiver - î
6

Noise
N(t)

Figure 1.1: Basic point-to-point communication system over a bandlimited Gaussian chan-
nel.

the channel model has both a physical and a conceptual justification. The conceptual
justification stems from the fact that most wireless communication systems are subject to
a license that dictates, among other things, the frequency band that the signal is allowed
to occupy. A convenient way for the system designer to deal with this constraint is to
assume that the channel contains an ideal filter that blocks everything outside the intended
band. The physical reason has to do with the observation that the signal emitted from
the transmit antenna typically encounters obstacles that create reflections and scattering.
Hence the receive antenna may capture the superposition of a number of delayed and
attenuated replicas of the transmitted signal (plus noise). It is a straightforward exercise
to check that this physical channel is linear and time-invariant. Thus it may be modeled
by a linear filter as shown in the figure.2 Additional filtering may occur due to the
limitations of some of the components at the sender and/or at the receiver. For instance,
this is the case of a linear amplifier and/or an antenna for which the amplitude response
over the frequency range of interest is not flat and the phase response is not linear. The
filter in Figure 1.1 accounts for all linear time-invariant transformations that act upon the
communication signals as it travels from the sender to the receiver. The channel model
of Figure 1.1 is meaningful for both wireline and wireless communication chanels. It is
referred to as the bandlimited Gaussian channels.

Since communication means different things for different people, we need to clarify the
role of the transmitter/receiver pair depicted in Figure 1.1. For the purpose of this class
a transmitter implements a mapping between a message set and a signal set, both of the
same cardinality, say m . The number m of elements of the message set is important
but the nature of its elements is not. Typically we represent a message by an integer i
between 0 and m− 1 or, equivalently, by logm bits. During the first part of the course
we will use integers to represent messages. There is a one-to-one correspondence between
messages and elements of the signal set. The forms of the signals is important since
signals have to be suitable to the channel. Intuitively, they should be as distinguishable
as possible from the channel output. The channel model is always assumed to be given
to the designer who has no control over it. By assumption, the designer can only control

theorem, their aggregate contribution is often quite well approximated by a Gaussian random process.
2If the scattering and reflecting objects move with respect to the transmit/receive antennae then the

filter is time-varying but this case is deferred to the advanced digital communication class.
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the design of the transmitter/receiver pair. A user communicates by selecting a message
i ∈ {0, 1, . . . ,m− 1} which is converted by the transmitter into the corresponding signal
si . The channel reacts to the signal by producing the observable y . Based on y , the
receiver generates an estimate î(y) of i . Hence the receiver is a map from the space of
channel output signals to the message set. Hopefully i = î most of the time. When this
is not the case we say that an error event occurred. In all situations of interest to us it
is not possible to reduce the probability of error to zero. This is so since, with positive
probability, the channels is capable of producing an output y that could have stemmed
from more than one message. One of the performance measures of a transmitter/receiver
pair for a given channel is thus the probability of error. Another performance measure
is the rate at which we communicate. Since we may label every message with a unique
sequence of logm bits, we are sending the equivalent of logm bits every time we use
the channel. By increasing the value of m we increase the rate in bits per channel use
but, as we will see, under normal circumstances this increase can not be done indefinitely
without increasing the probability of error.

At the end of this course you should have a good understanding of a basic communication
system as depicted in Figure 1.1 and be able to make sensible design choices. In particular,
you should know what a receiver does to minimize the probability of error, be able to do
a quantitative analysis of some of the most important performance figures, understand
the basic tradeoffs you have as a system designer, and appreciate the implications of such
tradeoffs.
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Figure 1.2: Decomposed transmitter and receiver.

A few words about the big picture and the approach that we will take are in order. We will
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discover that a natural way to design, analyze, and implement a transmitter/receiver pair
for the Gaussian channels such as the one in Figure 1.1 (whether bandlimited or not) is
in terms of the modules shown in Figure 1.2. These modules allow us to focus on selected
issues while hiding others. For instance, at the very bottom level we exchange messages.
At this level we may think of all modules as being inside a “black box” that hides all the
implementation details and lets us see only what the user has to see from the outside.
The “black box” is an abstract channel model that takes messages and delivers messages.
The performance figures that are visible at this level of granularity are the cardinality m
of the message set, the time Tm it takes to send a message, and the probability of error.
The ratio logm

Tm
is the rate [bits

sec
] at which we communicate. At the top level of Figure 1.2

we focus on the characteristics of the actual signals being sent over the physical medium,
such as the average power of the transmitted signal and the frequency band it occupies.
We will see that at the second level from the bottom we communicate n -tuples. It is at
this level that we will understand the heart of the receiver. We will understand how the
receiver should base its decision so as to minimize the probability of error and see how
to compute the resulting error probability. Finally, one layer up we communicate using
low-frequency (as opposed to radio frequency) signals. Separating the top two layers is
important for implementation purposes.

There is more than one way to organize the discussion around the modules of Figure 1.2.
Following the signal path, i.e., starting from the first module of the transmitter and
working our way through the system until we deal with the final stage of the receiver
would not be a good idea. This is so since it makes little sense to study the transmitter
design without having an appreciation of the task and limitations of a receiver. More
precisely, we would want to use signals that occupy a small bandwidth, have little power
consumption, and that lead to a small probability of errors but we won’t know how to
compute the probability of error until we have studied the receiver design. We will instead
make many passes over the block diagram of Figure 1.2, each time at a different level of
abstraction, focussing on different issues as discussed in the previous paragraph, but each
time considering the sender and the receiver together. We will start with the channel
seen by the bottom modules in Figure 1.2. This approach has the advantage that you
will quickly be able to appreciate what the transmitter and the receiver should do. One
may argue that this approach has the disadvantage of asking the student to accept an
abstract channel model that seems to be oversimplified. (It is not, but this will not be
immediately clear). On the other hand one can also argue in favor of the pedagogical value
of starting with highly simplified models. Shannon, the founding father of modern digital
communication theory and one of the most profound engineers and mathematicians of
the 20th century, was known to solve difficult problems by first reducing the problem to
a much simpler version that he could almost solve “by inspection.” Only after having
familiarized himself with the simpler problem would he work his way back to the next
level of difficulty. In this course we take a similar approach.

The choice of material covered in this course is by now more or less standard for an
introductory course on digital communications. The approach depicted in Figure 1.2 has
been made popular by J.M. Wozencraft and I. M. Jacobs in Principles of Communication
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Engineering –a textbook appeared in 1965. However, the field has evolved since then and
these notes reflect such evolution. Some of the exposition has benefited from the notes
Introduction to Digital Communication, written by Profs. A. Lapidoth and R. Gallager
for the MIT course Nr. 6.401/6.450, 1999. I am indebted to them for letting me use their
notes during the first few editions of this course.

There is only so much that one can do in one semester. EPFL offers various possibilities for
those who want to know more about digital communications and related topics. Classes for
which this course is a recommended prerequisite are Advanced Digital Communications,
Information Theory and Coding, Principles of Diversity in Wireless Networks, and Coding
Theory. For the student interested in hands-on experience, EPFL offers Software-Defined
Radio: A Hands On Course.

Networking is another branch of communications that has developed almost independently
of the material treated in this class. It relies on quite a different set of mathematical models
and tools. Networking assumes that there is a network of bit pipes which is reliable most
of the time but that can fail once in a while. (How to create reliable bit pipes between
network nodes is a main topic in this course). The network may fail due to network
congestion, hardware failure, or queue overflow. Queues are used to temporarily store
packets when the next link is congested. Networking deals with problems such as finding
a route for a packet, computing the delay incurred by a packet as it goes from source to
destination considering the queueing delay and the fact that packets are retransmitted if
their reception is not acknowledged. We will not be dealing with networking problems in
this class.

We conclude this introduction with a very brief overview of the various chapters. Not
everything in this overview will make sense to you now. Nevertheless we advise you to
read it now and read it again when you feel that it is time to step back and take a look
at the “big picture.” It will also give you an idea of which fundamental concepts will play
a role in this course.

Chapter 2 deals with the receiver design problem for discrete-time observations with em-
phasis on that is seen by the bottom block of Figure 1.2. We will pay particular attention
to the design of an optimal decoder, assuming that the encoder and the channel are given.
The channel is the “black box” that contains everything above the two bottom boxes of
Fig. 1.2. It takes and delivers n -tuples. Designing an optimal decoder is an applica-
tion of what is know in the statistical literature as hypothesis testing (to be developed
in Chapter 2). After a rather general start we will spend some time on the discrete-
time additiveGaussian channel. In later chapters you will realize that this channel is a
cornerstone of digital communications.

In Chapter 3 we will focus on the waveform generator and on the baseband front-end of
Figure 1.2. The mathematical tool behind the description of the waveform generator is
the notion of orthonormal expansion from linear algebra. We will fix an orthonormal basis
and we will let the output of the encoder be the n -tuple of coefficients that determines
the signal produced by the transmitter (with respect to the given orthonormal basis).
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The baseband front-end of the receiver reduces the received waveform to an n -tuple that
contains just as much information as needed to implement a receiver that minimizes the
error probability. To do so, the baseband front-end projects the received waveform onto
each element of the mentioned orthonormal basis. The resulting n -tuple is passed to
the decoder. Together, the encoder and the waveform generator form the transmitter.
Correspondingly, the baseband front-end and the decoder form the receiver. What we do
in Chapter 3 holds irrespectively of the specific set of signals that we use to communicate.

Chapter 4 is meant to develop intuition about the high-level implications of the signal
set used to communicate. It is in this chapter that we start shifting attention from the
problem of designing the receiver for a given set of signals to the problem of designing
the signal set itself.

In Chapter 5 we further explore the problem of making sensible choices concerning the
signal set. We will learn to appreciate the advantages of the widespread method of
communicating by modulating the amplitude of a pulse and its shifts delayed by integer
multiples of the symbol time T . We will see that, when possible, one should choose the
pulse to fulfill the so-called Nyquist criterion.

Chapter 6 is a case study on coding. The communication model is that of Chapter 2 with
the n -tuple channel being Gaussian. The encoder will be of convolutional type and the
decoder will be based on the Viterbi algorithm.

Chapter 7 is a technical one in which we learn dealing with complex-valued Gaussian
processes and vectors. They will be used in Chapter 8.

Chapter 8 deals with the problem of communicating across bandpass AWGN channels.
The idea is to learn how to shift the spectrum of the transmitted signal so that we can
place its center frequency at any desired location in the frequency axis, without changing
the baseband waveforms. This will be done using the frequency-shift property of the
Fourier transform. Implementing signal processing (amplification, filtering, multiplication
of signals, etc.) becomes more and more challenging as the center frequency of the signals
being processed increases. This is so since simple wires meant to carry the signal inside
the circuit may act as transmit antenna and irradiate the signal. This may cause all
kinds of problems, including the fact that signals get mixed “in the air” and, even worse,
are reabsorbed into the circuit by some short wire that acts as receive antenna causing
interference, oscillations due to unwanted feedback, etc. To minimize such problems, it
is common practice to design the core of the sender and of the receiver for a fixed center
frequency and let the last stage of the sender and the first stage of the receiver do the
frequency translation. The fixed center frequency typically ranges from zero to a few
MHz. Operations done at the fixed center frequency will be referred to as being done
in baseband. The ones at the final center frequency will be said to be in passband. As
it turns out, the baseband representation of a general passband signal is complex-valued.
This means that the transmitter/receiver pairs have to deal with complex-valued signals.
This is not a problem per se. In fact working with complex-valued signals simplifies
the notation. However, it requires a small overhead (Chapter 7) in terms of having to
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learn how to deal with complex-valued stochastic processes and complex-valued random
vectors. In this chapter we will also “close the loop“” and understand the importance of
the (discrete-time) AWGN channel considered in Chapter 2.

To emphasize the importance of the discrete-time AWGN channel, we mention that in a
typical information theory course (mandatory at EPFL for master-level students) as well
as in a typical coding theory course (offered at EPFL in the Ph.D. program), the channel
model is always discrete-time and often AWGN. In those classes one takes it for granted
that the student knows why discrete-time channel models are important.
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Chapter 2

Receiver Design for Discrete-Time
Observations

2.1 Introduction

As pointed out in the introduction, we will study point-to-point communications from var-
ious abstraction levels. In this chapter we will be dealing with the receiver design problem
for discrete-time observations with particular emphasis on the discrete time additive white
Gaussian (AWGN) channel. Later we will see that this channel is an important abstrac-
tion model. For now it suffices to say that it is the channel that we see from the input
to the output of the dotted box in Figure 2.1. The goal of this chapter is to understand
how to design and analyze the decoder when the channel and the encoder are given.

When the channel model is discrete time, the encoder is indeed the transmitter and the
decoder is the receiver, see Figure 2.2. The figure depicts the system considered in this
Chapter. Its components are:

• A Source: The source (not shown in the figure) is responsible for producing the
message H which takes values in the message set H = {0, 1, . . . , (m − 1)} . The
task of the receiver would be extremely simple if the source selected the message
according to some deterministic rule. In this case the receiver could reproduce the
source message by following the same algorithm and there would be no need to
communicate. For this reason, in communication we always assume that the source
is modeled by a random variable, here denoted by the capital letter H . As usual, a
random variable taking values on a finite alphabet is described by its probability mass
function PH(i) , i ∈ H . In most cases of interest to us, H is uniformly distributed.

• A Transmitter: The transmitter is a mapping from the message set H to the signal
set S = {s0, s1, . . . , sm−1} where si ∈ Cn for some n . We will start with si ∈ Rn

but we will see in Chapter 8 that allowing si ∈ Cn is crucial.

9
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Figure 2.1: Discrete time AWGN channel abstraction.

• A Channel: The channel is described by the probability density of the output for
each of the possible inputs. When the channel input is si , the probability density of
Y will be denoted by fY |S(·|si).

• A Receiver: The receiver’s task is to “guess” H from Y . The decision made by
the receiver is denoted by Ĥ . Unless specified otherwise, the receiver will always
be designed to minimize the probability of error defined as the probability that Ĥ
differs from H . Guessing H from Y when H is a discrete random variable is the
so-called hypothesis testing problem that comes up in various contexts (not only in
communications).

First we give a few examples.

- Transmitter

H ∈ H

-

S ∈ S Y

Channel - Receiver -

Ĥ ∈ H

Figure 2.2: General setup for Chapter 2.
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Example 1. A common source model consist of H = {0, 1} and PH(0) = PH(1) = 1/2 .
This models individual bits of, say, a file. Alternatively, one could model an entire file of,
say, 1 Mbit by saying that H = {0, 1, . . . , (2106 − 1)} and PH(i) = 1

2106
, i ∈ H .

Example 2. A transmitter for a binary source could be a map from H = {0, 1} to
S = {−a, a} for some real-valued constant a . Alternatively, a transmitter for a 4-ary
source could be a map from H = {0, 1, 2, 3} to S = {a, ia,−a,−ia} , where i =

√
−1 .

Example 3. The channel model that we will use mostly in this chapter is the one that
maps a channel input s ∈ Rn into Y = s + Z , where Z is a Gaussian random vector
of independent and uniformly distributed components. As we will see later, this is the
discrete-time equivalent of the baseband continous-time channel called additive white
Gaussian noise (AWGN) channel. For that reason, following common practice, we will
refer to both as additive white Gaussian noise channels (AWGNs).

The chapter is organized as follows. We first learn the basic ideas behind hypothesis
testing, which is the field that deals with the problem of guessing the outcome of a
random variable based on the observation of another random variable. Then we study
the Q function since it is a very valuable tool in dealing with communication problems
that involve Gaussian noise. At this point we are ready to consider the problem of
communicating across the additive white Gaussian noise channel. We will fist consider
the case that involves two messages and scalar signals, then the case of two messages and
n -tuple signals, and finally the case of an arbitrary number m of messages and n -tuple
signals. The last part of the chapter deals with techniques to bound the error probability
when and exact expression is hard or impossible to get.

2.2 Hypothesis Testing

Detection, decision, and hypothesis testing are all synonyms. They refer to the problem
of deciding the outcome of a random variable H that takes values in a finite alphabet
H = {0, 1, . . . ,m− 1} , from the outcome of some related random variable Y . The latter
is referred to as the observable.

The problem that a receiver has to solve is a detection problem in the above sense. Here
the hypothesis H is the message selected by the source. To each message there is a signal
that the transmitter plugs into the channel. The channel output is the observable Y .
Its distribution depends on the input (otherwise observing Y would not help in guessing
the message). The receiver guesses H from Y , assuming that the distribution of H as
well as the conditional distribution of Y given H are known. The former is the source
statistic and the latter depends on the sender and on the channel statistical behavior.
The receiver’s decision will be denoted by Ĥ . We wish to make Ĥ = H , but this is not
always possible. The goal is to devise a decision strategy that maximizes the probability
Pc = Pr{Ĥ = H} that the decision is correct.1

1 Pr{·} is a short-hand for probability of the enclosed event.
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We will always assume that we know the a priori probability PH and that for each i ∈ H
we know the conditional probability density function2 (pdf) of Y given H = i , denoted
by fY |H(·|i) .

Example 4. As a typical example of a hypothesis testing problem, consider the problem
of communicating one bit of information across an optical fiber. The bit being transmitted
is modeled by the random variable H ∈ {0, 1} , PH(0) = 1/2 . If H = 1 , we switch on
an LED and its light is carried across an optical fiber to a photodetector at the receiver
front end. The photodetector outputs the number of photons Y ∈ N it detects. The
problem is to decide whether H = 0 (the LED is off) or H = 1 (the LED is on). Our
decision may only be based on whatever prior information we have about the model and
on the actual observation y . What makes the problem interesting is that it is impossible
to determine H from Y with certainty. Even if the LED is off, the detector is likely
to detect some photons (e.g. due to “ambient light”). A good assumption is that Y
is Poisson distributed with intensity λ that depends on whether the LED is on or off.
Mathematically, the situation is as follows:

H = 0, Y ∼ pY |H(y|0) =
λy0
y!
e−λ0 .

H = 1, Y ∼ pY |H(y|1) =
λy1
y!
e−λ1 .

We read the first row as follows: “When the hypothesis is H = 0 then the observable Y
is Poisson distributed with intensity λ0 ”.

Once again, the problem of deciding the value of H from the observable Y when we
know the distribution of H and that of Y for each value of H is a standard hypothesis
testing problem. 2

From PH and fY |H , via Bayes rule, we obtain

PH|Y (i|y) =
PH(i)fY |H(y|i)

fY (y)

where fY (y) =
∑

i PH(i)fY |H(y|i) . In the above expression PH|Y (i|y) is the posterior
(also called a posteriori probability of H given Y ). By observing Y = y , the probability
that H = i goes from pH(i) to PH|Y (i|y) .

If we choose Ĥ = i , then PH|Y (i|y) is the probability that we made the correct decision.
Since our goal is to maximize the probability of being correct, the optimum decision rule
is

Ĥ(y) = arg max
i
PH|Y (i|y) (MAP decision rule). (2.1)

2In most cases of interest in communication, the random variable Y is a continuous one. That’s why
in the above discussion we have implicitly assumed that, given H = i , Y has a pdf fY |H(·|i) . If Y
is a discrete random variable, then we assume that we know the conditional probability mass function
pY |H(·|i) .
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This is called maximum a posteriori (MAP) decision rule. In case of ties, i.e. if PH|Y (j|y)

equals PH|Y (k|y) equals maxi PH|Y (i|y) , then it does not matter if we decide for Ĥ = k

or for Ĥ = j . In either case the probability that we have decided correctly is the same.

Since the MAP rule maximizes the probability of being correct for each observation
y , it also maximizes the unconditional probability of being correct Pc . The former is
PH|Y (Ĥ(y)|y) . If we plug in the random variable Y instead of y , then we obtain a
random variable. (A real-valued function of a random variable is a random variable.)
The expected valued of this random variable is the (unconditional) probability of being
correct, i.e.,

Pc = E[PH|Y (Ĥ(Y )|Y )] =

∫
y

PH|Y (Ĥ(y)|y)fY (y)dy. (2.2)

There is an important special case, namely when H is uniformly distributed. In this case
PH|Y (i|y) , as a function of i , is proportional to fY |H(y|i)/m . Therefore, the argument
that maximizes PH|Y (i|y) also maximizes fY |H(y|i) . Then the MAP decision rule is
equivalent to the maximum likelihood (ML) decision rule:

Ĥ(y) = arg max
i
fY |H(y|i) (ML decision rule). (2.3)

2.2.1 Binary Hypothesis Testing

The special case in which we have to make a binary decision, i.e., H ∈ H = {0, 1} , is
both instructive and of practical relevance. Since there are only two alternatives to be
tested, the MAP test may now be written as

fY |H(y|1)PH(1)

fY (y)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0)PH(0)

fY (y)
.

Observe that the denominator is irrelevant since f(y) is a positive constant — hence will
not affect the decision. Thus an equivalent decision rule is

fY |H(y|1)PH(1)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0)PH(0).

The above test is depicted in Fig. 2.3 assuming y ∈ R . This is a very important figure
that helps us visualize what goes on and, as we will see, will be helpful to compute the
probability of error.

Yet an equivalent rule obtained by dividing both sides with the non-negative quantity
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fY |H(y|0)PH(0) fY |H(y|1)PH(1)

R0 R1

y

Figure 2.3: Binary MAP Decision. The decision regions R0 and R1 are the values of y
(abscissa) on the left and right of the dashed line (threshold), respectively.

fY |H(y|0)PH(1) . This results in the following binary MAP test:

Λ(y) =
fY |H(y|1)

fY |H(y|0)

Ĥ = 1
≥
<

Ĥ = 0

PH(0)

PH(1)
= η. (2.4)

The left side of the above test is called the likelihood ratio, denoted by Λ(y) , whereas the
right side is the threshold η . Notice that if PH(0) increases, so does the threshold. In
turn, as we would expect, the region {y : Ĥ(y) = 0} becomes bigger.

When PH(0) = PH(1) = 1/2 the threshold η becomes unity and the MAP test becomes
a binary ML test:

fY |H(y|1)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0).

A function Ĥ : Y → H is called a decision function (also called decoding function). One
way to describe a decision function is by means of the decision regions Ri = {y ∈ Y :
Ĥ(y) = i} , i ∈ H . Hence Ri is the set of y ∈ Y for which Ĥ(y) = i .

To compute the probability of error it is often convenient to compute the error probability
for each hypothesis and then take the average. When H = 0, we make an incorrect
decision if Y ∈ R1 or, equivalently, if Λ(y) ≥ η . Hence, denoting by Pe(i) the probability
of making an error when H = i ,

Pe(0) = Pr{Y ∈ R1|H = 0} =

∫
R1

fY |H(y|0)dy (2.5)

= Pr{Λ(Y ) ≥ η|H = 0}. (2.6)

Whether it is easier to work with the right side of (2.5) or that of (2.6) depends on whether
it is easier to work with the conditional density of Y or of Λ(Y ) . We will see examples
of both cases.
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Similar expressions hold for the probability of error conditioned on H = 1, denoted by
Pe(1) . The unconditional error probability is then

Pe = Pe(1)pH(1) + Pe(0)pH(0).

From (2.4) we see that, for the purpose of performing a MAP test, having Λ(Y ) is as
good as having the observable Y and this is true regardless of the prior. A function of
Y that has this property is called sufficient statistic. The concept of sufficient statistic is
developed in Section 2.5

In deriving the probability of error we have tacitly used an important technique that we
use all the time in probability: conditioning as an intermediate step. Conditioning as an
intermediate step may be seen as a divide-and-conquer strategy. The idea is to solve a
problem that seems hard, by braking it up into subproblems that (i) we know how to
solve and (ii) once we have the solution to the subproblems we also have the solution
to the original problem. Here is how it works in probability. We want to compute the
expected value of a random variable Z . Assume that it is not immediately clear how
to compute the expected value of Z but we know that Z is related to another random
variable W that tells us something useful about Z : useful in the sense that for any
particular value W = w we now how to compute the expected value of Z . The latter
is of course E [Z|W = w] . If this is the case, via the theorem of total expectation we
have the solution to the problem we were looking for: E [Z] =

∑
w E [Z|W = w]PW (w) .

The same idea applies to compute probabilities. Indeed if the random variable Z is the
indicator function of an event, then the expected value of Z is the probability of that
event. The indicator function of an event is 1 when the event occurs and 0 otherwise.
Specifically, if Z=1 when the event {H 6= Ĥ} occurs and Z = 0 otherwise then E [Z] is
the probability of error.

Let us revisit what we have done in light of the above comments and see what else we could
have done. The computation of the probability of error involves two random variables, H
andY , as well as an event {H 6= Ĥ} . To compute the probability of error (2.5) we have
first conditioned on all possible values of H . Alternatively, we could have conditioned
on all possible values of Y . This is indeed a viable alternative. In fact we have already
done so (without saying it) in (2.2). Between the two we use the one that seems more
promising for the problem at hand. We will see examples of both.

2.2.2 m-ary Hypothesis Testing

Now we go back to the m -ary hypothesis testing problem. This means that H =
{0, 1, · · · ,m− 1} .

Recall that the MAP decision rule, which minimizes the probability of making an error,
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is

ĤMAP (y) = arg max
i
PH|Y (i|y)

= arg max
i

fY |H(y|i)PH(i)

fY (y)

= arg max
i
fY |H(y|i)PH(i),

where fY |H(·|i) is the probability density function of the observable Y when the hypoth-
esis is i and PH(i) is the probability of the i th hypothesis. This rule is well defined
up to ties. If there is more than one i that achieves the maximum on the right side of
one (and thus all) of the above expressions, then we may decide for any such i without
affecting the probability of error. If we want the decision rule to be unambiguous, we can
for instance agree that in case of ties we pick the largest i that achieves the maximum.

When all hypotheses have the same probability, then the MAP rule specializes to the ML
rule, i.e.,

ĤML(y) = arg max
i
fY |H(y|i).

We will always assume that fY |H is either given as part of the problem formulation or
that it can be figured out from the setup. In communications, one typically is given the
transmitter, i.e. the map from H to S , and the channel, i.e. the pdf fY |X(·|x) for all
x ∈ X . From these two one immediately obtains fY |H(y|i) = fY |X(y|si) , where si is
the signal assigned to i .

Note that the decoding (or decision) function Ĥ assigns an i ∈ H to each y ∈ Rn . As
already mentioned, it can be described by the decoding (or decision) regions Ri , i ∈ H ,
where Ri consists of those y for which Ĥ(y) = i . It is convenient to think of Rn as
being partitioned by decoding regions as depicted in the following figure.

Rm−1Ri

R0 R1

We use the decoding regions to express the error probability Pe or, equivalently, the
probability Pc of deciding correctly. Conditioned on H = i we have

Pe(i) = 1− Pc(i)

= 1−
∫
Ri
fY |H(y|i)dy.
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2.3 The Q Function

The Q function plays a very important role in communications. It will come up over and
over again throughout these notes. Make sure that you understand it well. It is defined
as:

Q(x)
4
=

1√
2π

∫ ∞
x

e−
ξ2

2 dξ.

Hence if Z ∼ N (0, 1) (meaning that Z is a Normally distributed zero-mean random
variable of unit variance) then Pr{Z ≥ x} = Q(x) .

If Z ∼ N (m,σ2) the probability Pr{Z ≥ x} can also be written using the Q function.
In fact the event {Z ≥ x} is equivalent to {Z−m

σ
≥ x−m

σ
} . But Z−m

σ
∼ N (0, 1) . Hence

Pr{Z ≥ x} = Q(x−m
σ

) . Make sure you are familiar with these steps. We will use them
frequently.

We now describe some of the key properties of the Q function.

(a) If Z ∼ N (0, 1) , FZ(z)
4
= Pr{Z ≤ z} = 1 − Q(z) . (Draw a picture that expresses

this relationship in terms of areas under the probability density function of Z .)

(b) Q(0) = 1/2 , Q(−∞) = 1 , Q(∞) = 0 .

(c) Q(−x) +Q(x) = 1 . (Again, draw a picture.)

(d) 1√
2πα

e−
α2

2 (1− 1
α2 ) < Q(α) < 1√

2πα
e−

α2

2 , α > 0 .

(e) An alternative expression for the Q function with fixed integration limits is Q(x) =
1
π

∫ π
2

0
e−

x2

2 sin2 θ dθ . It holds for x ≥ 0 .

(f) Q(α) ≤ 1
2
e−

α2

2 , α ≥ 0.

Proofs: The proofs or (a), (b), and (c) are immediate (a picture suffices). The proof
of part (d) is left as an exercise (see Problem 34). To prove (e), let X ∼ N (0, 1) and

Y ∼ N (0, 1) be independent. Hence Pr{X ≥ 0, Y ≥ ξ} = Q(0)Q(ξ) = Q(ξ)
2

. Using Polar
coordinates

Q(ξ)

2
=

∫ π
2

0

∫ ∞
ξ

sin θ

e−
r2

2

2π
rdrdθ =

1

2π

∫ π
2

0

∫ ∞
ξ2

2 sin2 θ

e−tdtdθ =
1

2π

∫ π
2

0

e−
ξ2

2 sin2 θ dθ.

To prove (f) we use (e) and the fact that e−
ξ2

2 sin2 θ ≤ e−
ξ2

2 for θ ∈ [0, π
2
] . Hence

Q(ξ) ≤ 1

π

∫ π
2

0

e−
ξ2

2 dθ =
1

2
e−

ξ2

2 .



18 Chapter 2.

2.4 Receiver Design for Discrete-Time AWGN Channels

2.4.1 Binary Decision for Scalar Observations

We consider the following setup

-

H ∈ {0, 1}
Transmitter

S Y
-���
6

Z ∼ N (0, σ2)

- Receiver -
Ĥ

We assume that the transmitter maps H = 0 into a ∈ R and H = 1 into b ∈ R . The
output statistic for the various hypotheses is as follows:

H = 0 : Y ∼ N (a, σ2)

H = 1 : Y ∼ N (b, σ2).

An equivalent way to express the output statistic for each hypothesis is

fY |H(y|0) =
1√

2πσ2
exp

{
−(y − a)2

2σ2

}
fY |H(y|1) =

1√
2πσ2

exp

{
−(y − b)2

2σ2

}
.

We compute the likelihood ratio

Λ(y) =
fY |H(y|1)

fY |H(y|0)
= exp

{
−(y − b)2 − (y − a)2

2σ2

}
= exp

{
b− a
σ2

(y − a+ b

2
)

}
. (2.7)

The threshold is η = P0

P1
. Now we have all the ingredients for the MAP rule. Instead

of comparing Λ(y) to the threshold η we may compare log Λ(y) to log η . The function
log Λ(y) is called log likelihood ratio. Hence the MAP decision rule may be expressed as

b− a
σ2

(
y − a+ b

2

) Ĥ = 1
≥
<

Ĥ = 0

ln η.

Without loss of essential generality (w.l.o.g.), assume b > a . Then we can divide both
sides by b−a

σ2 without changing the outcome of the above comparison. In this case we
obtain

ĤMAP(y) =

{
1, y > θ

0, otherwise,
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a ba+b
2

fY |H(·|0) fY |H(·|1)

Figure 2.4: The shaded area represents the probability of error Pe = Q( d
2σ

) when H = 0
and PH(0) = PH(1) .

where θ = σ2

b−a ln η+ a+b
2
. Notice that if PH(0) = PH(1) , then ln η = 0 and the threshold

θ becomes the midpoint a+b
2

.

We now determine the probability of error. Recall that

Pe(0) = Pr{Y > θ|H = 0} =

∫
R1

fY |H(y|0)dy.

This is the probability that a Gaussian random variable with mean a and variance σ2

exceeds the threshold θ . The situation is depicted in Figure 2.4. From our review on
the Q function we know immediately that Pe(0) = Q

(
θ−a
σ

)
. Similarly, Pe(1) = Q

(
b−θ
σ

)
.

Finally, Pe = PH(0)Q
(
θ−a
σ

)
+ PH(1)Q

(
b−θ
σ

)
.

The most common case is when PH(0) = PH(1) = 1/2 . Then θ−a
σ

= b−θ
σ

= b−a
2σ

= d
2σ

,
where d is the distance between a and b . In this case

Pe = Q

(
d

2σ

)
.

Computing Pe for the case PH(0) = PH(1) = 1
2

is particularly straightforward. Due to
symmetry, the threshold is the middle point between a and b and Pe = Pe(0) = Q( d

2σ
) ,

where d is the distance between a and b . (See again Figure 2.4.)

2.4.2 Binary Decision for n-Tuple Observations

The setup is the same as for the scalar case except that the transmitter output s , the
noise z , and the observation y are now n -tuples. The new setting is represented in
the figure below. Before going on we recommend reviewing the background material in
Appendices 2.C and 2.E

We now assume that the hypothesis i ∈ {0, 1} is mapped into the transmitter output
S(i) defined by

S(i) =

{
a ∈ Rn, i = 0

b ∈ Rn, i = 1.
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-

H ∈ {0, 1}
Transmitter

S Y
-���
6

Z ∼ N (0, σ2In)

- Receiver -
Ĥ

We also assume that Z ∼ N (0, σ2In) . As we did earlier, we start by writing down the
output statistic for each hypothesis

H = 0 : Y = a+Z ∼ N (a, σ2In)

H = 1 : Y = b+Z ∼ N (b, σ2In),

or, equivalently,

fY |H(y|0) =
1

(2πσ2)n/2
exp

{
−‖y − a‖

2

2σ2

}
fY |H(y|1) =

1

(2πσ2)n/2
exp

{
−‖y − b‖

2

2σ2

}
.

Like in the scalar case we compute the likelihood ratio

Λ(y) =
fY |H(y|1)

fY |H(y|0)
= exp

{
‖y − a‖2 − ‖y − b‖2

2σ2

}
.

Taking the logarithm on both sides and using the relationship 〈u+v,u−v〉 = ‖u‖2−‖v‖2 ,
which holds for real-valued vectors u and v , we obtain

LLR(y) =
‖y − a‖2 − ‖y − b‖2

2σ2
(2.8)

=
〈
y − a+ b

2
,
b− a
σ2

〉
(2.9)

=
〈
y,
b− a
σ2

〉
+
‖a‖2 − ‖b‖2

2σ2
. (2.10)

From (2.10), the MAP rule is

〈y, b− a〉

Ĥ = 1
≥
<

Ĥ = 0

T,

where T = σ2 ln η + ‖b‖2−‖a‖2
2

is a threshold and η = PH(0)
PH(1)

. This says that the decision

regions R0 and R1 are separated by the hyperplane3

{y ∈ Rn : 〈y, b− a〉 = T} .
3See Appendix 2.E for a review on the concept of hyperplane.
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We obtain additional insight by analyzing (2.8) and (2.9). To find the boundary between
R0 and R1 , we look for the values of y for which (2.8) and (2.9) are constant. As shown
by the left figure below, the set of points y for which (2.8) is constant is a hyperplane.
Indeed, by Pythagoras, ‖y − a‖2 − ‖y − b‖2 equals p2 − q2 . The right figure indicates
that rule (2.9) performs the projection of y− a+b

2
onto the linear space spanned by b−a .

The set of points for which this projection is constant is again a hyperplane.
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The value of p (distance from a to the separating hyperplane) may be found by setting
〈y, b−a〉 = T for y = b−a

‖b−a‖p . This is the y where the line between a and b intersects
the separating hyperplane. Inserting and solving for p we obtain

p =
d

2
+
σ2 ln η

d

q =
d

2
− σ2 ln η

d

with d = ‖b− a‖ and q = d− p .

Of particular interest is the case PH(0) = PH(1) = 1
2

. In this case the hyperplane is the
set of points for which (2.8) is 0 . These are the points y that are at the same distance
from a and from b . Hence the ML decision rule for the AWGN channel decides for the
transmitted vector that is closer to the observed vector.

A few additional observations are in order.

• The separating hyperplane moves towards b when the threshold T increases, which
is the case when PH(0)

PH(1)
increases. This makes sense. It corresponds to our intuition

that the decoding region R0 should become larger if the prior probability becomes
more in favor of H = 0.

• If PH(0)
PH(1)

exceeds 1 , then ln η is positive and T increases with σ2 . This also makes
sense. If the noise increases, we trust less what we observe and give more weight to
the prior, which in this case favors H = 0.

• Notice the similarity of (2.8) and (2.9) with the corresponding expressions for the
scalar case, i.e., the expressions in the exponent of (2.7).
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• The above comment suggest a tight relationship between the scalar and the vector
case. One can gain additional insight by placing the origin of a new coordinate
system at a+b

2
and by choosing the first coordinate in the direction of b − a . In

this new coordinate system, H = 0 is mapped into the vector ã = (−d
2
, 0, . . . , 0)

where d = ‖b − a‖ , H = 1 is mapped into b̃ = (d
2
, 0, . . . , 0) , and the projection of

the observation onto the subspace spanned by b − a = (d, 0, . . . , 0) is just the first
component y1 of y = (y1, y2, . . . , yn) . This shows that for two hypotheses the vector
case is really a scalar case embedded in an n dimensional space.

As for the scaler case, we compute the probability of error by conditioning on H = 0 and
H = 1 and then remove the conditioning by averaging: Pe = Pe(0)PH(0) + Pe(1)PH(1) .
When H = 0, Y = a+Z and the MAP decoder makes the wrong decision if

〈Y , b− a〉 ≥ T.

Inserting Y = a + Z , defining the unit norm vector ψ‖ = b−a
‖b−a‖ that points in the

direction b− a and rearranging terms yields the equivalent condition

〈Z,ψ‖〉 ≥
d

2
+
σ2 ln η

d
,

where again d = ‖b − a‖ . The left hand side is a zero-mean Gaussian random variable
of variance σ2 (see Appendix 2.C). Hence

Pe(0) = Q
( d

2σ
+
σ ln η

d

)
.

Proceeding similarly we find

Pe(1) = Q
( d

2σ
− σ ln η

d

)
.

In particular, when PH(0) = 1/2 we obtain

Pe = Pe(0) = Pe(1) = Q
( d

2σ

)
.

The figure below helps visualizing the situation. When H = 0, a MAP decoder makes
the wrong decision if the projection of Z onto the subspace spanned by b− a lands on
the other side of the separating hyperplane. The projection has the form Z‖ψ‖ where
Z‖ = 〈Z,ψ‖〉 ∼ N (0, σ2) . The projection lands on the other side of the separating
hyperplane if Z‖ ≥ p . This happens with probability Q( p

σ
) , which corresponds to the

result obtained earlier.
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2.4.3 m-ary Decision for n-Tuple Observations

When H = i , i ∈ H , let S = si ∈ Rn . Assume PH(i) = 1
m

(this is a common assumption
in communications). The ML decision rule is

ĤML(y) = arg max
i
fY |H(y|i)

= arg max
i

1

(2πσ2)n/2
exp
{
−‖y − si‖

2

2σ2

}
= arg min

i
‖y − si‖2.

Hence a ML decision rule for the AWGN channel is a minimum-distance decision rule as
shown in Figure 2.5. Up to ties, Ri corresponds to the Voronoi region of si , defined as
the set of points in Rn that are at least as close to si as to any other sj .

Example 5. (PAM) Figure 2.6 shows the signal points and the decoding regions of a ML
decoder for 6-ary Pulse Amplitude Modulation (why the name makes sense will become
clear in the next chapter), assuming that the channel is AWGN. The signal points are
elements of R and the ML decoder chooses according to the minimum-distance rule.

R1

s1

R0

s2

R2

s0

Figure 2.5: Example of Voronoi regions in R2 .
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- ys s s s s s
s0 s1 s2 s3 s4 s5

R0 R1 R2 R3 R4 R5

� -d

Figure 2.6: PAM signal constellation.

When the hypothesis is H = 0 , the receiver makes the wrong decision if the observation
y ∈ R falls outside the decoding region R0 . This is the case if the noise Z ∈ R is larger
than d/2 , where d = si − si−1 , i = 1, . . . , 5 . Thus

Pe(0) = Pr
{
Z >

d

2

}
= Q

( d
2σ

)
.

By symmetry, Pe(5) = Pe(0) . For i ∈ {1, 2, 3, 4} , the probability of error when H = i
is the probability that the event {Z ≥ d

2
} ∪ {Z < −d

2
} occurs. This event is the union

of disjoint events. Its probability is the sum of the probability of the individual events.
Hence

Pe(i) = Pr

{{
Z ≥ d

2

}
∪
{
Z < −d

2

}}
= 2Pr

{
Z ≥ d

2

}
= 2Q

( d
2σ

)
, i ∈ {1, 2, 3, 4}.

Finally,

Pe =
2

6
Q
( d

2σ

)
+

4

6
2Q
( d

2σ

)
=

5

3
Q
( d

2σ

)
.

2

Example 6. (4-ary QAM) Figure 2.7 shows the signal set {s0, s1, s2, s3} for 4-ary
Quadrature Amplitude Modulation (QAM). We may consider signals as points in R2

or in C . We choose the former since we don’t know how to deal with complex valued
noise yet. The noise is Z ∼ N (0, σ2I2) and the observable, when H = i , is Y = si +Z .
We assume that the receiver implements a ML decision rule, which for the AWGN channel
means minimum-distance decoding. The decoding region for s0 is the first quadrant, for
s1 the second quadrant, etc. When H = 0 , the decoder makes the correct decision if
{Z1 > −d

2
} ∩ {Z2 ≥ −d

2
} , where d is the minimum distance among signal points. This

is the intersection of independent events. Hence the probability of the intersection is the
product of the probability of each event, i.e.

Pc(0) =

[
Pr
{
Zi ≥ −

d

2

}]2

= Q2
(
− d

2σ

)
=

[
1−Q

( d
2σ

)]2

.

By symmetry, for all i , Pc(i) = Pc(0) . Hence,

Pe = Pe(0) = 1− Pc(0) = 2Q
( d

2σ

)
−Q2

( d
2σ

)
.
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Figure 2.7: QAM signal constellation in R2 .

When the channel is Gaussian and the decoding regions are bounded by affine planes, like
in this and the previous example, one can express the error probability by means of the
Q function. In this example we decided to focus on computing Pc(0) . It would have been
possible to compute Pe(0) instead of Pc(0) but it would have costed slightly more work.
To compute Pe(0) we evaluate the probability of the union

{
Z1 ≤ −d

2

}
∪
{
Z2 ≤ −d

2

}
.

These are not disjoint events. In fact they are independent events that can very well occur
together. Thus the probability of the union is the sum of the individual probabilities minus
the probability of the intersection. (You should verify that you obtain the same expression
for Pe .) 2

Exercise 7. Rotate and translate the signal constellation of Example 6 and evaluate the
resulting error probability.

2.5 Irrelevance and Sufficient Statistic

Have you ever tried to drink from a fire hydrant? There are situations in which the
observable Y contains more data than you can handle. Some or most of that data may
be irrelevant for the detection problem at hand but how to tell what is superfluous? In
this section we give tests to do exactly that. We start by recalling the notion of Markov
chain.

Definition 8. Three random variables U , V , and W are said to form a Markov chain
in that order, symbolized by U → V → W , if the distribution of W given both U and
V is independent of U , i.e., PW |V,U(w|v, u) = PW |V (w|v) .

The following exercise derives equivalent definitions.

Exercise 9. Verify the following statements. (They are simple consequences of the
definition of Markov chain.)



26 Chapter 2.

(i) U → V → W if and only if PU,W |V (u,w|v) = PU |V (u|v)PW |V (w|v) , i.e., U and W
are conditionally independent given V .

(ii) U → V → W if and only if W → V → U , i.e., Markovity in one direction implies
Markovity in the other direction. 2

Let Y be the observable and T (Y ) be a function (either stochastic or deterministic) of
Y . Observe that H → Y → T (Y ) is always true but in general it is not true that
H → T (Y )→ Y .

Definition 10. A function T (Y ) of an observable Y is said to be a sufficient statistic
for H if H → T (Y )→ Y .

If T (Y ) is a sufficient statistic then the performance of a MAP decoder that observes
T (Y ) is the same as that of one that observes Y . Indeed PH|Y = PH|Y,T = PH|T . Hence,
up to ties, arg maxPH|Y (·|y) = arg maxPH|T (·|t) . We state this important result as a
theorem.

Theorem 11. If T (Y ) is a sufficient statistic for H then a MAP decoder that estimates
H from T (Y ) achieves the exact same error probability as one that estimates H from
Y .

Example 12. Examples will be given in class.

In some situations we make multiple measurements and want to prove that some of the
measurements are relevant for the detection problem and some are not. Specifically, the
observable Y may consist of two components Y = (Y1, Y2) where Y1 and Y2 may be m
and n tuples, respectively. If T (Y ) = Y1 is a sufficient statistic then we say that Y2 is
irrelevant. We use the two concepts interchangeably when we have two sets of observables:
if one set is a sufficient statistic the other is irrelevant and vice-versa.

Exercise 13. Assume the situation of the previous paragraph. Show that Y1 is a suf-
ficient statistic (or equivalently Y2 is irrelevant) if and only if H → Y1 → Y2 . (Hint:
Show that H → Y1 → Y2 is equivalent to H → Y1 → Y ). This result is sometimes called
Theorem of Irrelevance (See Wozencraft and Jacobs).

Example 14. Consider the communication system depicted in the figure where Z2 is
independent of H and Z1 . Then H → Y1 → Y2 . Hence Y2 is irrelevant for the purpose
of making a MAP decision of H based on (Y1, Y2) .

Source -��� -���
??

Receiver Ĥ-

? ?H

Z1 Z2

Y2Y1
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2

We have seen that H → T (Y ) → Y implies that Y is irrelevant to a MAP decoder
that observes T (Y ) . Is the contrary also true? Specifically, assume that a MAP decoder
that observes

(
Y, T (Y )

)
always makes the same decision as one that observes only T (Y ) .

Does this imply H → T (Y ) → Y ? The answer is “yes and no.” We may expect the
answer to be “no” since when H → U → V holds then the function PH|U,V gives the
same value as PH|U for all (i, u, v) whereas for v to have no effect on a MAP decision it
is sufficient that for all (u, v) the maximum of PH|U and that of PH|U,V be achieved for
the same i . In Problem 16 we give an example of this. Hence the answer to the above
question is “no” in general. However, the example we give holds for a fixed distribution
on H . In fact the answer to the above question becomes “yes” if Y does not affect the
decision of a MAP decoder that observes

(
Y, T (Y )

)
regardless of the distribution on H .

We prove this in Problem 18 by showing that if PH|U,V (i|u, v) depends on v then for
some distribution PH the value of v affects the decision of a MAP decoder.

2.6 Error Probability

2.6.1 Union Bound

Here is a simple and extremely useful bound. Recall that for general events A,B

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

≤ P (A) + P (B) .

More generally, using induction, we obtain the the Union Bound

P

(M⋃
i=1

Ai
)
≤

M∑
i=1

P (Ai), (UB)

that applies to any collection of sets Ai , i = 1, . . . ,M . We now apply the union bound
to approximate the probability of error in multi-hypothesis testing. Recall that

Pe(i) = Pr{Y ∈ Rc
i |H = i} =

∫
Rci
fY |H(y|i)dy,

where Rc
i denotes the complement of Ri . If we are able to evaluate the above integral

for every i , then we are able to determine the probability of error exactly. The bound
that we derive is useful if we are unable to evaluate the above integral.

For i 6= j define
Bi,j =

{
y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y|i)

}
.

Bi,j is the set of y for which the a posteriori probability of H given Y = y is at least
as high for H = j as it is for H = i . Moreover,

Rc
i ⊆

⋃
j:j 6=i

Bi,j,



28 Chapter 2.

sj si

Bi,j

Figure 2.8: The shape of Bi,j for AWGN channels and ML decision.

with equality if ties are always resolved against i . In fact, by definition, the right side
contains all the ties whereas the left side may or may not contain them. Here ties refers
to those y for which equality holds in the definition of Bi,j .

Now we use the union bound (with Aj = {Y ∈ Bi,j} and P (Aj) = Pr{Y ∈ Bi,j|H = i} )

Pe(i) = Pr {Y ∈ Rc
i |H = i} ≤ Pr

{
Y ∈

⋃
j:j 6=i

Bi,j|H = i
}

≤
∑
j:j 6=i

Pr
{
Y ∈ Bi,j|H = i

}
(2.11)

=
∑
j:j 6=i

∫
Bi,j

fY |H(y|i)dy.

What we have gained is that it is typically easier to integrate over Bi,j than over Rc
j .

For instance, when the channel is the AWGN and the decision rule is ML, Bi,j is the set
of points in Rn that are at least as close to sj as they are to si , as shown in the following
figure. In this case, ∫

Bi,j
fY |H(y|i)dy = Q

(
‖sj − si‖

2σ

)
,

and the union bound yields the simple expression

Pe(i) ≤
∑
j:j 6=i

Q

(
‖sj − si‖

2σ

)
.

In the next section we derive an easy-to-compute tight upperbound on∫
Bi,j

fY |H(y|i)dy

for a general fY |H . Notice that the above integral is the probability of error under H = i
when there are only two hypotheses, the other hypothesis is H = j , and the priors are
proportional to PH(i) and PH(j) .

Example 15. (m -PSK) Figure 2.9 shows a signal set for m -ary PSK (phase-shift keying)
when m = 8 . Formally, the signal transmitted when H = i , i ∈ H = {0, 1, . . . ,m− 1} ,
is

si =
√
Es
(

cos
(2πi

m

)
, sin

(2πi

m

))T
,
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s4

s3

s5

s0

s1

s7

R4

R6

R5

R1

R0

R7

R2

R3

Figure 2.9: 8 -ary PSK constellation in R2

and decoding regions.

where Es = ‖si‖2 , i ∈ H . Assuming the AWGN channel, the hypothesis testing problem
is specified by

H = i : Y ∼ N (si, σ
2I2)

and the prior PH(i) is assumed to be uniform. Since we have a uniform prior, the MAP
and the ML decision rule are identical. Furthermore, since the channel is the AWGN
channel, the ML decoder is a minimum-distance decoder. The decoding regions (up to
ties) are also shown in the figure.

One can show that

Pe(i) =
1

π

∫ π− π
m

0

exp

{
−

sin2 π
m

sin2(θ + π
m

)

Es
2σ2

}
dθ.

The above expression does not lead to a simple formula for the error probability.

Now we use the union bound to determine an upperbound to the error probability. With
reference to Fig. 2.10 we have:

s4

s3

s5

B4,3 ∩ B4,5R4

B4,3

B4,5

Figure 2.10: Bounding the error probability of PSK by means of the union bound.
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Pe(i) = Pr{Y ∈ Bi,i−1 ∪ Bi,i+1|H = i}
≤ Pr{Y ∈ Bi,i−1|H = i}+ Pr{Y ∈ Bi,i+1|H = i}
= 2Pr{Y ∈ Bi,i−1|H = i}

= 2Q

(
‖si − si−1‖

2σ

)
= 2Q

(√
Es
σ

sin
π

m

)
.

Notice that we have been using a version of the union bound adapted to the problem: we
are getting a tighter bound by using the fact that Rc

i ⊆ Bi,i−1∪Bi,i+1 (with equality with
the possible exception of the boundary points) rather than Rc

i ⊆ ∪j 6=iBi,j .

How good is the upper bound? Recall that

Pe(i) = Pr{Y ∈ Bi,i−1|H = i}+ Pr{Y ∈ Bi,i+1|H = i} − Pr{Y ∈ Bi,i−1 ∩ Bi,i+1|H = i}

and we obtained an upper bound by lower-bounding the last term with 0 . We now obtain
a lower bound by upper-bounding the same term. To do so, observe that Rc

i is the union
of (m − 1) disjoint cones, one of which is Bi,i−1 ∩ Bi,i+1 . Furthermore, the integral of
fY |H(·|i) over Bi,i−1 ∩Bi,i+1 is smaller than that over the other cones. Hence the integral

over Bi,i−1 ∩ Bi,i+1 must be less than Pe(i)
m−1

. Mathematically,

Pr{Y ∈ (Bi,i−1 ∩ Bi,i+1)|H = i} ≤ Pe(i)

m− 1
.

Inserting in the previous expression, solving for Pe(i) and using the fact that Pe(i) = Pe
yields the desired lower bound

Pe ≥ 2Q

(√
Es
σ2

sin
π

m

)
m− 1

m
.

The ratio between the upper and the lower bound is the constant m
m−1

. For m large,
the bounds become very tight. One can come up with lower bounds for which this ratio
goes to 1 as Es/σ2 → ∞ . One such bound is obtained by upper-bounding Pr{Y ∈
Bi,i−1 ∩ Bi,i+1|H = i} with the probability Q

(√
Es/σ

)
that conditioned on H = i , the

observable Y is on the other side of the hyperplane through the origine and perpendicular
to si . 2

2.6.2 Union Bhattacharyya Bound

Let us summarize. From the union bound applied to Rc
i ⊆

⋃
j:j 6=i Bi,j we have obtained

the upper bound

Pe(i) = Pr{Y ∈ Rc
i |H = i}

≤
∑
j:j 6=i

Pr{Y ∈ Bi,j|H = i}
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and we have used this bound for the AWGN channel. With the bound, instead of having
to compute

Pr{Y ∈ Rc
i |H = i} =

∫
Rci
fY |H(y|i)dy,

which requires integrating over a possibly complicated region Rc
i , we only have to compute

Pr{Y ∈ Bi,j|H = i} =

∫
Bi,j

fY |H(y|i)dy.

The latter integral is simply Q( a
σ
) , where a is the distance between si and the hyperplane

bounding Bi,j . For a ML decision rule, a =
‖si−sj‖

2
.

What if the channel is not AWGN? Is there a relatively simple expression for Pr{Y ∈
Bi,j|H = i} that applies for general channels? Such an expression does exist. It is the
Bhattacharyya bound that we now derive.4

Given a set A , the indicator function 1A is defined as

1A(x) =

{
1, x ∈ A
0, otherwise.

From the definition of Bi,j that we repeat for convenience

Bi,j = {y ∈ Rn : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j)},

we immediately verify that 1Bi,j(y) ≤
√

PH(j)fY |H(y|j)
PH(i)fY |H(y|i) . With this we obtain the Bhat-

tacharyya bound as follows:

Pr{Y ∈ Bi,j|H = i} =

∫
y∈Bi,j

fY |H(y|i)dy =

∫
y∈Rn

fY |H(y|i)1Bi,j(y)dy

≤

√
PH(j)

PH(i)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy. (2.12)

What makes the last integral appealing is that we integrate over the entire Rn . As shown
in Problem 29 (Bhattacharyya Bound for DMCs), for discrete memoryless channels the
bound further simplifies.

As the name indicates, the Union Bhattacharyya bound combines (2.11) and (2.12),
namely

Pe(i) ≤
∑
j:j 6=i

Pr{Y ∈ Bi,j|H = i} ≤
∑
j:j 6=i

√
PH(j)

PH(i)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy.

4There are two versions of the Bhattacharyya bound. Here we derive the one that has the simpler
derivation. The other version, which is tighter by a factor 2 , is derived in Problems 25 and 26.
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We can now remove the conditioning on H = i and obtain

Pe ≤
∑
i

∑
j:j 6=i

√
PH(i)PH(j)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy.

Example 16. (Tightness of the Bhattacharyya Bound) Consider the following scenario

H = 0 : S = s0 = (0, 0, . . . , 0)T

H = 1 : S = s1 = (1, 1, . . . , 1)T

with PH(0) = 0.5 , and where the channel is the binary erasure channel described in
Figure 2.11.

1 - 11− p

∆

���
���

���
���:

XXXXXXXXXXXXz

0 0-1− p
X Y

Figure 2.11: Binary erasure channel.

Evaluating the Bhattacharyya bound for this case yields:

Pr{Y ∈ B0,1|H = 0} ≤
∑

y∈{0,1,∆}n

√
PY |H(y|1)PY |H(y|0)

=
∑

y∈{0,1,∆}n

√
PY |X(y|s1)PY |X(y|s0)

(a)
= pn,

where in (a) we used the fact that the first factor under the square root vanishes if y
contains ones and the second vanishes if y contains zeros. Hence the only non-vanishing
term in the sum is the one for which yi = ∆ for all i . The same bound applies for H = 1 .
Hence Pe ≤ 1

2
pn + 1

2
pn = pn .

If we use the tighter version of the union Bhattacharyya bound, which as mentioned earlier
is tighter by a factor of 2 , then we obtain

Pe
(UBB)

≤ 1

2
pn.

For the Binary Erasure Channel and the two codewords s0 and s1 we can actually
compute the probability of error exactly:

Pe =
1

2
Pr{Y = (∆,∆, . . . ,∆)T} =

1

2
pn.

The Bhattacharyya bound is tight for the scenario considered in this example! 2
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2.7 Summary

The idea behind a MAP decision rule and the reason why it maximizes the probability
that the decision is correct is quite intuitive. Let say we have two hypotheses, H = 0
and H = 1, with probability PH(0) and PH(1) , respectively. If we have to guess which
is the correct one without making any observation then we would choose the one that has
the largest probability. This is quite intuitive yet let us repeat why. No matter how the
decision is made, if it is Ĥ = i then the probability that it is correct is PH(i) . Hence to
maximize the probability that our decision is correct we choose Ĥ = arg maxPH(i) . (If
PH(0) = PH(1) = 1/2 then it does not matter how we decide: Either way, the probability
that the decision is correct is 1/2 .)

The exact same idea applies after the receiver has observed the realization of the observ-
able Y (or Y ). The only difference is that, after it observes Y = y , the receiver has
an updated knowledge about the distribution of H . The new distribution is the poste-
rior PH|Y (·|y) . In a typical example PH(i) may take the same value for all i whereas
PH|Y (i|y) may be strongly biased in favor of one hypothesis. If it is strongly biased it
means that the observable is very informative, which is what we hope of course.

Often PH|Y is not given but we can find it from PH and fY |H via Bayes’ rule. While
PH|Y is the most fundamental quantity associated to a MAP test and therefore it would
make sense to write the test in terms of PH|Y , the test is typically written in terms of PH
and fY |H since those are normally the quantities that are specified as part of the model.

Notice that fY |H and PH is all we need to evaluate the union Bhattacharyya bound.
Indeed the bound may be used in conjunction to any hypothesis testing problem not only
for communication problems.

The following example shows how the posterior becomes more and more selective as the
number of observations grows. It also shows that, as we would expect, the measurements
are less informative if the channel is noisier.

Example 17. Assume H ∈ {0, 1} and PH(0) = PH(1) = 1/2 . The outcome of H is
communicated across a BSC of crossover probability p < 1

2
via a transmitter that sends

n zeros when H = 0 and n ones when H = 1 . Letting k be the number of ones in the
observed channel output y we have

PY |H(y|i) =

{
pk(1− p)n−k, H = 0

pn−k(1− p)k, H = 1.

Using Bayes rule,

PH|Y (i|y) =
PH,Y (i,y)

PY (y)
=
PH(i)PY |H(y|i)

PY (y)
,

where PY (y) =
∑

i PY |H(y|i)PH(i) is the normalization that ensures
∑

i PH|Y (i|y) = 1 .
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Hence

PH|Y (0|y) =
pk(1− p)n−k

2PY (y)
=

(
p

1− p

)k
(1− p)n

2PY (y)

PH|Y (1|y) =
pn−k(1− p)k

2PY (y)
=

(
1− p
p

)k
pn

2PY (y)
.

Figure 2.12 depicts the behavior of PH|Y (0|y) as a function of the number k of 1 s in y .
For the fist row n = 1 , hence k may be 0 or 1 (abscissa). If p = .49 (left), the channel is
very noisy and we don’t learn much from the observation. Indeed we see that even if the
single channel output is 0 (k = 0 in the figure) the posterior makes H = 0 only slightly
more likely than H = 1 . On the other hand if p = .25 the channel is less noisy which
implies a more informative observation. Indeed we see (right top figure) that when k = 0
the posterior probability that H = 0 is significantly higher than the posterior probability
that H = 1 . In the bottom two figures the number of observations is n = 100 and the
abscissa shows the number k of ones contained in the 100 observations. On the right
(p = .25 ) we see that the posterior allows us to make a confident decision about H for
almost all values of k . Uncertainty arises only when the number of observed ones roughly
equals the number of zeros. On the other hand when p = .49 (bottom left figure) we can
make a confident decision about H only if the observations contains a small number or a
large number of 1 s.
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Figure 2.12: Posterior PH|Y (0|y) as a function of the number k of observed 1s. The top
row is for n = 1, k = 0, 1 . The prior is more informative, and the decision more reliable,
when p = .25 (right) than when p = .49 (left). The bottom row corresponds to n = 100 .
Now we see that we can make a reliable decision even if p = .49 (left), provided that k is
sufficiently close to 0 or 100 . When p = .25 , as k goes from k < n

2
to k > n

2
, the prior

changes rapidly from being strongly in favor of H = 0 to strongly in favor of H = 1.

2
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Appendix 2.A Facts About Matrices

We now review a few definitions and results that will be useful throughout. Hereafter H†

is the conjugate transpose of H also called the Hermitian adjoint of H .

Definition 18. A matrix U ∈ Cn×n is said to be unitary if U †U = I . If, in addition,
U ∈ Rn×n , U is said to be orthogonal.

The following theorem lists a number of handy facts about unitary matrices. Most of
them are straightforward. For a proof see [1, page 67].

Theorem 19. if U ∈ Cn×n , the following are equivalent:

(a) U is unitary;

(b) U is nonsingular and U † = U−1 ;

(c) UU † = I ;

(d) U † is unitary

(e) The columns of U form an orthonormal set;

(f) The rows of U form an orthonormal set; and

(g) For all x ∈ Cn the Euclidean length of y = Ux is the same as that of x ; that is,
y†y = x†x .

Theorem 20. (Schur) Any square matrix A can be written as A = URU † where U is
unitary and R is an upper-triangular matrix whose diagonal entries are the eigenvalues
of A .

Proof. Let us use induction on the size n of the matrix. The theorem is clearly true for
n = 1. Let us now show that if it is true for n− 1 it follows that it is true for n . Given
A of size n , let v be an eigenvector of unit norm, and λ the corresponding eigenvalue.
Let V be a unitary matrix whose first column is v . Consider the matrix V †AV . The
first column of this matrix is given by V †Av = λV †v = λe1 where e1 is the unit vector
along the first coordinate. Thus

V †AV =

(
λ ∗
0 B

)
,

where B is square and of dimension n − 1 . By the induction hypothesis B = WSW † ,
where W is unitary and S is upper triangular. Thus,

V †AV =

(
λ ∗
0 WSW †

)
=

(
1 0
0 W

)(
λ ∗
0 S

)(
1 0
0 W †

)
(2.13)
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and putting

U = V

(
1 0
0 W

)
and R =

(
λ ∗
0 S

)
,

we see that U is unitary, R is upper-triangular and A = URU † , completing the in-
duction step. To see that the diagonal entries of R are indeed the eigenvalues of A it
suffices to bring the characteristic polynomial of A in the following form: det(λI −A) =
det
[
U †(λI −R)U

]
= det(λI −R) =

∏
i(λ− rii) .

Definition 21. A matrix H ∈ Cn×x is said to be Hermitian if H = H† . It is said to be
Skew-Hermitian if H = −H† .

Recall that an n× n matrix has exactly n eigenvalues in C .

Lemma 22. A Hermitian matrix H ∈ Cn×n can be written as

H = UΛU † =
∑
i

λiuiu
†
i

where U is unitary and Λ = diag(λ1, . . . , λn) is a diagonal that consists of the eigenvalues
of H . Moreover, the eigenvalues are real and the i th column of U is an eigenvector
associated to λi .

Proof. By Theorem 20 (Schur) we can write H = URU † where U is unitary and R is
upper triangular with the diagonal elements consisting of the eigenvalues of A . From
R = U †HU we immediately see that R is Hermitian. Since it is also diagonal, the
diagonal elements must be real.

If ui is the i th column of U , then

Hui = UΛU †ui = UΛei = Uλiei = λiui

showing that it is indeed an eigenvector associated to the i th eigenvalue λi .

The reader interested in properties of Hermitian matrices is referred to [1, Section 4.1].

Exercise 23. Show that if H ∈ Cn×n is Hermitian, then u†Hu is real for all u ∈ Cn .

A class of Hermitian matrices with a special positivity property arises naturally in many
applications, including communication theory. They provide a generalization to matrices
of the notion of positive numbers.

Definition 24. An Hermitian matrix H ∈ Cn×n is said to be positive definite if

u†Hu > 0 for all non zero u ∈ Cn.

If the above strict inequality is weakened to u†Hu ≥ 0 , then A is said to be posi-
tive semidefinite. Implicit in these defining inequalities is the observation that if H is
Hermitian, the left hand side is always a real number.
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Exercise 25. Show that a non-singular covariance matrix is always positive definite.

Theorem 26. (SVD) Any matrix A ∈ Cm×n can be written as a product

A = UDV †,

where U and V are unitary (of dimension m×m and n×n , respectively) and D ∈ Rm×n

is non-negative and diagonal. This is called the singular value decomposition (SVD) of
A . Moreover, letting k be the rank of A , the following statements are true:

(i) The columns of V are the eigenvectors of A†A . The last n− k columns span the null
space of A .

(ii) The columns of U are eigenvectors of AA† . The first k columns span the range of
A .

(iii) If m ≥ n then

D =

 diag(
√
λ1, . . . ,

√
λn)

. . . . . . . . . . . . . . . . . . .
0m−n

 ,

where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λn = 0 are the eigenvalues of A†A ∈ Cn×n

which are non-negative since A†A is Hermitian. If m ≤ n then

D = (diag(
√
λ1, . . . ,

√
λm) : 0n−m),

where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λm = 0 are the eigenvalues of AA† .

Note 1: Recall that the nonzero eigenvalues of AB equals the nonzero eigenvalues of BA ,
see e.g. Horn and Johnson, Theorem 1.3.29. Hence the nonzero eigenvalues in (iii) are
the same for both cases.

Note 2: To remember that V is associated to H†H (as opposed to being associated to
HH† ) it suffices to look at the dimensions: V ∈ Rn and H†H ∈ Rn×n .

Proof. It is sufficient to consider the case with m ≥ n since if m < n we can apply the
result to A† = UDV † and obtain A = V D†U † .

Hence let m ≥ n , and consider the matrix A†A ∈ Cn×n . This matrix is Hermitian. Hence
its eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0 are real and non-negative and one can choose the
eigenvectors v1,v2, . . . ,vn to form an orthonormal basis for Cn . Let V = (v1, . . . ,vn) .
Let k be the number of positive eigenvectors and choose.

ui =
1√
λi
Avi, i = 1, 2, . . . , k. (2.14)

Observe that

u†iuj =
1√
λiλj

v†iA
†Avj =

√
λj
λi
v†ivj = δij, 0 ≤ i, j ≤ k.
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Hence {ui : i = 1, . . . , k} form an orthonormal set in Cm . Complete this set to an or-
thonormal basis for Cm by choosing {ui : i = k+1, . . . ,m} and let U = (u1,u2, . . . ,um).
Note that (2.14) implies

ui
√
λi = Avi, i = 1, 2, . . . , k, k + 1, . . . , n,

where for i = k + 1, . . . , n the above relationship holds since λi = 0 and vi is a corre-
sponding eigenvector. Using matrix notation we obtain

U



√
λ1 0

. . .

0
√
λn

. . . . . . . . . . . . . . . . .
0m−n

 = AV, (2.15)

i.e., A = UDV † . For i = 1, 2, . . . ,m,

AA†ui = UDV †V †D†U †ui

= UDD†U †ui = uiλi,

where the last equality follows from the fact that U †ui has a 1 at position i and is
zero otherwise and DD† = diag(λ1, λ2, . . . , λk, 0, . . . , 0) . This shows that λi is also an
eigenvalues of AA† . We have also shown that {vi : i = k+ 1, . . . , n} spans the null space
of A and from (2.15) we see that {ui : i = 1, . . . , k} spans the range of A .

The following key result is a simple application of the SVD.

Lemma 27. The linear transformation described by a matrix A ∈ Rn×n maps the unit
cube into a parallelepiped of volume | detA| .

Proof. (Question to the students: do we need to review what a unit cube is, that the
linear transformation maps ei into the vector ai that forms the i -th column of A ,
and that the volume of an n -dimensional object (set) A is

∫
A dx?) From the singular

value decomposition, A = UDV † , where D is diagonal and U and V are orthogonal
matrices. The linear transformation associated to A is the same as that associated to
U †AV = D . (We are just changing the coordinate system). But D maps the unit vectors
e1, e2, . . . , en into λ1e1, λ2e2, . . . , λnen . Hence, the unit cube is mapped into a rectangle
of sides λ1, λ2, . . . , λn . Its volume is |

∏
λi| = | detD| = | detA| .
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Figure 2.13: The role of a pdf (a); relationships between lengths in one-dimensional
transformations (b); relationships between areas in two-dimensional transformations (c).

Appendix 2.B Densities After Linear Transformations

In this Appendix we outline how to determine the density of the random vector Y knowing
the density of X and knowing that Y = g(X) . This is an informal review. Or aim is
to present the material in such a way that the reader sees what is gong on, hoping that
in the future the student will be able to derive the density of a random variable defined
in terms on another random variable without having to look up formulas.

We start with the scalar case. So X is a random variable of density fX and Y = g(X)
for a given one-to-one and onto function g : X → Y . Recall that a probability density
function is to probability what pressure is to force: by integrating the probability density
function over a subset A of X we obtain the probability that the event A occurs. If A
is a small interval within X and it is small enough that we can consider fX to be flat
over A , then Pr{X ∈ A} = fX(x̄)l(A) , where l(A) denotes the length of the segment A
and x̄ is any point in A . This is depicted in Fig. 2.13(a). The probability Pr{X ∈ A}
is the shaded area, which tends to fX(x̄)l(A) as l(A) goes to zero.

Now assume that g maps the interval A into the interval B of length l(B) as shown in
Fig. 2.13(b). The probability that Y ∈ B is the same as the probability that X ∈ A .
Hence fY must have the property

fY (ȳ)l(B) = fX(x̄)l(A),

where ȳ is a point in B and x̄ = g−1(ȳ) is the corresponding point in A . We are making
the assumption that A and B are small enough so that fX is flat over A and fY is flat
over B . Solving we obtain

fY (ȳ) = fX(x̄)
l(A)

l(B)

From Fig.2.13(b) it is clear that in the limit of l(A) and l(B) becoming small we have
l(B)
l(A)

= |g′(x̄)| where g′ is the derivative of g . We have found that

fY (y) =
fX(g−1(y))

|g′(g−1(y)|
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Example 28. If y = ax for some non-zero constant then

fY (y) =
fX(y

a
)

|a|
.

2

Next we consider the two-dimensional case. Let X = (X1, X2)T have pdf fX(x) and
consider, as a start, the random vector Y obtained from the linear transformation

Y = AX

for some non-singular matrix A . The procedure to determine fY parallels the one for
the scalar case. If A is a small rectangle, small enough that fX(x) may be considered
constant for all X ∈ A , then Pr{X ∈ A} is approximated by fX(x)a(A) , where a(A)
is the area of A . If B is the image of A , then

fY (ȳ)a(B) = fX(x̄)a(A)

where again we have made the assumption that A is small enough that fX is constant
for all x ∈ A and fY is constant for all y ∈ B and x̄ ∈ A and ȳ ∈ B . Hence

fY (ȳ) = fX(x̄)
a(A)

a(B)
.

For the next and final step you need to know that A maps surface A of area a(A) into
a surface B of area a(B) = a(A)| detA| . This fact, depicted in Fig. 2.13(c) for the
two-dimensional case, is true in any number of dimensions n , but for n ≥ 3 we speak
of volume instead of area. The volume of A will be denoted by Vol(A) . (The one-
dimensional case is no special case: the determinant of a is a ). See Lemma 27 Appendix
2.A for the outline of a proof that Vol(B) = Vol(A)| detA| . Hence

fY (y) =
fX(A−1y)

| detA|
.

We are ready to generalize to the case

ȳ = g(x̄)

where g is one-to-one onto.

If we let A be a square of sides dx1 and dx2 that contains x̄ , then the image of g will
be a parallelepiped of sides dy1 and dy2 where(

dy1

dy2

)
= J(x̄)

(
dx1

dx2

)
and J = J(x̄) is the Jacobian that at position i, j contains ∂gi

∂xj
evalutated at x̄ . The

Jacobian J(x) is the matrix that provides the linear approximation of g at x .
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Hence

fȲ (ȳ) =
fX(g−1(ȳ))

| det J(g−1(y))|
.

Sometimes the new random vector Y is described by the inverse function x = g−1(y) .
There is no need to find g . The determinant of the Jacobian of g at x = g−1(y) is one
over the determinant of the Jacobian of g−1 at y .

Example 29. (Rayleigh distribution) Let X1 and X2 be two independent, zero-mean,
unit-variance, Gaussian random variables. Let R and Θ be the corresponding polar
coordinates, i.e., X1 = R cos Θ and X2 = R sin Θ . We are interested in the probability
density functions fR,Θ , fR , and fΘ . Since we are given the map g from (r, θ) to (x1, x2) ,
we pretend that we know fR,Θ and that we want to find fX1,X2 . Thus

fX1,X2(x1, x2) =
1

| det J |
fR,Θ(r, θ)

where J is the Jacobian of g , namely

J =

(
∂x1(r,θ)
∂r

∂x1(r,θ)
∂θ

∂x2(r,θ)
∂θ

∂x2(r,θ)
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
.

Hence det J = r and

fX1,X2(x1, x2) =
1

r
fR,θ(r, θ).

Plugging in fX1,X2(x1, x2) = 1
2π
e−

x21+x22
2 , using x2

1 + x2
2 = r2 to make it a function of the

desired variables r, θ , and solving for fR,θ we immediately obtain

fR,θ(r, θ) =
r

2π
e−

r2

2 .

Since fR,Θ(r, θ) depends only on r we can immediately infer that R and Θ are indepen-
dent random variables and that the latter is uniformly distributed in [0, 2π) . Hence

fΘ(θ) =

{
1

2π
θ ∈ [0, 2π)

0 otherwise

and

fR(r) =

{
re−

r2

2 r ≥ 0

0 otherwise.

We would have come to the same conclusion by integrating fR,Θ over θ to obtain fR and
by integrating over r to obtain fΘ . Notice that fR is a Rayleigh probability density.

2
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Appendix 2.C Gaussian Random Vectors

We now study Gaussian random vectors. A Gaussian random vector is nothing else than
a collection of jointly Gaussian random variables. We learn to use vector notation since
this will simplify matters significantly.

Recall that a random variable W is a mapping W : Ω → R from the sample space Ω
to the reals R . W is a Gaussian random variable with mean m and variance σ2 if and
only if (iff) its probability density function (pdf) is

fW (w) =
1√

2πσ2
exp

{
−(w −m)2

2σ2

}
.

Since a Gaussian random variable is completely specified by its mean m and variance
σ2 , we use the short-hand notation N (m,σ2) to denote its pdf. Hence W ∼ N (m,σ2) .

An n -dimensional random vector (n -rv) X is a mapping X : Ω→ Rn . It can be seen as
a collection X = (X1, X2, . . . , Xn)T of n random variables. The pdf of X is the joint pdf
of X1, X2, . . . , Xn . The expected value of X , denoted by EX or by X̄ , is the n -tuple
(EX1, EX2, . . . , EXn)T . The covariance matrix of X is KX = E[(X − X̄)(X − X̄)T ] .
Notice that XXT is an n × n random matrix, i.e., a matrix of random variables, and
the expected value of such a matrix is, by definition, the matrix whose components are
the expected values of those random variables. Notice that a covariance matrix is always
Hermitian.

The pdf of a vector W = (W1,W2, . . . ,Wn)T that consists of independent and identically
distributed (iid) ∼ N (0, σ2) components is

fW (w) =
n∏
i=1

1√
2πσ2

exp

(
− w2

i

2σ2

)
(2.16)

=
1

(2πσ2)n/2
exp

(
−w

Tw

2σ2

)
. (2.17)

The following is one of several possible ways to define a Gaussian random vector.

Definition 30. The random vector Y ∈ Rm is a zero-mean Gaussian random vector and
Y1, Y2, . . . , Yn are zero-mean jointly Gaussian random variables, iff there exists a matrix
A ∈ Rm×n such that Y can be expressed as

Y = AW (2.18)

where W is a random vector of iid ∼ N (0, 1) components.

Note 31. From the above definition it follows immediately that linear combination of
zero-mean jointly Gaussian random variables are zero-mean jointly Gaussian random vari-
ables. Indeed, Z = BY = BAW .
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Recall from Appendix 2.B that if Y = AW for some nonsingular matrix A ∈ Rn×n ,
then

fY (y) =
fW (A−1y)

| detA|
.

When W has iid ∼ N (0, 1) components,

fY (y) =
exp

(
− (A−1y)T (A−1y)

2

)
(2π)n/2| detA|

.

The above expression can be simplified and brought to the standard expression

fY (y) =
1√

(2π)n detKY
exp

(
−1

2
yTK−1

Y y

)
(2.19)

using KY = EAW (AW )T = EAWW TAT = AInA
T = AAT to obtain

(A−1y)T (A−1y) = yT (A−1)TA−1y

= yT (AAT )−1y

= yTK−1
Y y

and √
detKY =

√
detAAT =

√
detA detA = | detA|.

Fact 32. Let Y ∈ Rn be a zero-mean random vector with arbitrary covariance matrix
KY and pdf as in (2.19). Since a covariance matrix is Hermitian, we we can write (see
Appendix 2.A)

KY = UΛU † (2.20)

where U is unitary and Λ is diagonal. It is immediate to verify that U
√

ΛW has
covariance KY . This shows that an arbitrary zero-mean random vector Y with pdf as
in (2.19) can always be written in the form Y = AW where W has iid ∼ N (0, In)
components.

The contrary is not true in degenerated cases. We have already seen that (2.19) follows
from (2.18) when A is a non-singular squared matrix. The derivation extends to any
non-squared matrix A , provided that it has linearly independent rows. This result is
derived as a homework exercise. In that exercise we also see that it is indeed necessary
that the rows of A be linearly independent since otherwise KY is singular and K−1

Y is
not defined. Then (2.19) is not defined either. An example will show how to handle such
degenerated cases.

It should be pointed out that many authors use (2.19) to define a Gaussian random vector.
We favor (2.18) because it is more general, but also since it makes it straightforward to
prove a number of key results associated to Gaussian random vectors. Some of these are
dealt with in the examples below.

In any case, a zero-mean Gaussian random vector is completely characterized by its co-
variance matrix. Hence the short-hand notation Y ∼ N (0, KY ) .
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Note 33. (Degenerate case) Let W ∼ N (0, 1) , A = (1, 1)T , and Y = AW . By our
definition, Y is a Gaussian random vector. However, A is a matrix of linearly dependent
rows implying that Y has linearly dependent components. Indeed Y1 = Y2 . This also
implies that KY is singular: it is a 2× 2 matrix with 1 in each component. As already
pointed out, we can’t use (2.19) to describe the pdf of Y . This immediately raises
the question: how do we compute the probability of events involving Y if we don’t
know its pdf? The answer is easy. Any event involving Y can be rewritten as an
event involving Y1 only (or equivalently involving Y2 only). For instance, the event
{Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} occurs iff {Y1 ∈ [4, 5]} . Hence

Pr {Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} = Pr {Y1 ∈ [4, 5]} = Q(4)−Q(5).

Exercise 34. Show that the i th component Yi of a Gaussian random vector Y is a
Gaussian random variable.

Solution: Yi = AY when A = eTi is the unit row vector with 1 in the i -th component
and 0 elsewhere. Hence Yi is a Gaussian random variable. To appreciate the convenience
of working with (2.18) instead of (2.19), compare this answer with the tedious derivation
consisting of integrating over fY to obtain fYi (see Problem 12).

Exercise 35. Let U be an orthogonal matrix. Determine the pdf of Y = UW .

Solution: Y is zero-mean and Gaussian. Its covariance matrix is KY = UKWU
T =

Uσ2InU
T = σ2UUT = σ2In , where In denotes the n × n identiy matrix. Hence, when

an n -dimensional Gaussian random vector with iid ∼ N (0, σ2) components is projected
onto n orthonormal vectors, we obtain n iid ∼ N (0, σ2) random variables. This fact
will be used often.

Exercise 36. (Gaussian random variables are not necessarily jointly Gaussian) Let Y1 ∼
N (0, 1) , let X ∈ {±1} be uniformly distributed, and let Y2 = Y1X . Notice that Y2 has
the same pdf as Y1 . This follows from the fact that the pdf of Y1 is an even function.
Hence Y1 and Y2 are both Gaussian. However, they are not jointly Gaussian. We come
to this conclusion by observing that Z = Y1 + Y2 = Y1(1 +X) is 0 with probability 1/2.
Hence Z can’t be Gaussian.

Exercise 37. Is it true that uncorrelated Gaussian random variables are always inde-
pendent? If you think it is . . . think twice. The construction above labeled “Gaussian
random variables are not necessarily jointly Gaussian” provides a counter example (you
should be able to verify without much effort). However, the statement is true if the ran-
dom variables under consideration are jointly Gaussian (the emphasis is on “jointly”).
You should be able to prove this fact using (2.19). The contrary is always true: random
variables (not necessarily Gaussian) that are independent are always uncorrelated. Again,
you should be able to provide the straightforward proof. (You are strongly encouraged
to brainstorm this and similar exercises with other students. Hopefully this will create
healthy discussions. Let us know if you can’t clear every doubt this way . . . we are very
much interested in knowing where the difficulties are.)
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Definition 38. The random vector Y is a Gaussian random vector (and Y1, . . . , Yn are
jointly Gaussian random variables) iff Y −m is a zero mean Gaussian random vector as
defined above, where m = EY . If the covariance KY is non-singular (which implies that
no component of Y is determined by a linear combination of other components), then
its pdf is

fY (y) =
1√

(2π)n detKY
exp

(
−1

2
(y − Ey)TK−1

Y (y − Ey)

)
.
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Appendix 2.D A Fact About Triangles

To determine an exact expression of the probability of error, in Example 15 we use the
following fact about triangles.

a sin βa

β

γ

αc

b
a

β

γ

αc

b b sin(180− α)

For a triangle with edges a , b , c and angles α , β , γ (see the figure), the following
relationship holds:

a

sinα
=

b

sin β
=

c

sin γ
. (2.21)

To prove the equality relating a and b we project the common vertex γ onto the extension
of the segment connecting the other two edges (α and β ). This projection gives rise to
two triangles that share a common edge whose length can be written as a sin β and as
b sin(180− α) (see right figure). Using b sin(180− α) = b sinα leads to a sin β = b sinα .
The second equality is proved similarly. 2

Appendix 2.E Inner Product Spaces

Vector Space

We assume that you are familiar with vector spaces. In Chapter 2 we will be dealing
with the vector space of n -tuples over R but later we will need both the vector space of
n -tuples over C and the vector space of finite-energy complex-valued functions. To be as
general as needed we assume that the vector space is over the field of complex numbers,
in which case it is called a complex vector space. When the scalar field is R , the vector
space is called a real vector space.

Inner Product Space

Given a vector space and nothing more, one can introduce the notion of a basis for the
vector space, but one does not have the tool needed to define an orthonormal basis.
Indeed the axioms of a vector space say nothing about geometric ideas such as “length”
or “angle.” To remedy, one endows the vector space with the notion of inner product.

Definition 39. Let V be a vector space over C . An inner product on V is a function
that assigns to each ordered pair of vectors α, β in V a scalar 〈α, β〉 in C in such a way
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that for all α , β , γ in V and all scalars c in C

(a) 〈α + β, γ〉 = 〈α, γ〉+ 〈β, γ〉
〈cα, β〉 = c〈α, β〉;

(b) 〈β, α〉 = 〈α, β〉∗; (Hermitian Symmertry)

(c) 〈α, α〉 ≥ 0 with equality iff α = 0.

It is implicit in (c) that 〈α, α〉 is real for all α ∈ V . From (a) and (b), we obtain an
additional property

(d) 〈α, β + γ〉 = 〈α, β〉+ 〈α, γ〉
〈α, cβ〉 = c∗〈α, β〉 .

Notice that the above definition is also valid for a vector space over the field of real numbers
but in this case the complex conjugates appearing in (b) and (d) are superfluous; however,
over the field of complex numbers they are necessary for the consistency of the conditions.
Without these complex conjugates, for any α 6= 0 we would have the contradiction:

0 < 〈iα, iα〉 = −1〈α, α〉 < 0,

where the first inequality follows from condition (c) and the fact that iα is a valid vector,
and the equality follows from (a) and (d) (without the complex conjugate).

On Cn there is an inner product that is sometimes called the standard inner product. It
is defined on a = (a1, . . . , an) and b = (b1, . . . , bn) by

〈a, b〉 =
∑
j

ajb
∗
j .

On Rn , the standard inner product is often called the dot or scalar product and denoted
by a · b . Unless explicitly stated otherwise, over Rn and over Cn we will always assume
the standard inner product.

An inner product space is a real or complex vector space, together with a specified inner
product on that space. We will use the letter V to denote a generic inner product space.

Example 40. The vector space Rn equipped with the dot product is an inner product
space and so is the vector space Cn equipped with the standard inner product. 2

By means of the inner product we introduce the notion of length, called norm, of a vector
α , via

‖α‖ =
√
〈α, α〉.

Using linearity, we immediately obtain that the squared norm satisfies

‖α± β‖2 = 〈α± β, α± β〉 = ‖α‖2 + ‖β‖2 ± 2Re{〈α, β〉}. (2.22)
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The above generalizes (a±b)2 = a2+b2±2ab , a, b ∈ R , and |a±b|2 = |a|2+|b|2±2Re{ab} ,
a, b ∈ C .

Example 41. Consider the vector space V spanned by a finite collection of complex-
valued finite-energy signals, where addition of vectors and multiplication of a vector with
a scalar (in C ) are defined in the obvious way. You should verify that the axioms of a
vector space are fulfilled. This includes showing that the sum of two finite-energy signals
is a finite-energy signal. The standard inner product for this vectors space is defined as

〈α, β〉 =

∫
α(t)β∗(t)dt

which implies the norm

‖α‖ =

√∫
|α(t)|2dt.

2

Example 42. The previous example extends to the inner product space L2 of all complex-
valued finite-energy functions. This is an infinite dimensional inner product space and
to be careful one has to deal with some technicalities that we will just mention here. (If
you wish you may skip the rest of this example without loosing anything important for
the sequel). If α and β are two finite-energy functions that are identical except on a
countable number of points, then 〈α − β, α − β〉 = 0 (the integral is over a function
that vanishes except for a countable number of points). The definition of inner product
requires that α − β be the zero vector. This seems to be in contradiction with the fact
that α − β is non-zero on a countable number of points. To deal with this apparent
contradiction one can define vectors to be equivalence classes of finite-energy functions.
In other words, if the norm of α−β vanishes then α and β are considered to be the same
vector and α−β is seen as a zero vector. This equivalence may seem artificial at first but
it is actually consistent with the reality that if α− β has zero energy then no instrument
will be able to distinguish between α and β . The signal captured by the antenna of a
receiver is finite energy, thus in L2 . It is for this reason that we are interested in L2 . 2

Theorem 43. If V is an inner product space, then for any vectors α , β in V and any
scalar c ,

(a) ‖cα‖ = |c|‖α‖

(b) ‖α‖ ≥ 0 with equality iff α = 0

(c) |〈α, β〉| ≤ ‖α‖‖β‖ with equality iff α = cβ for some c .
(Cauchy-Schwarz inequality)

(d) ‖α + β‖ ≤ ‖α‖+ ‖β‖ with equality iff α = cβ for some non-negative c ∈ R .
(Triangle inequality)

(e) ‖α + β‖2 + ‖α− β‖2 = 2(‖α‖2 + ‖β‖2)
(Parallelogram equality)
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Proof. Statements (a) and (b) follow immediately from the definitions. We postpone the
proof of the Cauchy-Schwarz inequality to Example 45 since it will be more insightful
once we have defined the concept of a projection. To prove the triangle inequality we
use (2.22) and the Cauchy-Schwarz inequality applied to Re{〈α, β〉} ≤ |〈α, β〉| to prove
that ‖α + β‖2 ≤ (‖α‖+ ‖β‖)2 . You should verify that Re{〈α, β〉} ≤ |〈α, β〉| holds with
equality iff α = cβ for some non-negative c ∈ R . Hence this condition is necessary for the
triangle inequality to hold with equality. It is also sufficient since then also the Cauchy-
Schwarz inequality holds with equality. The parallelogram equality follows immediately
from (2.22) used twice, once with each sign. 2
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At this point we could use the inner product and the norm to define the angle between
two vectors but we don’t have any use for that. Instead, we will make frequent use of the
notion of orthogonality. Two vectors α and β are defined to be orthogonal if 〈α, β〉 = 0.

Theorem 44. (Pythagorean Theorem) If α and β are orthogonal vectors in V , then

‖α + β‖2 = ‖α‖2 + ‖β‖2.

Proof. The Pythagorean theorem follows immediately from the equality ‖α + β‖2 =
‖α‖2 + ‖β‖2 + 2Re{〈α, β〉} and the fact that 〈α, β〉 = 0 by definition of orthogonality.
2

Given two vectors α, β ∈ V , β 6= 0, we define the projection of α on β as the vector
α|β collinear to β (i.e. of the form cβ for some scalar c ) such that α⊥β = α − α|β is
orthogonal to β . Using the definition of orthogonality, what we want is

0 = 〈α⊥β, β〉 = 〈α− cβ, β〉 = 〈α, β〉 − c‖β‖2.

Solving for c we obtain c = 〈α,β〉
‖β‖2 . Hence

α|β =
〈α, β〉
‖β‖2

β and α⊥β = α− α|β.

The projection of α on β does not depend on the norm of β . To see this let β = bψ for
some b ∈ C . Then

α|β = 〈α, ψ〉ψ = α|ψ,

regardless of b . It is immediate to verify that the norm of the projection is |〈α, ψ〉| =
|〈α,β〉|
‖β‖ .
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Any non-zero vector β defines a hyperplane by the relationship

{α ∈ V : 〈α, β〉 = 0} .

It is the set of vectors that are orthogonal to β . A hyperplane always contains the zero
vector.

An affine space, defined by a vector β and a scalar c , is an object of the form

{α ∈ V : 〈α, β〉 = c} .

The defining vector and scalar are not unique, unless we agree that we use only normalized
vectors to define hyperplanes. By letting ϕ = β

‖β‖ , the above definition of affine plane may

equivalently be written as {α ∈ V : 〈α, ϕ〉 = c
‖β‖} or even as {α ∈ V : 〈α− c

‖β‖ϕ, ϕ〉 = 0} .
The first shows that at an affine plane is the set of vectors that have the same projection
c
‖β‖ϕ on ϕ . The second form shows that the affine plane is a hyperplane translated by the
vector c

‖β‖ϕ . Some authors make no distinction between affine planes and hyperplanes.
In that case both are called hyperplane.
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Now it is time to prove the Cauchy-Schwarz inequality stated in Theorem 43. We do it
as an application of a projection.

Example 45. (Proof of the Cauchy-Schwarz Inequality). The Cauchy-Schwarz inequality
states that for any α, β ∈ V , |〈α, β〉| ≤ ‖α‖‖β‖ with equality iff α = cβ for some scalar
c ∈ C . The statement is obviously true if β = 0 . Assume β 6= 0 and write α = α|β+α⊥β .
The Pythagorean theorem states that ‖α‖2 = ‖α|β‖2 + ‖α⊥β‖2 . If we drop the second
term, which is always nonnegative, we obtain ‖α‖2 ≥ ‖α|β‖2 with equality iff α and β

are collinear. From the definition of projection, ‖α|β‖2 = |〈α,β〉|2
‖β‖2 . Hence ‖α‖2 ≥ |〈α,β〉|2

‖β‖2
with equality equality iff α and β are collinear. This is the Cauchy-Schwarz inequality.
2
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The Cauchy-Schwarz inequality

Every finite-dimensional vector space has a basis. If β1, β2, . . . , βn is a basis for the inner
product space V and α ∈ V is an arbitrary vector, then there are scalars a1, . . . , an such
that α =

∑
aiβi but finding them may be difficult. However, finding the coefficients of a

vector is particularly easy when the basis is orthonormal.

A basis ϕ1, ϕ2, . . . , ϕn for an inner product space V is orthonormal if

〈ϕi, ϕj〉 =

{
0, i 6= j

1, i = j.

Finding the i -th coefficient ai of an orthonormal expansion α =
∑
aiψi is immediate.

It suffices to observe that all but the i th term of
∑
aiψi are orthogonal to ψi and that

the inner product of the i th term with ψi yields ai . Hence if α =
∑
aiψi then

ai = 〈α, ψi〉.

Observe that |ai| is the norm of the projection of α on ψi . This should not be surprising
given that the i th term of the orthonormal expansion of α is collinear to ψi and the sum
of all the other terms are orthogonal to ψi .

There is another major advantage of working with an orthonormal basis. If a and b
are the n -tuples of coefficients of the expansion of α and β with respect to the same
orthonormal basis then

〈α, β〉 = 〈a, b〉

where the right hand side inner product is with respect to the standard inner product.
Indeed

〈α, β〉 = 〈
∑

aiψi,
∑
j

bjψj〉 =
∑

ai〈ψi,
∑
j

bjψj〉

=
∑

ai〈ψi, biψi〉 =
∑

aib
∗
i = 〈a, b〉.

Letting β = α the above implies also

‖α‖ = ‖a‖,

where the right hand side is the standard norm‖a‖ =
∑
|ai|2.
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An orthonormal set of vectors ψ1, . . . , ψn of an inner product space V is a linearly in-
dependent set. Indeed 0 =

∑
aiψi implies ai = 〈0, ψi〉 = 0. By normalizing the vectors

and recomputing the coefficients one can easily extend this reasoning to a set of orthog-
onal (but not necessarily orthonormal) vectors α1, . . . , αn . They too must be linearly
independent.

The idea of a projection on a vector generalizes to a projection on a subspace. If W is a
subspace of an inner product space V , and α ∈ V , the projection of α on W is defined to
be a vector α|W ∈ W such that α−α|W is orthogonal to all vectors in W . If ψ1, . . . , ψm
is an orthonormal basis for W then the condition that α−α|W is orthogonal to all vectors
of W implies 0 = 〈α−α|W , ψi〉 = 〈α, ψi〉−〈α|W , ψi〉 . This shows that 〈α, ψi〉 = 〈α|W , ψi〉 .
The right side of this equality is the i -th coefficient of the orthonormal expansion of α|W
with respect to the orthonormal basis. This proves that

α|W =
m∑
i=1

〈α, ψi〉ψi

is the unique projection of α on W .

Theorem 46. Let V be an inner product space and let β1, . . . , βn be any collection of
linearly independent vectors in V . Then one may construct orthogonal vectors α1, . . . , αn
in V such that they form a basis for the subspace spanned by β1, . . . , βn .

Proof. The proof is constructive via a procedure known as the Gram-Schmidt orthogo-
nalization procedure. First let α1 = β1 . The other vectors are constructed inductively as
follows. Suppose α1, . . . , αm have been chosen so that they form an orthogonal basis for
the subspace Wm spanned by β1, . . . , βm . We choose the next vector as

αm+1 = βm+1 − βm+1|Wm
, (2.23)

where βm+1|Wm
is the projection of βm+1 on Wm . By definition, αm+1 is orthogonal to ev-

ery vector in Wm , including α1, . . . , αm . Also, αm+1 6= 0 for otherwise βm+1 contradicts
the hypothesis that it is lineary independent of β1, . . . , βm . Therefore α1, . . . , αm+1 is an
orthogonal collection of nonzero vectors in the subspace Wm+1 spanned by β1, . . . , βm+1 .
Therefore it must be a basis for Wm+1 . Thus the vectors α1, . . . , αn may be constructed
one after the other according to (2.23). 2

Corollary 47. Every finite-dimensional vector space has an orthonormal basis.

Proof. Let β1, . . . , βn be a basis for the finite-dimensionall inner product space V . Apply
the Gram-Schmidt procedure to find an orthogonal basis α1, . . . , αn . Then ψ1, . . . , ψn ,
where ψi = αi

‖αi‖ , is an orthonormal basis. 2

Gram-Schmidt Orthonormalization Procedure

We summarize the Gram-Schmidt procedure, modified so as to produce orthonormal
vectors. If β1, . . . , βn is a linearly independent collection of vectors in the inner product
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space V then we may construct a collection ψ1, . . . , ψn that forms an orthonormal basis
for the subspace spanned by β1, . . . , βn as follows: we let ψ1 = β1

‖β1‖ and for i = 2, . . . , n
we choose

αi = βi −
i−1∑
j=1

〈βi, ψj〉ψj

ψi =
αi
‖αi‖

.

We have assumed that β1, . . . , βn is a linearly independent collection. Now assume that
this is not the case. If βj is linearly dependent of β1, . . . , βj−1 , then at step i = j the
procedure will produce αi = ψi = 0. Such vectors are simply disregarded.

The following table gives an example of the Gram-Schmidt procedure.

i βi 〈βi, ψj〉 βi|Wi−1
αi = βi − βi|Wi−1

‖αi‖ ψi βi
j < i

1 - - 2

2
0
0



2 1 1

1
1
0



3 0, 1 4

0
1
4


Table 2.1: Application of the Gram-Schmidt orthonormalization procedure. Axes are
marked with unit length intervals. The starting point is the second column.
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Appendix 2.F Problems

Problem 1. (Probabilities of Basic Events) Assume that X1 and X2 are independent
random variables uniformly distributed in the interval [0, 1] . Compute the probability of
the following events:

(a) −1
2
≤ X1 −X2 ≤ 1

2
.

(b) X2 ≥ X2
1 .

(c) X2 = X1 .

(d) X1 +X2 ≤ 1 and X1 ≥ 1
2

.

(e) Given that X1 ≥ 1
2

, compute the probability that X1 +X2 ≤ 1 .

Hint: For each event, identify the corresponding region inside the unit square.

Problem 2. (Uncorrelated vs. Independent Random Variables) Let X and Y be two
continuous real-valued random variables with joint probability density function pXY .

(a) When are X and Y uncorrelated? When are they independent? Write down the
definitions.

(b) Show that if X and Y are independent, they are also uncorrelated.

(c) Consider two independent and uniformly distributed random variables U ∈ {0, 1}
and V ∈ {0, 1} . Assume that X and Y are defined as follows: X = U + V and
Y = |U − V | . Are X and Y independent? Compute the covariance of X and Y .
What do you conclude?

Problem 3. (Bolt Factory) In a bolt factory machines A, B, C manifacture, respectively
25 , 35 and 40 per cent of the total. Of their product 5 , 4 , and 2 per cent are defective
bolts. A bolt is drawn at random from the produce and is found defective. What are the
probabilities that it was manufactured by machines A, B and C?

Note: The question is taken from the book “An introduction to Probability Theory and
Its Applications” by William Feller.
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Problem 4. (One of Three) Assume you are at a quiz show. You are shown three boxes
which look identical from the outside, except they have labels 0, 1, and 2, respectively.
Exactly one of them contains one million Swiss francs, the other two contain nothing.
You choose one box at random with a uniform probability. Let A be the random variable
which denotes your choice, A ∈ {0, 1, 2} .

(a) What is the probability that the box A contains the money?

The quizmaster knows in which box the money is and he now opens from the remain-
ing two boxes one that does not contain the prize. This means that if neither of the
two remaining boxes contain the prize then the quizmaster opens one with uniform
probability. Otherwise, he simply opens the one which does not contain the prize.
Let B denote the random variable corresponding to the box that remains closed after
the elimination by the quizmaster.

(b) What is the probability that B contains the money?

(c) If you are now allowed to change your mind, i.e., choose B instead of sticking with
A , would you do it?

Problem 5. (The “Wetterfrosch”)

Let us assume that a “weather frog” bases his forecast for tomorrow’s weather entirely
on today’s air pressure. Determining a weather forecast is a hypothesis testing problem.
For simplicity, let us assume that the weather frog only needs to tell us if the forecast
for tomorrow’s weather is “sunshine” or “rain”. Hence we are dealing with a binary
hypothesis testing problem. Let H = 0 mean “sunshine” and H = 1 mean “rain”. We
will assume that both values of H are equally likely, i.e. PH(0) = PH(1) = 1/2 .

Measurements over several years have led the weather frog to conclude that on a day that
precedes sunshine the pressure may be modeled as a random variable y with the following
probability density function:

fY |H(y|0) =

{
A− A

2
y, 0 ≤ y ≤ 1

0, otherwise.

Similarly, the pressure on a day that precedes a rainy day is distributed according to

fY |H(y|1) =

{
B + B

3
y, 0 ≤ y ≤ 1

0, otherwise.

The weather frog’s goal in life is to guess the value of H after measuring Y .

(a) Determine A and B .

(b) Find the probability PH|Y (0|y) for all values of y . This probability is often called
the a posteriori probability of hypothesis H = 0 given that Y = y . Also find the
probability PH|Y (1|y) for all values of y . Hint: Use Bayes’ rule.
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(c) Plot PH|Y (0|y) and pH|Y (1|y) as a function of y . Is it true that the decision rule
may be written as

Ĥ(y) =

{
0, if y ≤ θ
1, otherwise,

for some threshold θ ? If yes specify θ .

(d) Determine, as a function of θ , the probability that the decision rule in (iii) decides
Ĥ = 1 when, in reality, H = 0 . This probability is denoted Pr{Ĥ(y) = 1|H = 0} .

(e) Determine, as a function of θ , the probability of error for the decision rule that you
have derived in (iii). Evaluate your expression at the value of θ that you have found
in (iii).

(f) Among decision rules that compare the pressure y to a threshold like in Eqn. (2.24), is
there a decision rule that results in a smaller probability of error than the rule derived
in (iii)? You should be able to answer this question without further calculations.
However, to double check, find the θ that maximizes the expression you have found
in part (iv).

Problem 6. (Alternative “Wetterfrosch”) A TV “weather frog” bases his weather fore-
cast for tomorrow entirely on today’s air pressure, which is thus his observable Y . Here,
we consider an ambitious weather frog who wants to distinguish three kinds of weather.
This means, that tomorrow’s weather is represented by a random variable H which take on
value 0 if the sun shines tomorrow, 1 if it rains or 2 if the weather is unstable. We assume
that the three hypotheses are a priori equally likely, i.e. PH(0) = PH(1) = PH(2) = 1/3 .

Measurements over several years have led to the following estimate of the probability
density function of today’s air pressure provided that the sun shines tomorrow,

fY |H(y|0) =

{
A− 2Ay , 0 ≤ y ≤ 0.5
0 , otherwise.

The estimate of the probability density function of today’s air pressure provided that it
rains tomorrow, is

fY |H(y|1) =

{
B + B

2
y , 0 ≤ y ≤ 1

0 , otherwise.

Finally, the estimate of the probability density function of today’s air pressure provided
that the weather is unstable tomorrow, is

fY |H(y|2) =

{
C , 0 ≤ y ≤ 1
0 , otherwise.

The weather frog’s goal is to guess the value of H after measuring Y .
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(a) Determine A , B and C .

(b) Write down the optimal decision rule (i.e. the rule that minimize the probability of
a wrong forecast) in general terms.

(c) For all values y , draw into one graph fy|H(y|0) , fy|H(y|1) and fy|H(y|2) . Show on
the graph the decision regions corresponding to the optimal decision rule. If we let
Ĥ(y) denote the frog’s forecast for a value y of the measurement, can the decision
rule be written in the following form:

Ĥ(y)


0 , if y ≤ θ1

2 , if θ1 < y < θ2

1 , if y ≥ θ2,

where θ1 and θ2 are some thresholds? If so, determine the values θ1 and θ2 ?

(d) Find the probability of a wrong forecast knowing that tomorrow’s weather is unstable,
i.e., determine the probability that the decision Ĥ is different from 2 knowing that,
in reality, H = 2 . This probability is denoted Pe(2) .

(e) If we assume that, instead of using the optimal rule, our weather frog always decides
that tomorrow’s weather is sunny, what will be his probability of error (probability
of a wrong forecast)? Explain.

Problem 7. (Hypothesis Testing in Laplacian Noise) Consider the following hypothesis
testing problem between two equally likely hypotheses. Under hypothesis H = 0 , the
observable Y is equal to a+Z where Z is a random variable with Laplacian distribution

fZ(z) =
1

2
e−|z|.

Under hypothesis H = 1 , the observable is given by −a+ Z .

(a) Find and draw the density fY |H(y|0) of the observable under hypothesis H = 0 , and
the density fY |H(y|1) of the observable under hypothesis H = 1 .

(b) Find the optimal decision rule to minimize the probability of error. Write out the
expression for the likelihood ratio.

(c) Compute the probability of error of the optimal decision rule.

Problem 8. (Poisson Parameter Estimation) In this example there are two hypotheses,
H = 0 and H = 1 which occur with probabilities PH(0) = p0 and PH(1) = 1 − p0 ,
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respectively. The observable is y ∈ N0 , i.e. y is a nonnegative integer. Under hypothesis
H = 0 , y is distributed according to a Poisson law with parameter λ0 , i.e.

pY |H(y|0) =
λy0
y!
e−λ0 . (2.24)

Under hypothesis H = 1 ,

pY |H(y|1) =
λy1
y!
e−λ1 . (2.25)

This example is in fact modeling the reception of photons in an optical fiber (for more
details, see the Example in Section 2.2 of these notes).

(a) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.
Hint: The direction of an inequality changes if both sides are multiplied by a negative
number.

(b) Derive the formula for the probability of error of the MAP decision rule.

(c) For p0 = 1/3 , λ0 = 2 and λ1 = 10 , compute the probability of error of the MAP
decision rule. You may want to use a computer program to do this.

(d) Repeat (iv) with λ1 = 20 and comment.

Problem 9. (MAP Decoding Rule: Alternative Derivation) Consider the binary hypoth-
esis testing problem where H takes values in {0, 1} with probabilites PH(0) and PH(1)
and the conditional probability density function of the observation Y ∈ R given H = i ,
i ∈ {0, 1} is given by fY |H(·|i) . Let Ri be the decoding region for hypothesis i , i.e the

set of y for which the decision is Ĥ = i , i ∈ {0, 1} .

(a) Show that the probability of error is given by

Pe = PH(1) +

∫
R1

(
PH(0)fY |H(y|0)− PH(1)fY |H(y|1)

)
dy.

Hint: Note that R = R0

⋃
R1 and

∫
R fY |H(y|i)dy = 1 for i ∈ {0, 1} .

(b) Argue that Pe is minimized when

R1 = {y ∈ R : PH(0)fY |H(y|0) < PH(1)fY |H(y|1)}

i.e the MAP rule!



2.F. Problems 59

Problem 10. (One Bit over a Binary Channel with Memory) Consider communicating
one bit via n uses of a binary channel with memory. The channel output Yi at time
instant i is given by

Yi = Xi ⊕ Zi i = 1, . . . , n

where Xi is the binary channel input, Zi is the binary noise and ⊕ represents modulo 2
addition. The noise sequence is generated as follows: Z1 is generated from the distribution
Pr(Z1 = 1) = p and for i > 1 ,

Zi = Zi−1 ⊕Ni

where N2, . . . , Nn are i.i.d. with Pr(Ni = 1) = p . Let (X
(0)
1 , . . . , X

(0)
n ) and (X

(1)
1 , . . . , X

(1)
n )

denote the codewords (the sequence of symbols sent on the channel) corresponding to the
message being 0 and 1 respectively.

(a) Consider the following operation by the receiver. The receiver creates the vector
(Ŷ1, Ŷ2, . . . , Ŷn)T where Ŷ1 = Y1 and for i = 2, 3, . . . , n , Ŷi = Yi ⊕ Yi−1 . Argue
that the vector created by the receiver is a sufficient statistic. Hint: Show that
(Y1, Y2, . . . , Yn)> can be reconstructed from (Ŷ1, Ŷ2, . . . , Ŷn)> .

(b) Write down (Ŷ1, Ŷ2, . . . , Ŷn)> for each of the hypotheses. Notice the similarity with
the problem of communicating one bit via n uses of a binary symmetric channel.

(c) How should the receiver choose the codewords (X
(0)
1 , . . . , X

(0)
n ) and (X

(1)
1 , . . . , X

(1)
n )

so as to minimize the probability of error? Hint: When communicating one bit via n
uses of a binary symmetric channel, the probability of error is minimized by choosing
two codewords that differ in each component.

Problem 11. (IID versus First-Order Markov) Consider testing two equally likely hy-
potheses H = 0 and H = 1 . The observable

Y = (Y1, . . . , Yk) (2.26)

is a k -dimensional binary vector. Under H = 0 the components of the vector Y are
independent uniform random variables (also called Bernoulli (1/2) random variables).
Under H = 1 , the component Y1 is also uniform, but the components Yi , 2 ≤ i ≤ k ,
are distributed as follows:

Pr(Yi = yi|Yi−1 = yi−1, . . . , Y1 = y1) =

{
3/4, if yi = yi−1

1/4, otherwise.
(2.27)

(a) Find the decision rule that minimizes the probability of error. Hint: Write down a
short sample sequence (y1, . . . , yk) and determine its probability under each hypoth-
esis. Then generalize.

(b) Give a simple sufficient statistic for this decision.
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(c) Suppose that the observed sequence alternates between 0 and 1 except for one string
of ones of length s , i.e. the observed sequence y looks something like

y = 0101010111111 . . . 111111010101 . . . . (2.28)

What is the least s such that we decide for hypothesis H = 1? Evaluate your
formula for k = 20 .

Problem 12. (Real-Valued Gaussian Random Variables) For the purpose of this prob-
lem, two zero-mean real-valued Gaussian random variables X and Y are called jointly
Gaussian if and only if their joint density is

fXY (x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x, y

)
Σ−1

(
x
y

))
, (2.29)

where (for zero-mean random vectors) the so-called covariance matrix Σ is

Σ = E

[(
X
Y

)
(X, Y )

]
=

(
σ2
X σXY

σXY σ2
Y

)
. (2.30)

(a) Show that if X and Y are jointly Gaussian random variables, then X is a Gaussian
random variable, and so is Y .

(b) How does your answer change if you use the definition of jointly Gaussian random
variables given in these notes?

(c) Show that if X and Y are independent Gaussian random variables, then X and Y
are jointly Gaussian random variables.

(d) However, if X and Y are Gaussian random variables but not independent, then X
and Y are not necessarily jointly Gaussian. Give an example where X and Y are
Gaussian random variables, yet they are not jointly Gaussian.

(e) Let X and Y be independent Gaussian random variables with zero mean and vari-
ance σ2

X and σ2
Y , respectively. Find the probability density function of Z = X +Y .

Problem 13. (Correlation versus Independence) Let Z be a random variable with p.d.f.:

fZ(z) =

{
1/2, −1 ≤ z ≤ 1
0, otherwise.

Also, let X = Z and Y = Z2 .

(a) Show that X and Y are uncorrelated.
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(b) Are X and Y independent?

(c) Now let X and Y be jointly Gaussian, zero mean, uncorrelated with variances σ2
X

and σ2
Y respectively. Are X and Y independent? Justify your answer.

Problem 14. (Uniform Polar To Cartesian) Let R and Φ be independent random vari-
ables. R is distributed uniformly over the unit interval, Φ is distributed uniformly over
the interval [0, 2π) .5

(a) Interpret R and Φ as the polar coordinates of a point in the plane. It is clear that
the point lies inside (or on) the unit circle. Is the distribution of the point uniform
over the unit disk? Take a guess!

(b) Define the random variables

X = R cos Φ

Y = R sin Φ.

Find the joint distribution of the random variables X and Y using the Jacobian
determinant.

Do you recognize a relationship between this method and the method derived in class
to determine the probability density after a linear non-singular transformation?

(c) Does the result of part (ii) support or contradict your guess from part (i)? Explain.

Problem 15. (Sufficient Statistic) Consider a binary hypothesis testing problem specified
by:

H = 0 :

{
Y1 = Z1

Y2 = Z1Z2

H = 1 :

{
Y1 = −Z1

Y2 = −Z1Z2

where Z1 , Z2 and H are independent random variables.

(a) Is Y1 a sufficient statistic?

(Hint: If Y = aZ , where a is a scalar then fY (y) = 1
|a|fZ(y

a
) ).

5This notation means: 0 is included, but 2π is excluded. It is the current standard notation in the
anglo-saxon world. In the French world, the current standard for the same thing is [0, 2π[ .
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Problem 16. (More on Sufficient Statistic) We have seen that if H → T (Y )→ Y then
the Pe of a MAP decoder that observes both T (Y ) and Y is the same as that of a MAP
decoder that observes only T (Y ) . You may wonder if the contrary is also true, namely if
the knowledge that Y does not help reducing the error probability that one can achieve
with T (Y ) implies H → T (Y ) → Y . Here is a counterexample. Let the hypothesis
H be either 0 or 1 with equal probability (the choice of distribution on H is critical
in this example). Let the observable Y take four values with the following conditional
probabilities

PY |H(y|0) =


0.4 if y = 0
0.3 if y = 1
0.2 if y = 2
0.1 if y = 3

PY |H(y|1) =


0.1 if y = 0
0.2 if y = 1
0.3 if y = 2
0.4 if y = 3

and T (Y ) is the following function

T (y) =

{
0 if y = 0 and y = 1
1 if y = 2 and y = 3.

(a) Show that the MAP decoder Ĥ(T (y)) that makes its decisions based on T (y) is
equivalent to the MAP decoder Ĥ(y) that operates based on y .

(b) Compute the probabilities Pr(Y = 0 | T (Y ) = 0, H = 0) and Pr(Y = 0 | T (Y ) =
0, H = 1) . Do we have H → T (Y )→ Y ?

Problem 17. (Fisher-Neyman Factorization Theorem) Consider the hypothesis testing
problem where the hypothesis is H ∈ H = {0, 1, . . . ,m − 1} , the observable is Y , and
T (Y ) is a function of the observable. Let fY |H(y|i) be given for all i ∈ H . Suppose that
there are functions g1, g2, . . . , gm−1 so that for each i ∈ H one can write

fY |H(y|i) = gi(T (y))h(y). (2.31)

(a) Show that when the above conditions are satisfied, a MAP decision depends only on
T (Y ) . Hint: work directly with the definition of a MAP decision.

(b) Show that T (Y ) is a sufficient statistic, that is H → T (Y ) → Y . Hint: Start by
observing the following fact: Given a random variable Y with probability density
function fY (y) and given an arbitrary event B , we have

fY |Y ∈B =
fY (y)1B(y)∫
B fY (y)dy

. (2.32)

Proceed by defining B to be the event B = {y : T (y) = t} and make use of (2.32)
applied to fY |H(y|i) to prove that fY |H,T (Y )(y|i, t) is independent of i .
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For the following two examples, verify that condition (2.31) above is satisfied. You can
then immediately conclude from part (a) and (b) that T (Y ) is a sufficient statistic.

(a) (Example 1) Let Y = (Y1, Y2, . . . , Yn) , Yk ∈ {0, 1} , be an independent and identically
distributed (i.i.d) sequence of coin tosses of a coin such that PYk|H(1|i) = pi . Show
that the function T (y1, y2, . . . , yn) =

∑n
k=1 yk fulfills the condition expressed in (2.31).

(Notice that T (y1, y2, . . . , yn) is the number of 1 ’s in y1, y2, . . . , yn .)

(b) (Example 2) Under hypothesis H = i , let the observable Yk be Gaussian distributed
with mean mi and variance 1 ; that is

fYk|H(y|i) =
1√
2π
e−(y−mi)2 ,

and Y1, Y2, . . . , Yn be independently drawn according to this distribution. Show that
the sample mean T (y1, y2, . . . , yn) = 1

n

∑n
k=1 yk fulfills the condition expressed in

(2.31).

Problem 18. (Irrelevance and Operational Irrelevance) Let the hypothesis H be related
to the observables (U, V ) via the channel PU,V |H . We say that V is operationally ir-
relevant if a MAP decoder that observes (U, V ) achieves the same probability of error
as one that observes only U , and this is true regardless of PH . We now prove that
irrelevance and operational irrelevance imply one another. We have already proved that
irrelevance implies operational irrelevance. Hence it suffices to show that operational ir-
relevance implies irrelevance or, equivalently, that if V is not irrelevant then it is not
operationally irrelevant. We will prove the latter statement. We start by a few observa-
tions that are instructive and also useful to get us started. By definition, V irrelevant
means H → U → V . Hence V irrelevant is equivalent to the statement that that, condi-
tioned on U , the random variables H and V are independent. This gives us one intuitive
explanation why V is operationally irrelevant: Once we have observed U = u , we may
restate the hypothesis testing problem in terms of an hypothesis H and an observable V
that are independent (conditioned on U = u ) and because of independence, from V we
don’t learn anything about H . On the other hand if V is not irrelevant then there is at
least a u , call it u∗ , for which H and V are not independent conditioned on U = u∗ . It
is when such a u is observed that we should be able to prove that V affects the decision.
This suggests that the problem we are trying to solve is intimately related to the simpler
problem that involves only the hypothesis H and the observable V and the two are not
independent. We start with this problem and then we generalize.

(a) Let the hypothesis be H ∈ H (of yet unspecified distribution) and let the observable
V ∈ V be related to H via an arbitrary but fixed channel PV |H . Show that if V is
not independent of H then there are distinct elements i, j ∈ H and distinct elements
k, l ∈ V such that

PV |H(k|i) < PV |H(l|i)
PV |H(k|j) > PV |H(l|j).
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(b) Under the conditions of the previous question, show that there is a distribution PH
for which the observable V affects the decision of a MAP decoder.

(c) Generalize to show that if the observables are U and V and PU,V |H is fixed so that
H → U → V does not hold, then there is a distribution on H for which V is not
operationally irrelevant.

Problem 19. (16-PAM versus 16-QAM) The following two signal constellations are used
to communicate across an additive white Gaussian noise channel. Let the noise variance
be σ2 .

-s s s s s s s s s s s s s s s s�-
a

0

6

-
s s s ss s s ss s s ss s s s

�-b

Each point represents a signal si for some i . Assume each signal is used with the same
probabiliy.

(a) For each signal constellation, compute the average probability of error, Pe , as a
function of the parameters a and b , respectively.

(b) For each signal constellation, compute the average energy per symbol, Es , as a
function of the parameters a and b , respectively:

Es =
16∑
i=1

PH(i)‖si‖2 (2.33)

(c) Plot Pe versus Es for both signal constellations and comment.

Problem 20. (Q-Functions on Regions) [Wozencraft and Jacobs] Let X ∼ N (0, σ2I2) .
For each of the three figures below, express the probability that X lies in the shaded
region. You may use the Q -function when appropriate.



2.F. Problems 65
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Problem 21. (QPSK Decision Regions) Let H ∈ {0, 1, 2, 3} and assume that when
H = i you transmit the signal si shown in the figure. Under H = i , the receiver
observes Y = si +Z .

-

6

s s
s

s
s2 s0

s1

s3

y1

y2

(a) Draw the decoding regions assuming that Z ∼ N (0, σ2I2) and that PH(i) = 1/4 ,
i ∈ {0, 1, 2, 3} .

(b) Draw the decoding regions (qualitatively) assuming Z ∼ N (0, σ2I) and PH(0) =
PH(2) > PH(1) = PH(3) . Justify your answer.

(c) Assume again that PH(i) = 1/4 , i ∈ {0, 1, 2, 3} and that Z ∼ N (0, K) , where

K =

(
σ2 0
0 4σ2

)
. How do you decode now? Justify your answer.

Problem 22. (Antenna Array) The following problem relates to the design of multi-
antenna systems. The situation that we have in mind is one where one of two signals is
transmitted over a Gaussian channel and is received through two different antennas. We
shall assume that the noises at the two terminals are independent but not necessarily of
equal variance. You are asked to design a receiver for this situation, and to assess its
performance. This situation is made more precise as follows:
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Consider the binary equiprobable hypothesis testing problem:

H = 0 : Y1 = A+ Z1, Y2 = A+ Z2

H = 1 : Y1 = −A+ Z1, Y2 = −A+ Z2,

where Z1, Z2 are independent Gaussian random variables with different variances σ2
1 6=

σ2
2 , that is, Z1 ∼ N (0, σ2

1) and Z2 ∼ N (0, σ2
2) . A > 0 is a constant.

(a) Show that the decision rule that minimizes the probability of error (based on the
observable Y1 and Y2 ) can be stated as

σ2
2y1 + σ2

1y2

0

≷
1

0.

(b) Draw the decision regions in the (Y1, Y2) plane for the special case where σ1 = 2σ2 .

(c) Evaluate the probability of error for the optimal detector as a function of σ2
1 , σ2

2 and
A .

Problem 23. (Multiple Choice Exam) You are taking a multiple choice exam. Question
number 5 allows for two possible answers. According to your first impression, answer 1
is correct with probability 1/4 and answer 2 is correct with probability 3/4 .

You would like to maximize your chance of giving the correct answer and you decide to
have a look at what your left and right neighbors have to say.

The left neighbor has answered ĤL = 1 . He is an excellent student who has a record of
being correct 90% of the time.

The right neighbor has answered ĤR = 2 . He is a weaker student who is correct 70% of
the time.

(a) You decide to use your first impression as a prior and to consider ĤL and ĤR as
observations. Describe the corresponding hypothesis testing problem.

(b) What is your answer Ĥ ? Justify it.

Problem 24. (QAM with Erasure) Consider a QAM receiver that outputs a special
symbol called “erasure” and denoted by δ whenever the observation falls in the shaded
area shown in Figure 2.14. Assume that s0 is transmitted and that Y = s0 + N is
received where N ∼ N (0, σ2I2) . Let P0i , i = 0, 1, 2, 3 be the probability that the
receiver outputs Ĥ = i and letP0δ be the probability that it outputs δ . Determine P00 ,
P01 , P02 , P03 and P0δ .
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s3

s0 s1

s4

6

?
a6

?

2b

Figure 2.14: Decoding regions for QAM with erasure.

Problem 25. (Repeat Codes and Bhattacharyya Bound) Consider two equally likely
hypotheses. Under hypothesis H = 0 , the transmitter sends s0 = (1, . . . , 1) and under
H = 1 it sends s0 = (−1, . . . ,−1) . The channel model is the AWGN with variance σ2

in each component. Recall that the probability of error for a ML receiver that observes
the channel output Y is

Pe,1 = Q

(√
N

σ

)
.

Suppose now that the decoder has access only to the sign of Yi , 1 ≤ i ≤ N . That is, the
observation is

W = (W1, . . . ,WN) = (sign(Y1), . . . , sign(YN)). (2.34)

(a) Determine the MAP decision rule based on the observation (W1, . . . ,WN) . Give a
simple sufficient statistic, and draw a diagram of the optimal receiver.

(b) Find the expression for the probability of error Pe,2 . You may assume that N is
odd.

(c) Your answer to (ii) contains a sum that cannot be expressed in closed form. Express
the Bhattacharyya bound on Pe,2 .

(d) For N = 1, 3, 5, 7 , find the numerical values of Pe,1 , Pe,2 , and the Bhattacharyya
bound on Pe,2 .

Problem 26. (Tighter Union Bhattacharyya Bound: Binary Case) In this problem we
derive a tighter version of the Union Bhattacharyya Bound for binary hypotheses. Let

H = 0 : Y ∼ fY |H(y|0)

H = 1 : Y ∼ fY |H(y|1).

The MAP decision rule is

Ĥ(y) = arg max
i
PH(i)fY |H(y|i),
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and the resulting probability of error is

Pr{e} = PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

∫
R0

fY |H(y|1)dy.

(a) Argue that

Pr{e} =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy.

(b) Prove that for a, b ≥ 0, min(a, b) ≤
√
ab ≤ a+b

2
. Use this to prove the tighter version

of Bhattacharyya Bound, i.e,

Pr{e} ≤ 1

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy.

(c) Compare the above bound to the one derived in class when PH(0) = 1
2

. How do you
explain the improvement by a factor 1

2
?

Problem 27. (Tighter Union Bhattacharyya Bound: M -ary Case) In this problem we
derive a tight version of the union bound for M -ary hypotheses. Let us analyze the
following M-ary MAP detector:

Ĥ(y) = smallest i such that

PH(i)fY/H(y/i) = max
j
{PH(j)fY/H(y/j)}

Let

Bij =

{
y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y|i), j < i

y : PH(j)fY |H(y|j) > PH(i)fY |H(y|i), j > i

(a) Verify that Bij = Bcji .

(b) Given H = i , the detector will make an error iff: y ∈
⋃
j:j 6=i Bij and the probability

of error is Pe =
∑M−1

i=0 Pe(i)PH(i) . Show that:

Pe ≤
M−1∑
i=0

∑
j>i

[Pr{Bij|H = i}PH(i) + Pr{Bji|H = j}PH(j)]

=
M−1∑
i=0

∑
j>i

[∫
Bij
fY |H(y|i)PH(i)dy +

∫
Bcij
fY |H(y|j)PH(j)dy

]

=
M−1∑
i=0

∑
j>i

[∫
y

min
{
fY |H(y|i)PH(i), fY |H(y|j)PH(j)

}
dy

]
Hint: Use the union bound and then group the terms corresponding to Bij and Bji .
To prove the last part, go back to the definition of Bij .
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(c) Hence show that:

Pe ≤
M−1∑
i=0

∑
j>i

[ (
PH(i) + PH(j)

2

)∫
y

√
fY |H(y|i)fY |H(y|j)dy

]

(Hint: For a, b ≥ 0,min(a, b) ≤
√
ab ≤ a+b

2
.)

As an application of the above bound, consider the following binary hypothesis testing
problem:

H = 0 : Y ∼ N (−a, σ2)

H = 1 : Y ∼ N (+a, σ2)

where the two hypotheses are equiprobable. Use the above bound to show that:

Pe = Pe(0)

≤ 1

2
exp

{
− a2

2σ2

}

But Pe = Q
(
a
σ

)
. Hence we have re-derived the bound (see lecture 1):

Q(x) ≤ 1

2
exp

{
−x

2

2

}
.

Problem 28. (Applying the Tight Bhattacharyya Bound) As an application of the tight
Bhattacharyya bound, consider the following binary hypothesis testing problem

H = 0 : Y ∼ N (−a, σ2)

H = 1 : Y ∼ N (+a, σ2)

where the two hypotheses are equiprobable.

(a) Use the Tight Bhattacharyya Bound to derive a bound on Pe .

(b) We know that the probability of error for this binary hypothesis testing problem is

Q( a
σ
) ≤ 1

2
exp

{
− a2

2σ2

}
, where we have used the result Q(x) ≤ 1

2
exp

{
−x2

2

}
derived

in lecture 1. How do the two bounds compare? Are you surprised (and why)?
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Problem 29. (Bhattacharyya Bound for DMCs) Consider a Discrete Memoryless Chan-
nel (DMC). This is a channel model described by an input alphabet X , an output alpha-
bet Y and a transition probability6 PY |X(y|x) . When we use this channel to transmit an
n-tuple x ∈ X n , the transition probability is

PY |X(y|x) =
n∏
i=1

PY |X(yi|xi).

So far we have come across two DMCs, namely the BSC (Binary Symmetric Channel) and
the BEC (Binary Erasure Channel). The purpose of this problem is to realize that for
DMCs, the Bhattacharyya Bound takes on a simple form, in particular when the channel
input alphabet X contains only two letters.

(a) Consider a source that sends s0 when H = 0 and s1 when H = 1 . Justify the
following chain of inequalities.

Pe
(a)

≤
∑
y

√
PY |X(y|s0)PY |X(y|s1)

(b)

≤
∑
y

√√√√ n∏
i=1

PY |X(yi|s0i)PY |X(yi|s1i)

(c)
=

∑
y1,...,yn

n∏
i=1

√
PY |X(yi|s0i)PY |X(yi|s1i)

(d)
=

∑
y1

√
PY |X(y1|s01)PY |X(y1|s11) . . .

∑
yn

√
PY |X(yn|s0n)PY |X(yn|s1n)

(e)
=

n∏
i=1

∑
y

√
PY |X(y|s0i)PY |X(y|s1i)

(f)
=

∏
a∈X ,b∈X ,a6=b

(∑
y

√
PY |X(y|s0i)PY |X(y|s1i)

)n(a,b)

.

where n(a, b) is the number of positions i in which s0i = a and s1i = b .

(b) The Hamming distance dH(s0, s1) is defined as the number of positions in which
s0 and s1 differ. Show that for a binary input channel, i.e, when X = {a, b} , the
Bhattacharyya Bound becomes

Pe ≤ zdH(s0,s1),

where

z =
∑
y

√
PY |X(y|a)PY |X(y|b).

6Here we are assuming that the output alphabet is discrete. Otherwise we need to deal with densities
instead of probabilities.
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Notice that z depends only on the channel whereas its exponent depends only on s0

and s1 .

(c) What is z for:

(a) The binary input Gaussian channel described by the densities

fY |X(y|0) = N (−
√
E, σ2)

fY |X(y|1) = N (
√
E, σ2).

(b) The Binary Symmetric Channel (BSC) with the transition probabilities described by

PY |X(y|x) =

{
1− δ, if y = x,
δ, otherwise.

(c) The Binary Erasure Channel (BEC) with the transition probabilities given by

PY |X(y|x) =


1− δ, if y = x,
δ, if y = E
0, otherwise.

Compare your result with the the bound obtained in Example 16.

(d) Consider a channel with input alphabet {±1} , and output Y = sign(x+Z) , where x
is the input and Z ∼ N (0, σ2) . This is a BSC obtained from quantizing a Gaussian
channel used with binary input alphabet. What is the crossover probability p of the
BSC? Plot the z of the underlying Gaussian channel (with inputs in R ) and that
of the BSC. By how much do we need to increase the input power of the quantized
channel to match the z of the unquantized channel?

Problem 30. (Signal Constellation) The following signal constellation with six signals is
used in additive white Gaussian noise of variance σ2 :

- y1

6

y2

s s s

s s s
b

6

?

a
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Assume that the six signals are used with equal probability.

(a) Draw the boundaries of the decision regions.

(b) Compute the average probability of error, Pe , for this signal constellation.

(c) Compute the average energy per symbol for this signal constellation.

Problem 31. (Hypothesis Testing and Fading) Consider the following communication
problem: There are two equiprobable hypotheses. When H = 0 , we transmit s = −b ,
where b is an arbitrary but fixed positive number. When H = 1 , we transmit s = b .

The channel is as shown in the figure below, where Z ∼ N (0, σ2) represents the noise,
A ∈ {0, 1} represents a random attenuation (fading) with PA(0) = 1

2
, and Y is the

channel output. The random variables H , A and Z are independent.

×��� ��� -
s Y

A Z

6 6

(a) Find the decision rule that the receiver should implement to minimize the probability
of error. Sketch the decision regions.

(b) Calculate the probability of error Pe , based on the above decision rule.

Problem 32. (Dice Tossing) You have two dices, one fair and one loaded. A friend told
you that the loaded dice produces a 6 with probability 1

4
, and the other values with

uniform probabilities. You do not know a priori which one is fair or which one is loaded.
You pick with uniform probabilities one of the two dices, and perform N consecutive
tosses. Let Y = (Y1, · · ·, YN) be the sequence of numbers observed.

(a) Based on the sequence of observations Y , find the decision rule to determine whether
the dice you have chosen is loaded. Your decision rule should maximize the probability
of correct decision.

(b) Identify a compact sufficient statistic for this hypothesis testing problem, call it S .
Justify your answer. [Hint: S ∈ N .]
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(c) Find the Bhattacharyya bound on the probability of error. You can either work with
the observation (Y1, . . . , YN) or with (Z1, . . . , ZN) , where Zi indicates whether the
i th observation is a six or not, or you can work with S . In some cases you may
find it useful to know that

∑N
i=0

(
N
i

)
xi = (1 + x)N for N ∈ N . In other cases the

following may be useful:
∑

Y1,Y2,...,YN

∏N
i=1 f(Yi) =

(∑
Y1
f(Y1)

)N
.

Problem 33. (Playing Darts) Assume that you are throwing darts at a target. We
assume that the target is one-dimensional, i.e., that the darts all end up on a line. The
“bulls eye” is in the center of the line, and we give it the coordinate 0 . The position of
a dart on the target can then be measured with respect to 0 .

We assume that the position X1 of a dart that lands on the target is a random variable
that has a Gaussian distribution with variance σ2

1 and mean 0 .

Assume now that there is a second target, which is further away. If you throw dart to that
target, the position X2 has a Gaussian distribution with variance σ2

2 (where σ2
2 > σ2

1 )
and mean 0 .

You play the following game: You toss a coin which gives you “head” with probability p
and “tail” with probability 1 − p for some fixed p ∈ [0, 1] . If Z = 1 , you throw a dart
onto the first target. If Z = 0 , you aim the second target instead. Let X be the relative
position of the dart with respect to the center of the target that you have chosen.

(a) Write down X in terms of X1 , X2 and Z .

(b) Compute the variance of X . Is X Gaussian?

(c) Let S = |X| be the score, which is given by the distance of the dart to the center of
the target (that you picked using the coin). Compute the average score E[S] .

Problem 34. (Properties of the Q Function) Prove properties (a) through (d) of the
Q function defined in Section 2.3. Hint: for property (d), multiple and divide inside the
integral by the integration variable and integrate by parts. By upper and lowerbounding
the resulting integral you will obtain the lower and upper bound.

Problem 35. (Bhattacharyya Bound and Laplacian Noise) When Y ∈ R is a continuous
random variable, the Bhattacharyya bound states that

Pr{Y ∈ Bi,j|H = i} ≤

√
PH(j)

PH(i)

∫
y∈R

√
fY |H(y|i)fY |H(y|j) dy,

where i, j are two possible hypotheses and Bi,j = {y ∈ R : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j)} .
In this problem H = {0, 1} and PH(0) = PH(1) = 0.5 .
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(a) Write a sentence that expresses the meaning of Pr{Y ∈ B0,1|H = 0} . Use words
that have operational meaning.

(b) Do the same but for Pr{Y ∈ B0,1|H = 1} . (Note that we have written B0,1 and not
B1,0 .)

(c) Evaluate the right hand side of the Bhattacharyya bound for the special case fY |H(y|0) =
fY |H(y|1) .

(d) Evaluate the Bhattacharyya bound for the following (Laplacian noise) setting:

H = 0 : Y = −a+ Z

H = 1 : Y = a+ Z,

where a ∈ R+ is a constant and fZ(z) = 1
2

exp (−|z|) , z ∈ R . Hint: it does not
matter if you evaluate the bound for H = 0 or H = 1 .

(e) For which value of a should the bound give the result obtained in (c)? Verify that it
does. Check your previous calculations if it does not.

Problem 36. (Antipodal Signaling) Consider the following signal constellation:

-

6 ss1

s
s0

−a a

a

−a

y1

y2

Assume that s1 and s0 are used for communication over the Gaussian vector channel.
More precisely:

H = 0 : Y = s0 +Z,

H = 1 : Y = s1 +Z,

where Z ∼ N (0, σ2I2) . Hence, Y is a vector with two components Y = (Y1, Y2) .

(a) Argue that Y1 is not a sufficient statistic.

(b) Give a different signal constellation with two signals s̃0 and s̃1 such that, when used
in the above communication setting, Y1 is a sufficient statistic.
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Problem 37. (Hypothesis Testing: Uniform and Uniform) Consider a binary hypothesis
testing problem in which the hypotheses H = 0 and H = 1 occur with probability PH(0)
and PH(1) = 1−PH(0) , respectively. The observation Y is a sequence of zeros and ones
of length 2k , where k is a fixed integer. When H = 0 , each component of Y is 0 or
a 1 with probability 1

2
and components are independent. When H = 1 , Y is chosen

uniformly at random from the set of all sequences of length 2k that have an equal number
of ones and zeros. There are

(
2k
k

)
such sequences.

(a) What is PY |H(y|0)? What is PY |H(y|1)?

(b) Find a maximum likelihood decision rule. What is the single number you need to
know about y to implement this decision rule?

(c) Find a decision rule that minimizes the error probability.

(d) Are there values of PH(0) and PH(1) such that the decision rule that minimizes the
error probability always decides for only one of the alternatives? If yes, what are
these values, and what is the decision?

Problem 38. (SIMO Channel with Laplacian Noise) One of the two signals s0 = −1, s1 =
1 is transmitted over the channel shown on the left of Figure 2.15. The two noise random
variables Z1 and Z2 are statistically independent of the transmitted signal and of each
other. Their density functions are

fZ1(α) = fZ2(α) =
1

2
e−|α|.

S ∈ {s0, s1}
-

-��� - Y2

6

Z2

-��� - Y1

?

Z1

-

(y1, y2)

y1

6
y2

b

a
(1, 1)s

s

Figure 2.15: The channel (on the left) and a figure explaining the hint.
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(a) Derive a maximum likelihood decision rule.

(b) Describe the maximum likelihood decision regions in the (y1, y2) plane. Try to de-
scribe the “Either Choice” regions, i.e., the regions in which it does not matter if you
decide for s0 or for s1 . Hint: Use geometric reasoning and the fact that for a point
(y1, y2) as shown on the right of the figure, |y1 − 1|+ |y2 − 1| = a+ b.

(c) A receiver decides that s1 was transmitted if and only if (y1 + y2) > 0 . Does this
receiver minimize the error probability for equally likely messages?

(d) What is the error probability for the receiver in (c)? Hint: One way to do this is to
use the fact that if W = Z1 + Z2 then fW (ω) = e−ω

4
(1 + ω) for w > 0 .

(e) Could you have derived fW as in (d) ? If yes, say how but omit detailed calculations.

Problem 39. (ML Receiver and UB for Orthogonal Signaling) Let H ∈ {1, . . . ,m} be
uniformly distributed and consider the communication problem described by:

H = i : Y = si +Z, Z ∼ N (0, σ2Im),

where s1, . . . , sm , si ∈ Rm , is a set of constant-energy orthogonal signals. Without loss
of generality we assume

si =
√
Eei,

where ei is the i th unit vector in Rm , i.e., the vector that contains 1 at position i and
0 elsewhere, and E is some positive constant.

(a) Describe the maximum likelihood decision rule. (Make use of the fact that si =√
Eei .)

(b) Find the distance ‖si − sj‖ .

(c) Upper-bound the error probability Pe(i) using the union bound and the Q function.

Problem 40. (Data Storage Channel) The process of storing and retrieving binary data
on a thin-film disk may be modeled as transmitting binary symbols across an additive
white Gaussian noise channel where the noise Z has a variance that depends on the
transmitted (stored) binary symbol S . The noise has the following input-dependent
density:

fZ(z) =


1√
2πσ2

1

e
− z2

2σ2
1 if S = 1

1√
2πσ2

0

e
− z2

2σ2
0 if S = 0,

where σ1 > σ0 . The channel inputs are equally likely.
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(a) On the same graph, plot the two possible output probability density functions. Indi-
cate, qualitatively, the decision regions.

(b) Determine the optimal receiver in terms of σ1 and σ0 .

(c) Write an expression for the error probability Pe as a function of σ0 and σ1 .

Problem 41. (Lie Detector) You are asked to develop a “lie detector” and analyze its
performance. Based on the observation of brain cell activity, your detector has to decide
if a person is telling the truth or is lying.

For the purpose of this problem, the brain cell produces a sequence of spikes as shown in
the figure. For your decision you may use only a sequence of n consecutive inter-arrival
times Y1, Y2, . . . , Yn . Hence Y1 is the time elapsed between the first and second spike, Y2

the time between the second and third, etc.

Inter-arrival times

Spike sequences
- t

6 6 6 6

Y1 Y2 Y3

We assume that, a priori, a person lies with some known probability p . When the person
is telling the truth, Y1, . . . , Yn is an i.i.d. sequence of exponentially distributed random
variables with intensity α , (α > 0) , i.e.

fYi(y) = αe−αy, y ≥ 0.

When the person lies, Y1, . . . , Yn is i.i.d. exponentially distributed with intensity β ,
(α < β) .

(a) Describe the decision rule of your lie detector for the special case n = 1 . Your
detector shall be designed so as to minimize the probability of error.

(b) What is the probability PL/T that your lie detector says that the person is lying
when the person is telling the truth?

(c) What is the probability PT/L that your test says that the person is telling the truth
when the person is lying.

(d) Repeat (a) and (b) for a general n . Hint: There is no need to repeat every step of
your previous derivations.
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Problem 42. (Fault Detector) As an engineer, you are required to design the test per-
formed by a fault-detector for a “black-box” that produces a a sequence of i.i.d. bi-
nary random variables · · · , X1, X2, X3, · · · . Previous experience shows that this “black
box” has an apriori failure probability of 1

1025
. When the “black box” works properly,

pXi(1) = p . When it fails, the output symbols are equally likely to be 0 or 1 .

Your detector has to decide based on the observation of the past 16 symbols, i.e., at time
k the decision will be based on Xk−16, . . . , Xk−1 .

(a) Describe your test.

(b) What does your test decide if it observes the output sequence 0101010101010101?
Assume that p = 1/4 .

Problem 43. (A Simple Multiple-Access Scheme) Consider the following very simple
model of a multiple-access scheme. There are two users. Each user has two hypotheses.
Let H1 = H2 = {0, 1} denote the respective set of hypotheses and assume that both
users employ a uniform prior. Further, let X1 and X2 be the respective signals sent
by user one and two. Assume that the transmissions of both users are independent and
that X1 ∈ {±1} and X2 ∈ {±2} where X1 and X2 are positive if their respective
hypothesis is zero and negative otherwise. Assume that the receiver observes the signal
Y = X1 +X2 + Z , where Z is a zero mean Gaussian random variable with variance σ2

and is independent of the transmitted signal.

(a) Assume that the receiver observes Y and wants to estimate both H1 and H2 . Let
Ĥ1 and Ĥ2 be the estimates. Starting from first principles, what is the generic form
of the optimal decision rule?

(b) For the specific set of signals given, what is the set of possible observations assuming
that σ2 = 0? Label these signals by the corresponding (joint) hypotheses.

(c) Assuming now that σ2 > 0 , draw the optimal decision regions.

(d) What is the resulting probability of correct decision? i.e., determine the probability
Pr{Ĥ1 = H1, Ĥ2 = H2} .

(e) Finally, assume that we are only interested in the transmission of user two. What is
Pr{Ĥ2 = H2}?

Problem 44. (Uncoded Transmission) Consider the following transmission scheme. We
have two possible sequences {X1

j } and {X2
j } taking values in {−1,+1} , for j = 0, 1, 2, · · · , k−

1 . The transmitter chooses one of the two sequences and sends it directly over an ad-
ditive white Gaussian noise channel. Thus, the received value is Yj = X i

j + Zj , where
i = 1, 2 depending of the transmitted sequence, and {Zj} is a sequence of i.i.d. zero-mean
Gaussian random variables with variance σ2 .
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(a) Using basic principles, write down the optimal decision rule that the receiver should
implement to distinguish between the two possible sequences. Simplify this rule to
express it as a function of inner products of vectors.

(b) Let d be the number of positions in which {X1
j } and {X2

j } differ. Assuming that
the transmitter sends the first sequences {X1

j } , find the probability of error (the
probability that the receiver decides on {X2

j } ), in terms of the Q function and d .

Problem 45. (Data Dependent Noise) Consider the following binary Gaussian hypothesis
testing problem with data dependent noise.

Under hypothesis H0 the transmitted signal is s0 = −1 and the received signal is Y =
s0 + Z0 , where Z0 is zero-mean Gaussian with variance one.

Under hypothesis H1 the transmitted signal is s1 = 1 and the received signal is Y =
s1 + Z1 , where Z1 is zero-mean Gaussian with variance σ2 . Assume that the prior is
uniform.

(a) Write the optimal decision rule as a function of the parameter σ2 and the received
signal Y .

(b) For the value σ2 = exp(4) compute the decision regions.

(c) Give as simple expressions as possible for the error probabilities Pe(0) and Pe(1) .

Problem 46. (Correlated Noise) Consider the following decision problem. For the hy-
pothesis H = i , i ∈ {0, 1, 2, 3} , we send the point si , as follows (also shown in the figure
below): s0 = (0, 1)T , s1 = (1, 0)T , s2 = (0,−1)T , s3 = (−1, 0)T .

-

6

s s
s

s
s3 s1

s0

s2

y1

y2

−1 1

1

−1

When H = i , the receiver observes the vector Y = si + Z , where Z is a zero-mean
Gaussian random vector whose covariance matrix is Σ = ( 4 2

2 5 )
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(a) In order to simplify the decision problem, we transform Y into Ŷ = BY , where B
is a 2-by-2 matrix, and use Ŷ to take our decision. What is the appropriated matrix
B to choose? Hint: If A = 1

4
( 2 0
−1 2 ) , then AΣAT = I , with I = ( 1 0

0 1 ) .

(b) What are the new transmitted points ŝi ? Draw the resulting transmitted points and
the decision regions associated to them.

(c) Give an upper bound to the error probability in this decision problem.

Problem 47. (Football) Consider four teams A,B,C,D playing in a football tournament.
There are two rounds in the competition. In the first round there are two matches and
the winners progress to play in the final. In the first round A plays against one of the
other three teams with equal probability 1

3
and the remaining two teams play against

each other. The probability of A winning against any team depends on the number of
red cards “r” A gets in the previous match. The probabilities of winning for A against
B,C,D denoted by pb, pc, pd are pb = 0.5

(1+r)
, pc = pd = 0.6

1+r
. In a match against B, team A

will get 1 red card and in a match against C or D, team B will get 2 red cards. Assuming
that initially A has 0 red cards and the other teams receive no red cards in the entire
tournament and among B,C,D each team has equal chances to win against each other.

Is betting on team A as the winner a good choice ?

Problem 48. (Minimum-Energy Signals) Consider a given signal constellation consisting
of vectors {s1, s2, . . . , sm} . Let signal si occur with probability pi . In this problem, we
study the influence of moving the origin of the coordinate system of the signal constella-
tion. That is, we study the properties of the signal constellation {s1−a, s2−a, . . . , sm−a}
as a function of a .

(a) Draw a sample signal constellation, and draw its shift by a sample vector a .

(b) Does the average error probability, Pe , depend on the value of a? Explain.

(c) The average energy per symbol depends on the value of a . For a given signal constel-
lation {s1, s2, . . . , sm} and given signal probabilities pi , prove that the value of a
that minimizes the average energy per symbol is the centroid (the center of gravity)
of the signal constellation, i.e.,

a =
m∑
i=1

pisi. (2.35)

Hint: First prove that if X is a real-valued zero-mean random variable and b ∈ R , then
E[X2] ≤ E[(X − b)2] with equality iff b = 0 . Then extend your proof to vectors and
consider X = S − E[S] where S = si with probability pi .
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Receiver Design for the Waveform
AWGN Channel

3.1 Introduction

In the previous chapter we have learned how to communicate across the discrete-time
AWGN (Additive White Gaussian Noise) channel. Given a transmitter for that channel,
we now know what a receiver that minimizes the error probability should do and how
to evaluate or bound the resulting error probability. In the current chapter we will deal
with a channel model which is closer to reality, namely the waveform AWGN channel.
This is the channel seen from the input to the output of the dashed box in Figure 3.1.
Apart from the channel model, the main objectives of this and the previous chapters are
the same: understand what the receiver has to do to minimize the error probability. We
are also interested in the resulting error probability but that will come for free from what
have learned in the previous chapter.

As in the previous chapter we assume that the signals used to communicate are given to
us. While our primary focus will be on the receiver, we will gain valuable insight about
the transmitter structure. The problem of choosing suitable signals will be studied in
subsequent chapters.

The setup is the one shown in Figure 3.2. The operation of the transmitter is similar to
that of the encoder of the previous chapter except that the output is now an element of
a set of m finite-energy waveforms S = {s0(t), . . . , sm−1(t)} . The channel adds white
Gaussian noise N(t) (defined in the next section). Unless otherwise specified, we assume
that the (double-sided) power spectral density of the noise is N0

2
.

To emphasize the fact that we are now dealing with waveforms, in the above paragraph as
well as in Figure 3.2 we have made an exception to the convention we will use henceforth,
namely to use single letters (possibly with an index) to denote waveforms and stochastic
processes such as si and R . When we want to emphasize the time dependency we may

81
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Encoder
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Waveform AWGN Channel
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Front-End

?

Down
Converter

?

?

Messages

n -Tuples
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Waveforms

Passband
Waveforms

Figure 3.1: Waveform channel abstraction.

also use the equivalent notation {si(t) : t ∈ R} and {R(t) : t ∈ R} .

The highlight of the chapter is the power of abstraction. In the previous chapter we
have seen that the receiver design problem for the discrete-time AWGN channel relies on
geometrical ideas that may be formulated whenever we are in an inner-produce space (i.e.
a vector space endowed with an inner product). Since finite-energy waveforms also form
an inner-product space, the methods developed in the previous chapter are appropriate
tools also to deal with the waveform AWGN channel.

The main result of this chapter is a decomposition of the sender and the receiver for the
waveform AWGN channel into the building blocks that form the bottom two layers in
Figure 3.1. We will see that, without loss of generality, we may (and should) think of the
transmitter as consisting of a part that maps the message i ∈ H into an n -tuple si , as in
the previous chapter, followed by a waveform generator that maps si into a waveform si .
Similarly, we will see that the receiver may consist of a front-end that takes the channel
output and produces an n -tuple Y which is a sufficient statistic. From the waveform
generator input to the receiver front-end output we see the discrete-time AWGN channel
considered in the previous chapter. Hence we know already what the decoder of Fig. 3.1
should do with the sufficient statistic produced by the receiver front-end.

In this chapter we assume familiarity with the linear space L2 of finite energy functions.
See Appendix 2.E for a review.
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- Transmitter

H = i ∈ H
-

si(t)

N(t)

AWGN

6
��� -

R(t)

Receiver -
Ĥ ∈ H

Figure 3.2: Communication across the AWGN channel.

3.2 Gaussian Processes and White Gaussian Noise

We assume that the reader is familiar with: (i) the definition of a wide-sense-stationary
(wss) stochastic process; (ii) the notion of autocorrelation and power spectral density;
(iii) the definition of a Gaussian random vector.

Definition 48. {N(t) : t ∈ R} is a Gaussian random process if for any finite collection
of times t1, t2, . . . , tk , the vector Z = (N(t1), N(t2), . . . , N(tk))

T of samples is a Gaussian
random vector. A second process {Ñ(t) : t ∈ R} is jointly Gaussian with N if Z and
Z̃ are jointly Gaussian random vectors for any vector Z̃ consisting of samples from Ñ .

The definition of white Gaussian noise requires an introduction. Many communication
textbooks define white Gaussian noise to be a zero-mean wide-sense-stationary Gaussian
random process {N(t) : t ∈ R} of autocorrelation KN(τ) = N0

2
δ(τ) . This definition is

simple and useful but mathematically problematic. To see why, recall that a Gaussian
random variable has finite variance.1 The sample N(t) at an arbitrary epoch t is a
Gaussian random variable of variance KN(0) = N0

2
δ(0) . But δ(0) is not defined. One

may be tempted to say that δ(0) =∞ but this would mean that the sample is a Gaussian
random variable of infinite variance.2

Our goal is a consistent model that leads to the correct observations. The noise we
are trying to model shows up when we make real-world measurements. If N(t) models
electromagnetic noise, then its effect will show up as a voltage at the output of an antenna.
If N(t) models the noise in an electrical cable, then it shows up when we measure the
voltage on the cable. In any case the measurement is done via some piece of wire (the
antenna or the tip of a probe) which is modeled as a linear time invariant system of some

1The Gaussian probability density is not defined when the variance is infinite.
2One way to deal with this problem is to define {N(t) : t ∈ R} as generalized Gaussian random

process. We choose a different approach that allows us to rely on familiar tools.



84 Chapter 3.

finite energy impulse response g .3 Hence we are limited to observations of the kind

Z(t) =

∫
N(α)g(t− α)dα.

We define white Gaussian noise N(t) by defining what we obtain from an arbitrary but
finite collection of such measurements.

Definition 49. {N(t) : t ∈ R} is zero-mean white Gaussian noise of power spectral
density N0

2
if for any finite collection of L2 functions g1(t), g2(t), . . . , gk(t) ,

Zi(t) =

∫
N(α)gi(t− α)dα, i = 1, 2, . . . , k

is a collection of zero-mean jointly Gaussian random processes with covariances

cov
(
Zi(β), Zj(γ)

)
= E

[
Zi(β)Z∗j (γ)

]
=
N0

2

∫
gi(t)g

∗
j (t+ γ − β)dt. (3.1)

Exercise 50. Show that (3.1) is precisely what we obtain if we define white Gaussian
noise to be a Gaussian noise process of autocorrelation KN(τ) = N0

2
δ(τ) . 2

A few comments are in order. First, the fact that we are defining N(t) indirectly is
consistent with the fact that for no time t we can observe N(t) . Second, defining an
object—zero-mean white Gaussian noise in this case—via what we see when we integrate
that object against a finite-energy function g is not new: we do the same when we define
a delta Dirac δ(t) by saying that

∫
g(t)δ(t) = g(0) . Third, our definition does not require

proving that a Gaussian process N(t) that has the desired properties exits. In fact N(t)
may not be Gaussian but such that when filtered and then sampled at a finite number of
times forms a collection of zero-mean jointly Gaussian random variables. If the reader is
uncomfortable with the idea that we are integrating against an object that we have not
defined—and in fact may not even exist— then he/she can choose to think of N(t) as
being the name of some undefined physical phenomenon that we call zero-mean Gaussian
noise and think of

∫
N(α)gi(t − α)dα not as a convolution between two functions of

time but rather as a place holder for what we see when we observe zero-mean Gaussian
noise through a filter of impulse response gi . In doing so we model the result of the
measurement and not the signal we are measuring. Finally, no matter whether we use
the more common definition of white Gaussian noise mentioned earlier or the one we are
using, a model is only an approximation of reality: if we could make measurements with
arbitrary impulse responses gi , at some point we would discover that our model is not
accurate. To be specific, if gi is the impulse response of an ideal bandpass filter of 1 Hz
of bandwidth, then the idealized model of white Gaussian noise says that for any fixed t
the random variable Zi(t) has variance N0/2 . If we could increase the center frequency
indefinitely, at some point we would observe that the variance of the real measurements
starts decreasing. This must be the case since the underlying physical signal can not

3We neglect the noise introduced by the measurement since it can be accounted for by N(t) .
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have infinite power. We are not concerned about this potential discrepancy between the
model and real measurements since we are unable to make measurements involving filers
of arbitrarily large center frequency.

By far the most common measurements we will be concerned with in relationship to white
Gaussian noise N of power spectral density N0

2
are of the kind

Zi =

∫
N(α)gi(α)dt, i = 1, 2, . . . , k.

Then Z = (Z1, . . . , Zk)
T is a zero-mean Gaussian random vector and the i, j element of

its covariance matrix is

E[Zi, Zj] =
N0

2

∫
gi(t)g

∗
j (t)dt. (3.2)

Of particular interest is the special case when the waveforms g1(t), . . . , gk(t) form an
orthonormal set. Then Z ∼ N (0, N0

2
Ik) .

3.2.1 Observables and Sufficient Statistic

By assumption the channel output is R = si + N for some i ∈ H and N is white
Gaussian noise. As discussed in the previous section, due to the nature of the white noise
the channel output R is not observable. What we can observe via measurements is the
integral of R against any number of finite-energy waveforms. Hence we may consider as
the observable any k -tuple V = (V1, . . . , Vk)

T such that

Vi =

∫ ∞
∞

R(α)g∗i (α)dα, i = 1, 2, . . . , k (3.3)

We are choosing k to be finite as part of our model since no one can make infinite
measurements.4

Notice that the kind of measurements we are considering is quite general. For instance,
we can pass R through an ideal lowpass filter of cutoff frequency B for some huge B
(say 1010 Hz) and collect an arbitrary large number of samples taken every 1

2B
seconds

so as to fulfill the sampling theorem. In fact, by choosing gi(t) = h( i
2B
− t) , where h(t) is

the impulse response of the lowpass filter, Vi becomes the filter output sampled at time
t = i

2B
.

Let W be the inner-product space spanned by S and let {ψ1, . . . , ψn} be an arbitrary
orthonormal basis for W . We claim that the n -tuple Y = (Y1, . . . , Yn)T with i -th
component

Yi =

∫
R(α)ψ∗i (α)dα

4By letting k be infinite we would have to deal with subtle issues of infinity without gaining anything
in practice.
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is a sufficient statistic among any collection of measurements that contains Y . To prove
this claim, let U = (U1, U2, . . . , Uk)

T be the vector of all the other measurements we may
want to consider. The only requirement is that they be consistent with (3.3). Let V be the
inner product space spanned by S ∪ {g1, g2, . . . , gk} and let {ψ1, . . . , ψn, φ1, φ2, . . . , φñ}
be an orthonormal basis for V . Define

Vi =

∫
R(α)φ∗i (α)dα, i = 1, . . . , ñ.

There is a one-to-one correspondence between (Y ,U) and (Y ,V ) . Hence the latter may
be considered as the observable. Note that when H = i ,

Yj =

∫
R(α)ψ∗j (α) =

∫ (
si(α) +N(α)

)
ψ∗j (α)dα = si,j +

∫
N(α)ψ∗j (α)dα,

Vj =

∫
R(α)φ∗j(α) =

∫ (
si(α) +N(α)

)
φ∗j(α)dα =

∫
N(α)φ∗j(α)dα,

where we used the fact that si is in the subspace spanned by {ψ1, . . . , ψn} and therefore
it is orthogonal to φj for each j = 1, 2, . . . , ñ . Hence when H = i ,

Y = si +N |W ,

V = N⊥,

where N |W ∼ N (0, N0

2
In) and N⊥ ∼ N (0, N0

2
Iñ) . Furthermore, N |W and N⊥ are

independent of each other and of H . In particular, H → Y →
(
Y ,V

)
, showing that Y

is indeed a sufficient statistic. Hence V is irrelevant as claimed.5

To gain additional insight, let Y be the waveform associated to Y , i.e., Y (t) =
∑
Yiψi(t) ,

and similarly let N|W and N⊥ be the waveforms associated to N |W and N⊥ , respectively.

Then we may define Ñ via the equality R = Y + Ñ . These quantities have the following
interpretation

Y = si +N|W = “Projection” of the received signal R onto W
N|W = “Projection” of the noise N onto W
N⊥ = Noise component captured by the measurement but orthogonal to W
Ñ = Noise component “orthogonal to W”

where quotations are due since projection and orthogonality are defined for elements of
an inner product space and have made no claim about the belonging of R and N to
such a space. Nevertheless one can compute the integral of R against φ∗i or ψ∗i so that
the meaning of “projection” is well defined. Hereafter we will drop the quotation when
we speak about the ”projection” of R onto W . Similarly, by “orthogonality” of Ñ and
W we mean that the integral Ñ against any element of W vanishes. Figure 3.3 gives a
geometric interpretation of the various quantities.

5We have not proved that R is irrelevant. There is no reason to prove that since R is not observable.



3.2. Gaussian Processes and White Gaussian Noise 87

��
��

��
��
�1�
�
�
�
�
�
�
�
�
�
���

-

HH
HHHHj

6

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

��
��

��

Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
QQ

Z = N
|W

W

N

R− Y = N −N|W

R

Y

si

0

Figure 3.3: Projection of the received signal R onto W when H = i .

The receiver front-end that computes Y from R is shown in Figure 3.4. The figure also
shows that one can single out a corresponding block at the sender, namely the waveform
generator that produces si from the n -tuple si . Of course one can generate the signal
si without the intermediate step of generating the n -tuple of coefficients si but thinking
in terms of the two-step procedure underlines the symmetry between the sender and the
receiver and emphasizes the fact that dealing with the waveform AWGN channel just adds
a layer of processing with respect to dealing with the discrete-time AWGN counterpart.

From the waveform generator input to the baseband front-end output we “see” the
discrete-time AWGN channel studied in Chapter 2. In fact the decoder faces precisely the
same decision problem which is to do a ML decision for the hypothesis testing problem
specified by

H = i : Y = si +Z.

where Z ∼ N (0, N0

2
In) is independent of H .

It would seem that we are done with the receiver design problem for the waveform AWGN
channel. In fact we are done with the conceptual part. In the rest of the chapter we will
gain additional insight by looking at some of the details and by working out a few exam-
ples. What we can already say at this point is that the sender and the receiver may be de-
composed as shown in Figure 3.5 and that the channel seen between the encoder/decoder
pair is the discrete-time AWGN channel considered in the previous chapter. Later we
will see that the decomposition is not just useful at a conceptual level. In fact coding is a
subarea of digital communication devoted to the study of encoders/decoders. In a broad
sense, modulation is likewise an area devoted to the study of waveform generators and
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Figure 3.4: Waveform sender/receiver pair

baseband front-ends.

3.3 The Binary Equiprobable Case

We start with the binary hypothesis case since it allows us to focus on the essential.
Generalizing to m hypotheses will be straightforward. We also assume PH(0) = PH(1) =
1/2.

3.3.1 Optimal Test

The test that minimizes the error probability is the ML decision rule:

‖y − s0‖2

Ĥ = 1
≥
<

Ĥ = 0

‖y − s1‖2.

As usual, ties may be resolved either way.
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î ∈ H

Decoder �
(Y1, . . . , Yn)

Receiver
Front-End

�

R

-
i ∈ H

Encoder -
(si,1, . . . , si,n)

Waveform
Generator

si =
∑

j si,jψj

Discrete-Time AWGN Channel

m?� N

W
a
v
e
f
o
r
m

C
h
a
n
n
e
l

Figure 3.5: Canonical decomposition of the transmitter for the waveform AWGN channel
into and encoder and a waveform generator. The receiver decomposes into a front-end
and a decoder. From the waveform generator input to the receiver front end output we
see the n -tuple AWGN channel

3.3.2 Receiver Structures

There are various ways to implement the receiver since :

(a) the ML test can be rewritten in various ways

(b) there are two basic ways to implement an inner product.

Hereafter are three equivalent ML tests. The fist is conceptual whereas the the second
and third suggest receiver implementations. They are:

‖y − s0‖

Ĥ = 1
≥
<

Ĥ = 0

‖y − s1‖ (T1)

<
[
〈y, s1〉

]
− ‖s1‖2

2

Ĥ = 1
≥
<

Ĥ = 0

<
[
〈y, s0〉

]
− ‖s0‖2

2
(T2)

<
[ ∫

R(t)s∗1(t)dt
]
− ‖s1‖2

2

Ĥ = 1
≥
<

Ĥ = 0

<
[ ∫

R(t)s∗0(t)dt
]
− ‖s0‖2

2
(T3)
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Ĥ = 0 Ĥ = 1s s -
Ĥ

Receiver Front-End Decoder

Figure 3.6: Implementation of test (T1). The front-end is based on correlators. This
is the part that converts the received waveform into an n tuple Y which is a sufficient
statistic. From this point on the decision problem is the one considered in the previous
chapter.

Test (T1) is the test described in the previous section after taking the square root on
both sides. Since the square root of a nonnegative number is a monotonic operation, the
test outcome remains unchanged. Test (T1) is useful to visualize decoding regions and to
compute the probability of error. It says that the decoding region of s0 is the set of y
that are closer to s0 than to s1 . (We knew this already from the previous chapter.)

Figure 3.6 shows the block diagram of a receiver inspired by (T1). The receiver front-end
maps R into Y = (Y1, Y2)T . This part of the receiver deals with waveforms and in the past
it has been implemented via analog circuitry. A modern implementation would typically
sample the received signal after passing it through a filter to ensure that the condition
of the sampling theorem is fulfilled. The filter is designed so as to be transparent to the
signal waveforms. The filter removes part of the noise that would anyhow be removed by
the receiver front end. The decoder chooses the index i of the si that minimizes ‖y−si‖ .
Test (T1) does not explicitly say how to find that index. We imagine the decoder as a
conceptual device that knows the decoding regions and checks which decoding region
contains y . The decoder shown in Figure 3.6 assumes antipodal signals, i.e., s0 = −s1 ,
and ψ1 = s1/‖s1‖ . In this case the signal space is one-dimensional. A decoder such as
this one that decides upon comparing the components of Y (in this case one component)
to thresholds is sometimes called a slicer.

A decoder for a 2 -dimensional signal space spanned by orthogonal signals s0 and s1 would
decide based on the decoding regions shown in Figure 3.7, where we defined ψ1 = s0/‖s0‖
and ψ2 = s1/‖s1‖ .

Perhaps the biggest advantage of test (T1) is the geometrical insight it provides which is
often useful to determine the error probability.
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Figure 3.8: Receiver implementation following (T2). This implementation requires an
orthonormal basis. Finding and implementing waveforms that constitute an orthonormal
basis may or may not be easy.

Test (T2) is obtained from (T1) using the relationship

‖y − si‖2 = 〈y − si,y − si〉
= ‖y‖2 − 2<{〈y, si〉}+ ‖si‖2,

after canceling out common terms, multiplying each side by −1/2 , and using the fact
that a > b iff −a < −b . Test (T2) is implemented by the block diagram of Figure 3.8.
The added value of the decoder in Figure 3.8 is that it is completely specified in terms of
easy-to-implement operations. However, it looses some of the geometrical insight present
in a decoder that depicts the decoding regions as in Figure 3.6.
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Figure 3.9: Receiver implementation following (T3). Notice that this implementation
does not rely on an orthonormal basis.

Test (T3) is obtained from (T2) via Parseval’s relationship and a bit more to account for
the fact that projecting R onto si is the same as projecting Y . Specifically, for i = 1, 2 ,

〈y, si〉 = 〈Y, si〉
= 〈Y +N⊥, si〉
= 〈R, si〉.

Test (T3) is implemented by the block diagram in Figure 3.9. The subtraction of half the
signal energy in (T2) and (T3) is of course superfluous when all signals have the same
energy.

Even tough the mathematical expression for the test (T2) and (T3) look similar, the
tests differ fundamentally and practically. First of all, (T3) does not require finding a
basis for the signal space spanned by W . As a side benefit, this proves that the receiver
performance does not depend on the basis used to perform (T2) (or (T1) for that matter).
Second, Test (T2) requires an extra layer of computation, namely that needed to perform
the inner products 〈y, si〉 . This step comes for free in (T3) (compare Figures 3.8 and
3.9). However, the number of integrators needed in Figure 3.9 equals the number m of
hypotheses (2 in our case), whereas that in Figure 3.8 equals to dimensionality n of the
signal space W . We know that n ≤ m and one can easily construct examples where
equality holds or where n� m . In the latter case it is preferable to implement test (T2).
This point will become clearer and more relevant when the number m of hypotheses is
large. It should also be pointed out that the block diagram of Figure 3.9 does not quite
fit into the decomposition of Figure 3.5 (the n -tuple Y is not produced).

Each of the tests (T1), (T2), and (T3) can be implemented two ways. One way is shown
in Figs. 3.6, 3.8 and 3.9, respectively. The other way makes use of the fact that the
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t = T

-@@
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Figure 3.10: Two ways to implement the projection 〈R, s〉 , namely via a “correlator” (a)
and via a “matched filter” (b).

operation

〈R, s〉 =

∫
R(t)s∗(t)dt

can always be implemented by means of a filter of impulse response h(t) = s∗(T − t) as
shown in Figure 3.10 (b), where T is an arbitrary delay selected in such a way as to make
h a causal impulse response. To verify that the implementation of Figure (3.10)(b) also
leads to 〈R, s〉 , we proceed as follows. Let y be the filter output when the input is R .
If h(t) = s∗(T − t) , t ∈ R , is the filter impulse response, then

y(t) =

∫
R(α) h(t− α) dα =

∫
R(α) s∗(T + α− t) dα.

At t = T the output is

y(T ) =

∫
R(α) s∗(α) dα,

which is indeed 〈R, s〉 (by definition). The implementation of Figure 3.10(b) is referred
to as matched-filter implementation of the receiver front-end. In each of the receiver front
ends shown in Figs. 3.6, 3.8 and 3.9, we can substitute matched filters for correlators.

3.3.3 Probability of Error

We compute the probability of error the exact same way as we did in Section 2.4.2. As we
have seen, the computation is straightforward when we have only two hypotheses. From
test (T1) we see that when H = 0 we make an error if Y is closer to s1 than to s0 .
This happens if the projection of the noise N in direction s1 − s0 has length exceeding
‖s1−s0‖

2
. This event has probability Pe(0) = Q

(‖s1−s0‖
2σ

)
where σ2 = N0

2
is the variance of

the projection of the noise in any direction. By symmetry, Pe(1) = Pe(0) . Hence

Pe =
1

2
Pe(1) +

1

2
Pe(0) = Q

(
‖s1 − s0‖√

2N0

)
= Q

(
‖s1 − s0‖√

2N0

)
,
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where we use the fact that

‖s1 − s0‖ = ‖s1 − s0‖ =

√∫
[s1(t)− s0(t)]2dt.

It is interesting to observe that the probability of error depends only on the distance
‖s1 − s0‖ and not on the particular shape of the waveforms s0 and s1 . This fact is
illustrated in the following example.

Example 51. Consider the following signal choices and verify that, in all cases, the
corresponding n -tuples are s0 = (

√
E , 0)T and s1 = (0,

√
E)T . To reach this conclusion,

it is enough to verify that 〈si, sj〉 = Eδij , where δij equals 1 if i = j and 0 otherwise.
This means that, in each case, s0 and s1 are orthogonal and have squared norm E .

Choice 1 (Rectangular Pulse Position Modulation) :

s0(t) =

√
E
T

1[0,T ](t)

s1(t) =

√
E
T

1[T,2T ](t),

where we have used the indicator function 1I(t) to denote a rectangular pulse which is
1 in the interval I and 0 elsewhere. Rectangular pulses can easily be generated, e.g. by
a switch. They are used to communicate binary symbols within a circuit. A drawback of
rectangular pulses is that they have infinite support in the frequency domain.

Choice 2 (Frequency Shift Keying):

s0(t) =

√
2E
T

sin

(
πk

t

T

)
1[0,T ](t)

s1(t) =

√
2E
T

sin

(
πl
t

T

)
1[0,T ](t),

where k and l are positive integers, k 6= l . With a large value of k and l , these signals
could be used for wireless communication. Also these signals have infinite support in the
frequency domain. Using the trigonometric identity sin(α) sin(β) = cos(α− β)− cos(α+
β) , it is straightforward to verify that the signals are orthogonal.

Choice 3 (Sinc Pulse Position Modulation):

s0(t) =

√
E
T

sinc

(
t

T

)
s1(t) =

√
E
T

sinc

(
t− T
T

)
The biggest advantage of sinc pulses is that they have finite support in the frequency
domain. This means that they have infinite support in the time domain. In practice one
uses a truncated version of the time domain signal.
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Choice 4 (Spread Spectrum):

s0(t) =

√
E
T

n∑
j=1

s0j1[0,T
n

]

(
t− j T

n

)

s1(t) =

√
E
T

n∑
j=1

s1j1[0,T
n

]

(
t− j T

n

)

where s0 = (s01, . . . , s0n)T and s1 = (s11, . . . , s1n)T are orthogonal and have square norm
E . This signaling method is called spread spectrum. It uses much bandwidth but it has
an inherent robustness with respect to interfering (non-white) signals.

As a function of time, the above signal constellations are all quite different. Neverthe-
less, when used to signal across the waveform AWGN channel they all lead to the same
probability of error. 2

3.4 The m-ary Case

Generalizing to the m -ary case is straightforward. In this section we let the prior PH
be general (not necessarily uniformly distributed as thus far in this chapter). So H = i
with probability PH(i) , i ∈ H . When H = i , R = si + N where si ∈ S , S =
{s0, s1, . . . , sm−1} is the signal constellation assumed to be known to the receiver, and N
is white Gaussian noise.

We assume that we have selected an orthonormal basis {ψ1, ψ2, . . . , ψn} for the vector
space W spanned by S . Like for the binary case, it will turn out that an optimal receiver
can be implemented without going through the step of finding an orthonormal basis. At
the receiver we obtain a sufficient statistic by projecting the received signal R onto each
of the basis vector. The result is:

Y = (Y1, Y2, . . . , Yn)T where

Yi = 〈R,ψi〉, i = 1, . . . , n.

The decoder “sees” the vector hypothesis testing problem

H = i : Y = si +Z ∼ N (si,
N0

2
In)

studied in Chapter 2. The receiver observes y and decides for Ĥ = i only if

PH(i)fY |H(y|i) = max
k
{PH(k)fY |H(y|k)}.

Any receiver that satisfies this decision rule minimizes the probability of error. If the
maximum is not unique, the receiver may declare any of the hypotheses that achieves the
maximum.
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For the additive white Gaussian channel under consideration

fY |H(y|i) =
1

(2πσ2)
n
2

exp

(
−‖y − si‖

2

2σ2

)
where σ2 = N0

2
. Plugging into the above decoding rule, taking the log which is a

monotonic function, multiplying by minus N0 , and canceling terms that do not depend
on i , we obtain that a MAP decoder decides for one of the i ∈ H that minimizes

−N0 lnPH(i) + ‖y − si‖2.

The expression should be compared to test (T1) of the previous section. The manipula-
tions of ‖y − si‖2 that have led to test (T2) and (T3) are valid also here. In particular,
the equivalent of (T2) consists of maximizing.

〈y, si〉+ ci

where ci = 1
2
(N0 ln PH(i) − ‖si‖2) . Finally, we can use Parseval’s relationship to

substitute 〈R, si〉 for 〈Y , si〉 and get rid of the need to find an orthonormal basis. This
leads to the generalization of (T3), namely

〈R, si〉+ ci.

Figure 3.11 shows three MAP receivers where the receiver front end is implemented via a
bank of matched filters. Three alternative forms are obtained by using correlators instead
of matched filters. In the first figure, the decoder partitions Cn into decoding regions.
The decoding region for H = i is the set of points y ∈ Cn for which

−N0 ln PH(k) + ‖y − sk‖2

is minimized when k = i . Notice that in the first two implementations there are n
matched filters, where n is the dimension of the signal space W spanned by the signals
in S , whereas in the third implementation the number of matched filters equals the
number m of signals in S . In general, n ≤ m . If n = m , the third implementation
is preferable to the second since it does not require the weighing matrix and does not
require finding a basis for W . If n is small and m is large, the second implementation
is preferable since it requires fewer filters.
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Ĥ

Baseband Front-End Decoder Implementation

R
-

- ψn(T − t)

- ψ1(T − t)

t = T

t = T

@@

@@

-

-

Y1

Yn

Decoder
-
Ĥ
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Figure 3.11: Three block diagrams of an optimal receiver for the waveform AWGN channel
. Each baseband front end may alternatively be implemented via correlators.
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3.5 Summary

In this chapter we have made the important transition from dealing with the discrete-time
AWGN channels to the waveform AWGN channel. From a mathematical point of view
we may summarize the essence as follows. Whatever we do, we send signals that are finite
energy—hence in L2 . We may see the collection of all possible signals as elements of an
inner product space W ⊂ L2 of some dimensionality n . The received signal consists of
a component in W and one orthogonal to W . The latter contains no signal component
and can be removed by the receiver front end without loss of optimality. The elimination
of the orthogonal component may be done by projecting the received signal onto W .
After we pick an orthonormal basis for W , we can represent the transmitted signal and
the projected received signal by means of n -tuples. Since the projected noise can also
be represented as an n -tuple of i.i.d. zero-mean Gaussian random variables of variance
σ2 = N0

2
, the received n -tuple has the statistic of the output of a discrete-time AWGN

channel that has the transmitter n -tuple as its input. An immediate consequence of
this point of view is that there is no loss of generality in viewing a waveform sender
and the corresponding maximum a posteriori (or maximum likelihood) receiver as being
decomposed into the blocks of Figure 3.5. This implies that to design the decoder and to
compute the error probability we can directly use what we have learned in Chapter 2 for
the discrete-time AWGN channel.
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Appendix 3.A Rectangle and Sinc as Fourier Transform Pairs

The Fourier transform of a rectangular pulse is a sinc pulse. Often one has to go back
and forth between such Fourier pairs. The purpose of this appendix is to make it easier
to figure out the details.

First of all let us recall that a function g and its Fourier transform gF are related by

g(u) =

∫
gF(α) exp(j2πuα)dα

gF(v) =

∫
g(α) exp(−j2πvα)dα.

Notice that gF(0) is the area under g and g(0) is the area under gF .

Next let us recall that sinc(x) = sin(πx)
πx

is the function that equals 1 at x = 0 and equals
0 at all other integer values of x . Hence if a, b ∈ R are arbitrary constants, a sinc(bx)
equals a at x = 0 and and equals 0 at nonzero multiples of 1/b .

If you could remember that the area under a sinc(bx) is a/b then, from the two facts
above, you could conclude that its Fourier transform, which you know is a rectangle, has
height a/b and area a . Hence the width of this rectangle must be b .

It is actually easy to remember that the area under a sinc(bx) is a/b : it is the area of the
triangle described by the main lobe of a sinc(bx) , namely the area of the triangle with
coordinates (−1/b, 0) , (0, a) , (1/b, 0) .
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Appendix 3.B Problems

Problem 1. (Gram-Schmidt Procedure On Tuples) Use the Gram-Schmidt orthonor-
malization procedure to find an orthonormal basis for the subspace spanned by the
vectors β1, . . . , β4 where β1 = (1, 0, 1, 1)T , β2 = (2, 1, 0, 1)T , β3 = (1, 0, 1,−2)T , and
β4 = (2, 0, 2,−1)T .

Problem 2. (Matched Filter Implementation)

In this problem, we consider the implementation of matched filter receivers. In particular,
we consider Frequency Shift Keying (FSK) with the following signals:

sj(t) =

{ √
2
T

cos 2π
nj
T
t, for 0 ≤ t ≤ T,

0, otherwise,
(3.4)

where nj ∈ Z and 0 ≤ j ≤ m − 1 . Thus, the communications scheme consists of m
signals sj(t) of different frequencies

nj
T

(i) Determine the impulse response hj(t) of the matched filter for the signal sj(t) . Plot
hj(t) .

(ii) Sketch the matched filter receiver. How many matched filters are needed?

(iii) For −T ≤ t ≤ 3T , sketch the output of the matched filter with impulse response
hj(t) when the input is sj(t) . (Hint: We recommend you to use Matlab.)

(iv) Consider the following ideal resonance circuit:

CL

i(t)

u(t)

For this circuit, the voltage response to a unit impulse of current is

h(t) =
1

C
cos

t√
LC

. (3.5)

Show how this can be used to implement the matched filter for signal sj(t) . Determine
how L and C should be chosen. Hint: Suppose that i(t) = sj(t) . In that case, what is
u(t)?
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Problem 3. (On-Off Signaling) Consider the following binary hypothesis testing problem
specified by:

H = 0 : Y (t) = s(t) +N(t)

H = 1 : Y (t) = N(t)

where N(t) is AWGN (Additive White Gaussian Noise) of power spectral density N0/2
and s(t) is the signal shown in the Figure (a) below.

(a) Describe the maximum-likelihood receiver for the observable Y (t) , t ∈ R .

(b) Determine the error probability for the receiver you described in (a).

(c) Can you realize your receiver of part (a) using a filter with impulse response h(t)
shown in Figure (a)?
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h(t)

(b)

Problem 4. (Matched Filter Basics) Let the transmitted signal be

S(t) =
K∑
k=1

Sk h(t− kT )

where Si ∈ {−1, 1} and h(t) is a given function. Assume that the function h(t) and its
shifts by multiples of T form an othonormal set, i.e.,∫ ∞

−∞
h(t)h(t− kT )dt =

{
0, k 6= 0
1, k = 0.

(a) Suppose S(t) is filtered at the receiver by the matched filter with impulse response
h(−t) . That is, the filtered waveform is R(t) =

∫∞
−∞ S(τ)h(τ − t)dτ . Show that the

samples of this waveform at multiples of T are R(mT ) = Sm , for 1 ≤ m ≤ K .
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(b) Now suppose that the channel has an echo in it and behaves like a filter of impulse
response f(t) = δ(t) + ρδ(t − T ) , where ρ is some constant between −1 and 1 .
Assume that the transmitted waveform S(t) is filtered by f(t) , then filtered at the
receiver by h(−t) . The resulting waveform R̃(t) is again sampled at multiples of T .
Determine the samples R̃(mT ) , for 1 ≤ m ≤ K .

(c) Suppose that the k th received sample is Yk = Sk+αSk−1 +Zk , where Zk ∼ N (0, σ2)
and 0 ≤ α < 1 is a constant. Sk and Sk−1 are independent random variables that
take on the values 1 and −1 with equal probability. Suppose that the detector
decides Ŝk = 1 if Yk > 0 , and decides Ŝk = −1 otherwise. Find the probability of
error for this receiver.

Problem 5. (Matched Filter Intuition) In this problem, we develop some further intuition
about matched filters. We have seen that an optimal receiver front end for the signal
set {sj(t)}m−1

j=0 reduces the received (noisy) signal R(t) to the m real numbers 〈R, sj〉 ,
j = 0, . . . ,m−1 . We gain additional intuition about the operation 〈R, sj〉 by considering

R(t) = s(t) +N(t), (3.6)

where N(t) is additive white Gaussian noise of power spectral density N0/2 and s(t)
is an arbitrary but fixed signal. Let h(t) be an arbitrary waveform, and consider the
receiver operation

Y = 〈R, h〉 = 〈s, h〉+ 〈N, h〉. (3.7)

The signal-to-noise ratio (SNR) is thus

SNR =
|〈s, h〉|2

E [|〈N, h〉|2]
. (3.8)

Notice that the SNR is not changed when h(t) is multiplied by a constant. Therefore, we
assume that h(t) is a unit energy signal and denote it by φ(t) . Then,

E
[
|〈N, φ〉|2

]
=

N0

2
. (3.9)

(a) Use Cauchy-Schwarz inequality to give an upper bound on the SNR. What is the con-
dition for equality in the Cauchy-Schwarz inequality? Find the φ(t) that maximizes
the SNR. What is the relationship between the maximizing φ(t) and the signal s(t)?

(b) Let s = (s1, s2)T and use calculus (instead of the Cauchy-Schwarz inequality) to find
the φ = (φ1, φ2)T that maximizes 〈s, φ〉 subject to the constraint that φ has unit
energy.

(c) Hence to maximize the SNR, for each value of t we have to weigh (multiply) R(t)
with s(t) and then integrate. Verify with a picture (convolution) that the output at
time T of a filter with input s(t) and impulse response h(t) = s(T − t) is indeed∫ T

0
s2(t)dt .
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(d) We may also look at the situation in terms of Fourier transforms. Write out the filter
operation in the frequency domain.

Problem 6. (Receiver for Non-White Gaussian Noise) We consider the receiver design
problem for signals used in non-white additive Gaussian noise. That is, we are given a
set of signals {sj(t)}m−1

j=0 as usual, but the noise added to those signals is no longer white;
rather, it is a Gaussian stochastic process with a given power spectral density

SN(f) = G2(f), (3.10)

where we assume that G(f) 6= 0 inside the bandwidth of the signal set {sj(t)}m−1
j=0 . The

problem is to design the receiver that minimizes the probability of error.

(a) Find a way to transform the above problem into one that you can solve, and derive
the optimum receiver.

(b) Suppose there is an interval [f0, f0 + ∆] inside the bandwidth of the signal set
{sj(t)}m−1

j=0 for which G(f) = 0 . What do you do? Describe in words.

Problem 7. (Antipodal Signaling in Non-White Gaussian Noise) In this problem, an-
tipodal signaling (i.e. s0(t) = −s1(t) ) is to be used in non-white additive Gaussian noise
of power spectral density

SN(f) = G2(f), (3.11)

where we assume that G(f) 6= 0 inside the bandwidth of the signal s(t) . How should
the signal s(t) be chosen (as a function of G(f) ) such as to minimize the probability of
error? Hint: For ML decoding of antipodal signaling in AWGN (of fixed variance), the
Pr{e} depends only on the signal energy.

Problem 8. (Mismatched Receiver) Let the received waveform Y (t) be given by

Y (t) = cX s(t) +N(t), (3.12)

where c > 0 is some deterministic constant, X is a uniformly distributed random variable
that takes values in {3, 1,−1,−3} , s(t) is the deterministic waveform

s(t) =

{
1, if 0 ≤ t < 1
0, otherwise,

(3.13)

and N(t) is white Gaussian noise of spectral density N0

2
.

(a) Describe the receiver that, based on the received waveform Y (t) , decides on the value
of X with least probability of error. Be sure to indicate precisely when your decision
rule would declare “+3”, “+1”, “−1”, and “−3”.
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(b) Find the probability of error of the detector you have found in Part (a).

(c) Suppose now that you still use the detector you have found in Part (a), but that the
received waveform is actually

Y (t) =
3

4
cX s(t) +N(t), (3.14)

i.e., you were mis-informed about the signal amplitude. What is the probability of
error now?

(d) Suppose now that you still use the detector you have found in Part (a) and that
Y (t) is according to Equation (3.12), but that the noise is colored. In fact, N(t) is
a zero-mean stationary Gaussian noise process of auto-covariance function

KN(τ) = E[N(t)N(t+ τ)] =
1

4α
e−|τ |/α, (3.15)

where 0 < α < ∞ is some deterministic real parameter. What is the probability of
error now?

Problem 9. (QAM Receiver) Consider a transmitter which transmits waveforms of the
form,

s(t) =

{
s1

√
2
T

cos 2πfct+ s2

√
2
T

sin 2πfct, for 0 ≤ t ≤ T,

0, otherwise,
(3.16)

where 2fcT ∈ Z and (s1, s2) ∈ {(
√
E,
√
E), (−

√
E,
√
E), (−

√
E,−
√
E), (
√
E,−
√
E)}

with equal probability. The signal received at the receiver is corrupted by AWGN of
power spectral density N0

2
.

(a) Specify the receiver for this transmission scheme.

(b) Draw the decoding regions and find the probability of error.

Problem 10. (Gram-Schmidt Procedure on Waveforms: 1) Consider the following func-
tions s0(t) , s1(t) and s2(t) .

(a) Using the Gram-Schmidt procedure, determine a basis of the space spanned by
{s0(t), s1(t), s2(t)} . Denote the basis functions by φ0(t) , φ1(t) and φ2(t) .
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1

2

1 2 3−1

−2

s0(t)

1

2

1 2 3

−2

−1

s1(t)

1

2

1 3−1

−2

2

s2(t)

(b) Let v1 = (3,−1, 1)T and v2 = (−1, 2, 3)T be two points in the space spanned by
{φ0(t), φ1(t), φ2(t)} . What is their corresponding signal, v1(t) and v2(t)? (You can
simply draw a detailed graph.)

(c) Compute
∫
v1(t)v2(t)dt .

Problem 11. (Signaling Scheme Example) Consider the following communication chain.
We have 2k possible hypotheses with k ∈ N to convey through a waveform channel.
When hypothesis i is selected, the transmitted signal is si(t) and the received signal is
given by R(t) = si(t)+N(t) , where N(t) denotes white Gaussian noise with double-sided
power spectral density N0

2
. Assume that the transmitter uses the position of a pulse ψ(t)

in an interval [0, T ] , in order to convey the desired hypothesis, i.e., to send hypothesis i ,
the transmitter sends the signal ψi(t) = ψ(t− iT

2k
) .

(a) If the pulse is given by the waveform ψ(t) depicted below. What is the value of A
that gives us signals of energy equal to one as a function of k and T ?

ψ(t)

A

0 T
2k

t

(b) We want to transmit the hypothesis i = 3 followed by the hypothesis j = 2k − 1 .
Plot the waveform you will see at the output of the transmitter, using the pulse given
in the previous question.

(c) Sketch the optimal receiver.
What is the minimum number of filters you need for the optimal receiver? Explain.

(d) What is the major drawback of this signaling scheme? Explain.
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Problem 12. (Two Receive Antennas) Consider the following communication chain,
where we have two possible hypotheses, H ∈ {0, 1} . Assume that PH(0) = PH(1) = 1

2
.

The transmitter uses antipodal signaling. To transmit H = 0 , the transmitter sends a
unit energy pulse p(t) , and to transmit H = 1 , it sends −p(t) . That is, the transmitted
signal is X(t) = ±p(t) . The observation consists of Y1(t) and Y2(t) as shown below. The
signal along each “path” is an attenuated and delayed version of the transmitted signal
X(t) . The noise is additive white Gaussian with double sided power spectral density
N0/2 . Also, the noise added to the two observations is independent and independent of
the data. The goal of the receiver is to decide which hypothesis was transmitted, based
on its observation.

We will look at two different scenarios: either the receiver has access to each individual
signal Y1(t) and Y2(t) , or the receiver has only access to the combined observation Y (t) =
Y1(t) + Y2(t) .

X(t)

β1δ(t− τ1)

β2δ(t− τ2)

Y1(t)

Y2(t)

Y (t)

WGN

WGN

a. The case where the receiver has only access to the combined output Y (t) .

1. In this case, observe that we can write the received waveform as ±g(t) + Z(t) .
What are g(t) and Z(t) and what are the statistical properties of Z(t)? Hint:

Recall that
∫
δ(τ − τ1)p(t− τ)dτ = p(t− τ1) .

2. What is the optimal receiver for this case? Your answer can be in the form of a
block diagram that shows how to process Y (t) or in the form of equations. In
either case, specify how the decision is made between Ĥ = 0 or Ĥ = 1 .

3. Assume that
∫
p(t−τ1)p(t−τ2)dt = γ , where −1 ≤ γ ≤ 1 . Find the probability

of error for this optimal receiver, express it in terms of the Q function, β1 , β2 ,
γ and N0/2 .

b. The case where the receiver has access to the individual observations Y1(t) and Y2(t) .

1. Argue that the performance of the optimal receiver for this case can be no worse
than that of the optimal receiver for part (a).
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2. Compute the sufficient statistics (Y1, Y2) , where Y1 =
∫
Y1(t)p(t − τ1)dt and

Y2 =
∫
Y2(t)p(t − τ2)dt . Show that this sufficient statistic (Y1, Y2) has the

form (Y1, Y2) = (β1 + Z1, β2 + Z2) under H = 0 , and (−β1 + Z1,−β2 + Z2)
under H = 1 , where Z1 and Z2 are independent zero-mean Gaussian random
variables of variance N0/2 .

3. Using the LLR (Log-Likelihood Ratio), find the optimum decision rule for this
case. Hint: It may help to draw the two hypotheses as points in R2 . If we let

V = (V1, V2) be a Gaussian random vector of mean m = (m1,m2) and covari-

ance matrix Σ = σ2I , then its pdf is pV (v1, v2) = 1
2πσ2 exp

(
− (v1−m1)2

2σ2 − (v2−m2)2

2σ2

)
.

4. What is the optimal receiver for this case? Your answer can be in the form of
a block diagram that shows how to process Y1(t) and Y2(t) or in the form of
equations. In either case, specify how the decision is made between Ĥ = 0 or
Ĥ = 1 .

5. Find the probability of error for this optimal receiver, express it in terms of the
Q function, β1 , β2 and N0 .

c. Comparison of the two cases

1. In the case of β2 = 0 , that is the second observation is solely noise, give the
probability of error for both cases (a) and (b). What is the difference between
them? Explain why.

Problem 13. (Delayed Signals) One of two signals shown in the figure below is trans-
mitted over the additive white Gaussian noise channel. There is no bandwidth constraint
and either signal is selected with probability 1/2 .

√
1
T

- t

6

0 T 2T

s0(t)

√
1
T

- t

6

0 T 2T 3T

s1(t)

(a) Draw a block diagram of a maximum likelihood receiver. Be as specific as you can.
Try to use the smallest possible number of filters and/or correlators.

(b) Determine the error probability in terms of the Q -function, assuming that the power
spectral density of the noise is N0

2
= 5 [ W

Hz
] .
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Problem 14. (Antenna Array) Consider an L -element antenna array as shown in the
figure below.

Transmit antennasL

Let u(t)βi be a complex-valued signal transmitted at antenna element i , i = 1, 2, . . . , L
(according to some indexing which is irrelevant here) and let

v(t) =
L∑
i=1

u(t− τD)βiαi

(plus noise) be the sum-signal at the receiver antenna, where αi is the path strength for
the signal transmitted at antenna element i and τD is the (common) path delay.

(a) Choose the vector β = (β1, β2, . . . , βL)T that maximizes the signal energy at the
receiver, subject to the constraint ‖β‖ = 1 . The signal energy is defined as Ev =∫
|v(t)|2dt . Hint Use the Cauchy-Schwarz inequality: for any two vectors a and b

in Cn , |〈a,b〉|2 ≤ ‖a‖2‖b‖2 with equality iff a and b are linearly dependent.

(b) Let u(t) =
√
Euφ(t) where φ(t) has unit energy. Determine the received signal

power as a function of L when β is selected as in (a) and α = (α, α, . . . , α)T for
some complex number α .

(c) In the above problem the received energy grows monotonically with L while the
transmit energy is constant. Does this violate energy conservation or some other
fundamental low of physics? Hint: an antenna array is not an isotropic antenna (i.e.
an antenna that sends the same energy in all directions).

Problem 15. (Cioffi) The signal set

s0(t) = sinc2(t)

s1(t) =
√

2 sinc2(t) cos(4πt)

is used to communicate across an AWGN channel of power spectral density N0

2
.

(a) Find the Fourier transforms of the above signals and plot them.

(b) Sketch a block diagram of a ML receiver for the above signal set.

(c) Determine its error probability of your receiver assuming that s0(t) and s1(t) are
equally likely.
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(d) If you keep the same receiver, but use s0(t) with probability 1
3

and s1(t) with
probability 2

3
, does the error probability increase, decrease, or remain the same?

Justify your answer.

Problem 16. (Sample Exam Question) Let N(t) be a zero-mean white Gaussian process
of power spectral density N0

2
. Let g1(t) , g2(t) , and g3(t) be waveforms as shown in the

following figure.

-tg1(t)

0 T

1
g2(t) - t

0

T/2

T

1

−1

g3(t) -t

−1

0 T

(a) Determine the norm ‖gi‖, i = 1, 2, 3 .

(b) Let Zi be the projection of N(t) onto gi(t) . Write down the mathematical expression
that describes this projection, i.e. how you obtain Zi from N(t) and gi(t) .

(c) Describe the object Z1 , i.e. tell us everything you can say about it. Be as concise as
you can.

-

6

Z1

Z2 or Z3

1 2

1

2

(a)

- Z1

6Z2

(b)

�
�

@
@

�
�

@
@

(0,−
√

2)

(0,−2
√

2)

-

6

Z1

Z2 or Z3

1 2

−1

−2

(c)

(d) Are Z1 and Z2 independent? Justify your answer.

(e) (i) Describe the object Z = (Z1, Z2) . (We are interested in what it is, not on how
it is obtained.)

(ii) Find the probability Pa that Z lies in the square labeled (a) in the figure below.

(iii) Find the probability Pb that Z lies in the square (b) of the same figure. Justify
your answer.

(f) (i) Describe the object W = (Z1, Z3) .

(ii) Find the probability Qa that W lies in the square (a).

(iii) Find the probability Qc that W lies in the square (c).
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Problem 17. (Gram-Schmidt Procedure on Waveforms: 2) Use the Gram Schmidt pro-
cedure to find an orthonormal basis for the vector space spanned by the functions shown
below.

-ts1(t)

0 T

1

-ts2(t)

0 T/2

2

Problem 18. (ML Receiver With Single Causal Filter) You want to design a Maximum
Likelihood (ML) receiver for a system that communicates an equiprobable binary hypoth-
esis by means of the signals s1(t) and s2(t) = s1(t − Td) , where s1(t) is shown in the
figure and Td is a fixed number assumed to be known at the receiver. The channel is the

-

6s1(t)

��
�
��

�
��

t
T

usual AWGN channel with noise power spectral density N0/2 . At the receiver front end
you are allowed to use a single causal filter of impulse response h(t) (A causal filter is
one whose impulse response is 0 for t < 0 ).

(a) Describe the h(t) that you chose for your receiver.

(b) Sketch a block diagram of your receiver. Be specific about the sampling times.

(c) Assuming that Td > T , determine the error probability for the receiver as a function
of N0 and Es (Es = ||s1(t)||2 ).

Problem 19. (Waveform Receiver)

Consider the signals s0(t) and s1(t) shown in the figure.

(a) Determine an orthonormal basis {ψ0(t), ψ1(t)} for the space spanned by {s0(t), s1(t)}
and find the n-tuples of coefficients s0 and s1 that correspond to s0(t) and s1(t) ,
respectively.
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t

s0(t)

0 T 2T

1

−1

t

s1(t)

0 T 2T

1

−1

Figure 3.12: Signal waveforms

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1} .
We want to communicate the value of X over an additive white Gaussian noise
channel. When X = 0 , we send S(t) = s0(t) , and when X = 1 , we send S(t) =
s1(t) . The received signal at the destination is

Y (t) = S(t) + Z(t),

where Z(t) is AWGN of power spectral density N0

2
.

(i) Draw an optimal matched filter receiver for this case. Specifically say how the
decision is made.

(ii) What is the output of the matched filter(s) when X = 0 and the noise variance
is zero ( N0

2
= 0 )?

(iii) Describe the output of the matched filter when S(t) = 0 and the noise variance
is N0

2
> 0 .

(c) Plot the s0 and s1 that you have found in part (??), and determine the error prob-
ability Pe of this scheme as a function of T and N0 .

(d) Find a suitable waveform v(t) , such that the new signals ŝ0(t) = s0(t) − v(t) and
ŝ1(t) = s1(t)−v(t) have minimal energy and plot the resulting ŝ0(t) and ŝ1(t) . Hint:
you may first want to find v , the n-tuple of coefficients that corresponds to v(t) .

(e) Compare ŝ0(t) and ŝ1(t) to s0(t) and s1(t) , respectively, and comment on the part
v(t) that has been removed.
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Chapter 4

Signal Design Trade-Offs

4.1 Introduction

It is time to shift our focus to the transmitter and take a look at some of the options we
have in terms of choosing the signal constellation. The goal of this chapter is to build
up some intuition about the impact that those options have on the transmission rate,
bandwidth, power, and error probability. Throughout this chapter we assume that the
channel is the AWGN channel and that the receiver implements a MAP decision rule.
Initially we will assume that all signals are used with the same probability in which case
the MAP rule is a ML rule.

To put things into perspective, we mention from the outset that the problem of choosing
a convenient signal constellation is not as clean-cut as the receiver design problem that
has kept us busy until now. The reason is that the receiver design problem has a clear
objective, namely to minimize the error probability, and an essentially unique solution, a
MAP decision rule. In contrast, choosing a good signal constellation is making a tradeoff
among conflicting objectives. Specifically, if we could we would choose a signal constella-
tion that contains a very large number m of signals of very small duration T and very
small bandwidth B . By making m sufficiently large and BT sufficiently small we could
achieve any arbitrarily large communication rate log2m

TB
(expressed in bits per second per

Hz). In addition, if we could we would choose our signals so that they use very little
energy (what about zero) and result in a very small error probability (why not zero).
These are conflicting goals.

While we have already mentioned a few times that when we transmit a signal chosen from
a constellation of m signals we are in essence transmitting the equivalent of k = log2m
bits, we clarify this concept since it is essential for the sequel. So far we have implicitly
considered one-shot communication, i.e., we have considered the problem of sending a
single message in isolation. In practice we send several messages by using the same idea
over and over. Specifically, if in the one-shot setting the message H = i is mapped into

113
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the signal si , then for a sequence of messages H0, H1, H2, · · · = i0, i1, i2 . . . we send si0(t)
followed by si1(t−Tm) followed by si2(t−2Tm) etc, where Tm (m for message) is typical
the smallest amount of time we have to wait to make si(t) and sj(t−Tm) orthogonal for
all i and j in {0, 1, . . . ,m− 1} . Assuming that the probability of error Pe is negligible,
the system consisting of the sender, the channel, and the receiver is equivalent to a pipe
that carries m -ary symbols at a rate of 1/Tm [symbol/sec]. (Whether we call them
messages or symbols is irrelevant. In single-shot transmission it makes sense to speak of a
message being sent whereas in repeated transmissions it is natural to consider the message
as being the whole sequence and individual components of the message as being symbols
that take value in an m -letter alphabet.) It would be a significant restriction if this
virtual pipe could be used only with sources that produce m -ary sequences. Fortunately
this is not the case. To facilitate the discussion, assume that m is a power of 2 , i.e.,
m = 2k for some integer k . Now if the source produces a binary sequence, the sender
and the receiver can agree on a one-to-one map between the set {0, 1}k and the set of
messages {0, 1, . . . ,m − 1} . This allows us to map every k bits of the source sequence
into an m -ary symbol. The resulting transmission rate is k/Tm = log2m/Tm bits per
second. The key is once again that with an m -ary alphabet each letter is equivalent to
log2m bits.

The chapter is organized as follows. First we consider transformations that may be applied
to a signal constellation without affecting the resulting probability of error. One such
transformation consists of translating the entire signal constellation and we will see how
to choose the translation to minimize the resulting average energy. We may picture the
translation as being applied to the constellation of n -tuples that describes the original
waveform constellation with respect to a fixed orthonormal basis. Such a translation is a
special case of an isometry in Rn and any such isometry applied to a constellation of n -
tuples will lead to a constellation that has the exact same error probability as the original
(assuming the AWGN channel). A transformation that also keeps the error probability
unchanged but can have more dramatic consequences on the time and frequency properties
consists of keeping the original n -tuple constellation and changing the orthonormal basis.
The transformation is also an isometry but this time applied directly to the waveform
constellation rather than to the n -tuple constellation. Even though we did not emphasize
this point of view, implicitly we did exactly this in Example 51. Such transformations
allow us to vary the duration and/or the bandwidth occupied by the process produced by
the transmitter. This raises the question about the possible time/bandwidth tradeoffs.
The question is studied in Subsection 4.3. The chapter concludes with a number of
representative examples of signal constellations intended to sharpen our intuition about
the available tradeoffs.

4.2 Isometric Transformations

An isometry in L2 (also called rigid motion) is a distance-preserving transformation
a : L2 → L2 . Hence for any two vectors p , q in L2 , the distance from p to q equals the
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distance from a(p) to a(q) . Isometries can be defined in a similar way over a subspace W
of L2 as well as over Rn . In fact, once we fix an orthonormal basis for an n -dimensional
subspace W of L2 , any isometry of W corresponds to an isometry of Rn and vice-versa.
Alternatively, there are isometries of L2 that map a subspace W to a different subspace
W ′ . We consider both, isometries within W and those from W to W ′ .

4.2.1 Isometric Transformations within a subspace W

We assume that we have a constellation S of waveforms that spans an n -dimensional
subspace W of L2 and that we have fixed an orthonormal basis B for W . The waveform
constellation S and the orthonormal basis B lead to a corresponding n -tuple constel-
lation S . If we apply an isometry of Rn to S we obtain an n -tuple constellation S ′
and the corresponding waveform constellation S ′ . From the way we compute the error
probability it should be clear that when the channel is the AWGN, the probability of error
associated to S is identical to that associated to S ′ . A proof of this rather intuitive fact
is given in Appendix 4.A.

Example 52. The composition of a translation and a rotation is an isometry. The figure
below shows an original signal set and a translated and rotated copy. The probability of
error is the same for both. The average energy is in general not the same.
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In the next subsection we see how to translate a constellation so as to minimize the average
energy.

4.2.2 Energy-Minimizing Translation

Let Y be a zero-mean random vector in Rn . It is immediate to verify that for any
b ∈ Rn ,

E‖Y − b‖2 = E‖Y ‖2 + ‖b‖2 − 2E〈Y , b〉 = E‖Y ‖2 + ‖b‖2 ≥ E‖Y ‖2
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Figure 4.1: Example of isometric transformation to minimize the energy.

with equality iff b = 0. This says that the expected squared norm is minimized when the
random vector is zero-mean. Hence for a generic random vector S ∈ Rn (not necessarily
zero-mean), the translation vector b ∈ Rn that minimizes the expected squared norm of
S − b is the mean m = E[S] .

The average energy E of a signal constellation {s0, s1, . . . , sm−1} is defined as

E =
∑
i

PH(i)‖si‖2.

Hence E = E‖S‖2 , where S is the random vector that takes value si with probability
PH(i) . The result of the previous paragraph says that we can reduce the energy (without
affecting the error probability) by using the translated constellation {s′0, s′1, . . . , s′m−1} ,
where s′i = si −m , with

m =
∑
i

PH(i)si.

Example 53. Let s0(t) and s1(t) be rectangular pulses with support [0, T ] and [T, 2T ] ,
respectively, as shown on the left of Figure 4.1. Assuming that PH(0) = PH(1) = 1

2
, we

calculate the centroid a(t) = 1
2
s0(t)+ 1

2
s1(t) and see that it is non-zero. Hence we can save

energy by using instead s̃i(t) = si(t)−a(t) , i = 0, 1 . The result are two antipodal signals
(see again the figure). On the right of Figure 4.1 we see the equivalent representation
in the signal space, where ϕ0 and ϕ1 form an orthonormal basis for the 2 -dimensional
space spanned by s0 and s1 and ϕ̃ forms an orthonormal basis for the 1 -dimensional
space spanned by s̃0 and s̃1

2
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4.2.3 Isometric Transformations from W to W ′

Assume again a constellation S of waveforms that spans an n -dimensional subspace W
of L2 , an orthonormal basis B for W , and the associated n -tuple constellation S . Let
B′ be the orthonormal basis of another n -dimensional subspace of L2 . Together S and
B′ specify a constellation S ′ that spans W ′ . It is easy to see that corresponding vectors
are related by an isometry. Indeed, if p maps into p′ and q into q′ then ‖p − q‖ =
‖p − q‖ = ‖p′ − q′‖ . Once again, an example of this sort of transformation is implicit
in Example 51. Notice that some of those constellations have finite support in the time
domain and some have finite support in the frequency domain. Are we able to choose
the duration T and the bandwidth B at will? That would be quite nice. Recall that
the relevant parameters associated to a signal constellation are the average energy E ,
the error probability Pe , the number k of bits carried by a signal (equivalently the size
m = 2k of the signal constellation), and the time-bandwidth-product BT where for now
B is informally defined as the frequency interval that contains most of the signal’s energy
and T as the time interval that contains most of the signal’s energy. The ratio k/BT is
the number of bits per second per Hz of bandwidth carried in average by a signal. (In this
informal discussion the underlying assumption is that signals are correctly decoded at the
receiver. If the signals are not correctly decoded then we can not claim that k bits of
information are conveyed every time that we send a signal.) The class of transformations
described in this subsection has no effect on the average energy, on the error probability,
and on the number of bits carried by a signal. Hence a question of considerable practical
interest is that of finding the transformation that minimizes BT for a fixed n . In the
next section we take a look at the largest possible value of BT .

4.3 Time Bandwidth Product Vs Dimensionality

The goal of this section is to establish a relationship between n and BT . The reader
may be able to see already that n can be made to grow at least as fast as linearly with
BT (two examples will follow) but can it grow faster and, if not, what is the constant in
front of BT ?

Fist we need to define B and T rigorously. We are tempted to define the bandwidth of
a baseband signal s(t) to be B if the support of sF(t) is [−B

2
, B

2
] . This definition is not

useful in practice since all man-made signals s(t) have finite support (in the time domain)
and thus sF(f) has infinite support.1 A better definition of bandwidth for a baseband
signal (but not the only one that makes sense) is to fix a number η ∈ (0, 1) and say that
the baseband signal s(t) has bandwidth B if B is the smallest number such that∫ B

2

−B
2

|sF(f)|2df = ‖s‖2(1− η).

1We define the support of a real or complex valued function x : A → B as the smallest interval C ⊆ A
such that x(c) = 0 , for all c 6∈ C .
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In words, the baseband signal has bandwidth B if [−B
2
, B

2
] is the smallest interval that

contains at least 100(1− η)% of the signal’s power. The bandwidth changes if we change
η . Reasonable values for η are η = 0.1 and η = 0.01 . This definition has the property
that allows us to relate time, bandwidth, and dimensionality in a rigorous way. If we let
η = 1

12
and define

L2(Ta, Tb, Ba, Bb) =

{
s(t) ∈ L2 : s(t) = 0, t 6∈ [Ta, Tb] and

∫ Bb

Ba

|sF(f)|2df ≥ ‖s‖2(1− η)

}
then one can show that the dimensionality of L2(Ta, Tb, Ba, Bb) is

n = bTB + 1c

where B = |Bb − Ba| and T = |Tb − Ta| (see Wozencraft & Jacobs for more on this).
As T goes to infinity, we see that the number n

T
of dimensions per second goes to B .

Moreover, if one changes the value of η , then the essentially linear relationship between
n
T

and B remains (but the constant in front of B may be different than 1). Be aware
that many authors would say that a frequency domain pulse that has most of its energy
in the interval [−B,B] has bandwidth B (not 2B as we have defined it). The rationale
for neglecting the negative frequencies is that with a spectrum analyzer, which is an
instrument to see measure and plot the spectrum of real-valued signals, we see only the
positive frequencies. We prefer our definition since it applies also when Ba 6= −Bb .

Example 54. (Orthogonality via frequency shifts) The Fourier transform of the rectan-
gular pulse p(t) that has unit amplitude and support [−T

2
, T

2
] is pF(f) = T sinc(fT ) and

pl(t) = p(t) exp(j2πl t
T

) has Fourier transform pF(f − l
T

) . The set {pl(t)}n−1
l=0 consists of

a collection of n orthogonal waveform of duration T . For simplicity, but also to make the
point that the above result is not sensitive to the definition of bandwidth, in this example
we let the bandwidth of p(t) be 2/T . This is the width of the main lobe and it is the
η -bandwidth for some η . Then the n pulses fit in a the frequency interval [− 1

T
, n
T

] , which
has width n+1

T
. We have constructed n orthogonal signals with time-bandwidth-product

equal n+ 1 . (Be aware that in this example T is the support of one pulse whereas in the
expression n = bTB + 1c it is the with of the union of all supports.) 2

Example 55. (Orthogonality via time shifts) Let p(t) and its bandwidth be defined as in
the previous example. The set {pl(t− lT )}n−1

l=0 is a collection of n orthogonal waveforms.
Recall that the Fourier transform of pl is the Fourier transform of p times exp(−j2πlTf) .
This multiplicative term of unit magnitude does not affect the energy spectral density
which is the squared magnitude of the Fourier transform. Hence regardless of η , the
frequency interval that contains the fraction 1− η of the energy is the same for all pl . If
we take B as the bandwidth occupied by the main lobe of the sinc we obtain BT = 2n .
In this example BT is larger than in the previous example by a factor 2. One is tempted
to guess that this is due to the fact that we are using real-valued signals but it is actually
not so. In fact if we use sinc pulses rather than rectangular pulses then we also construct
real-valued time-domain pulses and obtain the same time bandwidth product as in the
previous example. In fact in doing so we are just swapping the time and frequency
variables of the previous example. 2
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4.4 Examples of Large Signal Constellations

The aim of this section is to sharpen our intuition by looking at a few examples of signal
constellation that contain a large number m of signals. We are interested in exploring
what happens to the probability of error when the number k = logm of bits carried by
one signal becomes large. In doing so we will let the energy grow linearly with k so as to
keep the energy per bit constant, which seems to be fair. The dimensionality of the signal
space will be n = 1 for the first example (PAM) and n = 2 for the second (PSK). In the
third example (bit-by-bit on a pulse train) n will be equal to k . In the final example—an
instance of block orthogonal signaling—we will have n = 2k . These examples will provide
useful insight about the role played by the dimensionality n .

4.4.1 Keeping BT Fixed While Growing k

Example 56. (PAM) In this example we consider Pulse Amplitude Modulation. Let m
be a positive even integer, H = {0, 1, . . . ,m− 1} be the message set, and for each i ∈ H
let si be a distinct element of {±a,±3a,±5a, . . . ± (m − 1)a} . Here a is a positive
number that determines the average energy E . The waveform associated to message i is

si(t) = siψ(t),

where ψ is an arbitrary unit-energy waveform2. The signal constellation and the receiver
block diagram are shown in Figure 4.2 and 4.3, respectively. We can easily verify that
the probability of error of PAM is

Pe = (2− 2

m
)Q(

a

σ
),

where σ2 = N0/2 . As shown in one of the problems, the average energy of the above
constellation when signals are uniformly distributed is E = a2(m2 − 1)/3 . Equating to
E = kEb , solving for a , and using the fact that k = log2m yields

a =

√
3Eb log2m

(m2 − 1)
,

which goes to 0 as m goes to ∞ . Hence Pe goes to 1 as m goes to ∞ . The next
example uses a two-dimensional constellation.

2

Example 57. (PSK) In this example we consider Phase-Shift-Keying. Let T be a positive
number and define

si(t) =

√
2E
T

cos(2πf0t+
2π

m
i)1[0,T ](t), i = 0, 1, . . . ,m− 1. (4.1)

2We follow our convention and write si in bold even if in this case it is a scalar.
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Figure 4.3: PAM Receiver

We assume f0T = k
2

for some integer k , so that ‖si‖2 = E for all i . The signal space
representation may be obtained by using the trigonometric equivalence cos(α + β) =
cos(α) cos(β)− sin(α) sin(β) to rewrite (4.1) as

si(t) = si,1ψ1(t) + si,2ψ2(t),

where

si1 =
√
E cos

(
2πi
m

)
, ψ1(t) =

√
2
T

cos(2πf0t)1[0,T ](t),

si2 =
√
E sin

(
2πi
m

)
, ψ2(t) = −

√
2
T

sin(2πf0t)1[0,T ](t).

Hence, the n -tuple representation of the signals is

si =
√
E
(

cos 2πi/m
sin 2πi/m

)
.

In Example 15 we have already studied this constellation and derived the following lower
bound to the error probability

Pe ≥ 2Q

(√
E
σ2

sin
π

m

)
m− 1

m
,

where σ2 = N0

2
is the variance of the noise in each coordinate.

As in the previous example, let us see what happens as k goes to infinity while Eb remains
constant. Since E = kEb grows linearly with k , the circle that contains the signal points
has radius

√
E =
√
kEb . It’s circumference grows with

√
k while the number m = 2k of

points on this circle grows exponentially with k . Hence the minimum distance between
points goes to zero (indeed exponentially fast). As a consequence, the argument of the Q
function that lowerbounds the probability of error for PSK goes to 0 and the probability
of error goes to 1 . 2
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As they are, the signal constellations used in the above two examples are not suitable to
transmit a large amount of data. The problem with the above two examples is that, as m
grows, we are trying to pack more and more signal points into a space that also grows in
size but does not grow fast enough. The space becomes “crowded” as m grows, meaning
that the minimum distance becomes smaller, and the probability of error increases.

In the next example we try to do better. So far we have not made use of the fact that
we expect to need more time to transmit more bits. In both of the above examples, the
length T of the time interval used to communicate was constant. In the next example
we let T grow linearly with the number of bits. This will free up a number of dimensions
that grows linearly with k . (Recall that n = BT is possible.)

4.4.2 Growing BT Linearly with k

Example 58. (Bit by Bit on a Pulse Train) The idea is to transmit a signal of the form

si(t) =
k∑
j=1

si,jψj(t), t ∈ R, (4.2)

and choose ψj(t) = ψ(t− jT ) for some waveform ψ that fulfills 〈ψi, ψj〉 = δij . Assuming
that it is indeed possible to find such a waveform, we obtain

si(t) =
k∑
j=1

si,jψ(t− jTs), t ∈ R. (4.3)

We let m = 2k , so that to every message i ∈ H = {0, 1, . . . ,m − 1} corresponds a
unique binary sequence (d1, d2, . . . , dk) . It is convenient to see the elements of such
binary sequences as elements of {±1} rather than {0, 1} . Let (di,1, di,2, . . . , di,k) be the
binary sequence that corresponds to message i and let the corresponding vector signal
si = (si,1, si,2, . . . , si,k)

T be defined by

si,j = di,j
√
Eb

where Eb = E
k

is the energy assigned to individual symbols. For reasons that should be
obvious, the above signaling method will be called bit-by-bit on a pulse train.

There are various possible choices for ψ . Common choices are sinc pulses, rectangular
pulses, and raised-cosine pulses (to be defined later). We will see how to choose ψ in
Chapter 5.

To gain insight in the operation of the receiver and to determine the error probability, it
is always a good idea to try to picture the signal constellation. In this case s0, . . . , sm−1

are the vertices of a k -dimensional hypercube as shown in the figures below for k = 1, 2 .
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From the picture we immediately see what the decoding regions of a ML decoder are,
but let us proceed analytically and find a ML decoding rule that works for any k .
The ML receiver decides that the constellation point used by the sender is one of the

s = (s1, s2, . . . , sk) ∈ {±
√
Eb}k that maximizes 〈y, s〉 − ‖s‖2

2
. Since ‖s‖2 is the same

for all constellation points, the previous expression is maximized iff 〈y, s〉 =
∑
yjsj is

maximized. The maximum is achieved with sj = sign(yj)
√
Eb where

sign(y) =

{
1, y ≥ 0

−1, y < 0.

The corresponding bit sequence is

d̂j = sign(yj).

The next figure shows the block diagram of our ML receiver. Notice that we need only
one matched filter to do the k projections. This is one of the reasons why we choose
ψi(t) = ψ(t− iTs) . Other reasons will be discussed in the next chapter.

-
R(t)

ψ(−t)
t = jT

j = 1, 2, . . . , k

@@
Yj

sign(Yi)
D̂j

We now compute the error probability. As usual, we first compute the error probability
conditioned on the event S = s = (s1, . . . , sk) for some arbitrary constellation point s .
From the geometry of the signal constellation, we expect that the error probability will
not depend on s . If sj is positive, Yj =

√
Eb+Zj and D̂j will be correct iff Zj ≥ −

√
Eb .

This happens with probability 1 − Q(
√
Eb
σ

) . Reasoning similarly, you should verify that
the probability of error is the same if sj is negative. Now let Cj be the event that the
decoder makes the correct decision about the j th bit. The probability of Cj depends
only on Zj . The independence of the noise components implies the independence of C1 ,
C2 , . . . , Ck . Thus, the probability that all k bits are decoded correctly when S = si is

Pc(i) =

[
1−Q

(√
Eb
σ

)]k
.
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Since this probability does not depend on i , Pc = Pc(i) .

Notice that Pc → 0 as k →∞ . However, the probability that a specific symbol (bit) be

decoded incorrectly is Q(
√
Eb
σ

) . This is constant with respect to k .

While in this example we have chosen to transmit a single bit per dimension, we could
have transmitted instead some small number of bits per dimension by means of one of the
methods discussed in the previous two examples. In that case we would have called the
signaling scheme symbol by symbol on a pulse train. Symbol by symbol on a pulse train
will come up often in the remainder of this course. In fact it is the basis for most digital
communication systems.

2

The following question seems natural at this point: Is it possible to avoid that Pc → 0
as k →∞? The next example shows that it is indeed possible.

4.4.3 Growing BT Exponentially With k

Example 59. (Block Orthogonal Signaling) Let n = m = 2k , pick n orthonormal
waveforms ψ1, . . . , ψn and define s1, . . . , sm to be

si =
√
Eψi.

This is called block orthogonal signaling. The name stems from the fact that one collects
a block of k bits and maps them into one of 2k orthogonal waveforms. (In a real-world
application k is a positive integer but for the purpose of giving specific examples with
m = 3 we will not force k to be integer.) Notice that ‖si‖ =

√
E for all i .

There are many ways to choose the 2k waveforms ψi . One way is to choose ψi(t) =
ψ(t− iT ) for some normalized pulse ψ such that ψ(t− iT ) and ψ(t− jT ) are orthogonal
when i 6= j . An example is

ψ(t) =

√
1

T
1[0,T ](t).

Notice that the requirement for ψ is the same as in bit-by-bit on a pulse train, but now
we need 2k rather than k shifted versions. For obvious reasons this signaling method is
sometimes called pulse position modulation.

Another possibility is to choose

si(t) =

√
2E
T

cos(2πfit)1[0,T ](t). (4.4)

This is called m -FSK (m -ary frequency shift keying). If we choose fiT = ki/2 for some
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integer ki such that ki 6= kj if i 6= j then

〈si, sj〉 =
2E
T

∫ T

0

cos(2πfit) cos(2πfjt)dt

=
2E
T

∫ T

0

[
1

2
cos[2π(fi + fj)t] +

1

2
cos[2π(fi − fj)t]

]
dt

= Eδij
as desired.
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When m ≥ 3 , it is not easy to visualize the decoding regions. However we can proceed
analytically using the fact that si is 0 everywhere except at position i where it is

√
E .

Hence,

ĤML(y) = arg max
i
〈y, si〉 −

E
2

= arg max
i
〈y, si〉

= arg max
i
yi.

To compute (or bound) the error probability, we start as usual with a fixed si . We pick
i = 1 . When H = 1 ,

Yj =

{
Zj if j 6= 1,√
E + Zj if j = 1.

Then
Pc(1) = Pr{Y1 > Z2, Y1 > Z3, . . . , Y1, > Zm|H = 1}.

To evaluate the right side, we start by conditioning on Y1 = α , where α ∈ R is an
arbitrary number

Pr{c|H = 1, Y1 = α} = Pr{α > Z2, . . . , α > Zm} =

[
1−Q

(
α√
N0/2

)]m−1

,
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and then remove the conditioning on Y1 ,

Pc(1) =

∫ ∞
−∞

fY1|H(α|1)

[
1−Q

(
α√
N0/2

)]m−1

dα

=

∫ ∞
−∞

1√
πN0

e
− (α−

√
E)2

N0

[
1−Q

(
α√
N0/2

)]m−1

dα,

where we used the fact that when H = 1 , Y1 ∼ N (
√
E , N0

2
) . The above expression for

Pc(1) cannot be simplified further but one can evaluate it numerically. By symmetry,

Pc = Pc(1) = Pc(i)

for all i .

The union bound is especially useful when the signal set {s1, . . . , sm} is completely
symmetric, like for orthogonal signals. In this case:

Pe = Pe(i) ≤ (m− 1)Q

(
d

2σ

)
= (m− 1)Q

(√
E
N0

)

< 2k exp

[
− E

2N0

]
= exp

[
−k
(
E/k
2N0

− ln 2

)]
,

where we used σ2 = N0

2
and

d2 = ‖si − sj‖2 = ‖si‖2 + ‖sj‖2 − 2〈si, sj〉 = ‖si‖2 + ‖sj‖2 = 2E .

(The above is Pythagora’s Theorem.)

If we let E = Ebk , meaning that we let the signal’s energy grow linearly with the number
of bits as in bit-by-bit on a pulse train, then we obtain

Pe < e
−k(

Eb
2N0
−ln 2)

.

Now Pe → 0 as k →∞ , provided that Eb
N0

> 2 ln 2. (2 ln 2 is approximately 1.39 .)

2

4.5 Bit By Bit Versus Block Orthogonal

In the previous two examples we have let the number of dimensions n increase linearly
and exponentially with k , respectively. In both cases we kept the energy per bit Eb fixed,
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and have let the signal energy E = kEb grow linearly with k . Let us compare the two
cases.

In bit-by-bit on a pulse train the bandwidth is constant (we have not proved this yet, but
this is consistent with the asymptotic limit B = n/T seen in Section 4.3 applied with
T = nTs ) and the signal duration increased linearly with k , which is quite natural. The
drawback of bit-by-bit on a pulse train was found to be the fact that the probability of
error goes to 1 as k goes to infinity. The union bound is a useful tool to understand
why this happens. Let us use it to bound the probability of error when H = i . The
union bound has one term for each alternative j . The dominating terms in the bound are
those that correspond to signals sj that are closest to si . There are k closest neighbors,
obtained by changing si in exactly one component, and each of them is at distance 2

√
Eb

from si (see the figure below). As k increases, the number of dominant terms goes up
and so does the probability of error.

-k = 2

6

2
√
Eb

s s
s s

k = 1 -

0
qs s2
√
Eb

Let us now consider block orthogonal signaling. Since the dimensionality of the space it
occupies grows exponentially with k , the expression n = BT tells us that either the time
or the bandwidth has to grow exponentially. This is a significant drawback. Using the
bound

Q

(
d

2σ

)
≤ 1

2
exp

[
d2

8σ2

]
=

1

2
exp

[
− kEb

2N0

]
we see that the probability that the noise carries a signal closer to a specific neighbor goes

down as exp
(
− kEb

2N0

)
. There are 2k − 1 = ek ln 2 − 1 nearest neighbors (all alternative

signals are nearest neighbors). For Eb
2N0

> k ln 2 , the growth in distance is the dominating

factor and the probability of error goes to 0 . For Eb
2N0

< k ln 2 the number of neighbors
is the dominating factor and the probability of error goes to 1 .

Notice that the bit error probability Pb must satisfy Pe
k
≤ Pb ≤ Pe . The lower bound

holds with equality if every block error results in a single bit error, whereas the upper
bound holds with equality if a block error causes all bits to be decoded incorrectly. This
expression guarantees that the bit error probability of block orthogonal signaling goes
to 0 as k → ∞ and provides further insight as to why it is possible to have the bit
error probability be constant while the block error probability goes to 1 as in the case of
bit-by-bit on a pulse train.
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Do we want Pe to be small or are we happy with Pb small? It depends. If we are sending
a file that contains a computer program, every single bit of the file has to be received
correctly in order for the transmission to be successful. In this case we clearly want Pe
to be small. On the other hand, there are sources that are more tolerant to occasional
errors. This is the case of a digitized voice signal. For voice, it is sufficient to have Pb
small.

4.6 Conclusion

We have discussed some of the trade-offs between the number of transmitted bits, the
signal epoch, the bandwidth, the signal’s energy, and the error probability. We have
seen that, rather surprisingly, it is possible to transmit an increasing number k of bits
at a fixed energy per bit Eb and make the probability that even a single bit is decoded
incorrectly go to zero as k increases. However, the scheme we used to prove this has the
undesirable property of requiring an exponential growth of the time bandwidth product.
Ideally we would like to make the probability of error go to zero with a scheme similar to
bit by bit on a pulse train. Is it possible? The answer is yes and the technique to do so
is coding. We will give an example of coding in Chapter 6.

In this Chapter we have looked at the relationship between k , T , B , E and Pe by
considering specific signaling methods. Information theory is a field that looks at these
and similar communication problems from a more fundamental point of view that holds
for every signaling method. A main result of information theory is the famous formula

C = B log2

(
1 +

P

N0B

)
[
bits

sec
],

where B [Hz] is the bandwidth, N0 the power spectral density of the additive white
Gaussian noise, P the signal power, and C the transmission rate in bits/sec. Proving
that one can transmit at rates arbitrarily close to C and achieve an arbitrarily small
probability of error is a main result of information theory. Information theory also shows
that at rates above C one can not reduce the probability of error below a certain value.

Appendix 4.A Isometries Do Not Affect the Probability of
Error

Let

g(γ) =
1

(2πσ2)n/2
exp

(
− γ2

2σ2

)
, γ ∈ R
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so that for Z ∼ N (0, σ2In) we can write fZ(z) = g(‖z‖) . Then for any isometry
a : Rn → Rn we have

Pc(i) = Pr{Y ∈ Ri|S = si}

=

∫
y∈Ri

g(‖y − si‖)dy

(a)
=

∫
y∈Ri

g(‖a(y)− a(si)‖)dy

(b)
=

∫
a(y)∈a(Ri)

g(‖a(y)− a(si)‖)dy

(c)
=

∫
α∈a(Ri)

g(‖α− a(si)‖)dα = Pr{Y ∈ a(Ri)|S = a(si)},

where in (a) we used the distance preserving property of an isometry, in (b) we used the
fact that y ∈ Ri iff a(y) ∈ a(Ri) , and in (c) we made the change of variable α = a(y)
and used the fact that the Jacobian of an isometry is ±1 . The last line is the probability
of decoding correctly when the transmitter sends a(si) and the corresponding decoding
region is a(Ri) .
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Appendix 4.B Problems

Problem 1. (Orthogonal Signal Sets) Consider the following situation: A signal set
{sj(t)}m−1

j=0 has the property that all signals have the same energy Es and that they are
mutually orthogonal:

〈si, sj〉 = Esδij. (4.5)

Assume also that all signals are equally likely. The goal is to transform this signal set
into a minimum-energy signal set {s∗j(t)}m−1

j=0 . It will prove useful to also introduce the

unit-energy signals φj(t) such that sj(t) =
√
Esφj(t) .

(a) Find the minimum-energy signal set {s∗j(t)}m−1
j=0 .

(b) What is the dimension of span{s∗0(t), . . . , s∗m−1(t)}? For m = 3 , sketch {sj(t)}m−1
j=0

and the corresponding minimum-energy signal set.

(c) What is the average energy per symbol if {s∗j(t)}m−1
j=0 is used? What are the savings

in energy (compared to when {sj(t)}m−1
j=0 is used) as a function of m?

Problem 2. (Antipodal Signaling and Rayleigh Fading) Suppose that we use antipodal
signaling (i.e s0(t) = −s1(t) ). When the energy per symbol is Eb and the power spectral
density of the additive white Gaussian noise in the channel is N0/2 , then we know that
the average probability of error is

Pr{e} = Q

(√
Eb

N0/2

)
. (4.6)

In mobile communications, one of the dominating effects is fading. A simple model for
fading is the following: Let the channel attenuate the signal by a random variable A .
Specifically, if si is transmitted, the received signal is Y = Asi + N . The probability
density function of A depends on the particular channel that is to be modeled.3 Suppose
A assumes the value a . Also assume that the receiver knows the value of A (but the
sender does not). From the receiver point of view this is as if there is no fading and the
transmitter uses the signals as0(t) and −as0(t) . Hence,

Pr{e|A = a} = Q

(√
a2Eb
N0/2

)
. (4.7)

The average probability of error can thus be computed by taking the expectation over the
random variable A , i.e.

Pr{e} = EA[Pr{e|A}] (4.8)

3In a more realistic model, not only the amplitude, but also the phase of the channel transfer function
is a random variable.
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An interesting, yet simple model is to take A to be a Rayleigh random variable, i.e.

fA(a) =

{
2ae−a

2
, if a ≥ 0,

0, otherwise..
(4.9)

This type of fading, which can be justified especially for wireless communications, is called
Rayleigh fading.

(a) Compute the average probability of error for antipodal signaling subject to Rayleigh
fading.

(b) Comment on the difference between Eqn. (4.6) (the average error probability without
fading) and your answer in the previous question (the average error probability with
Rayleigh fading). Is it significant? For an average error probability Pr{e} = 10−5 ,
find the necessary Eb/N0 for both cases.

Problem 3. (Root-Mean Square Bandwidth)

(a) The root-mean square (rms) bandwidth of a low-pass signal g(t) of finite energy is
defined by

Wrms =

[∫∞
−∞ f

2|G(f)|2df∫∞
−∞ |G(f)|2df

]1/2

where |G(f)|2| is the energy spectral density of the signal. Correspondingly, the root
mean-square (rms) duration of the signal is defined by

Trms =

[∫∞
−∞ t

2|g(t)|2dt∫∞
−∞ |g(t)|2dt

]1/2

.

Using these definitions and assuming that |g(t)| → 0 faster than 1/
√
|t| as |t| → ∞ ,

show that

TrmsWrms ≥
1

4π
.

Hint: Use Schwarz’s inequality{∫ ∞
−∞

[g∗1(t)g2(t) + g1(t)g∗2(t)]dt

}2

≤ 4

∫ ∞
−∞
|g1(t)|2dt

∫ ∞
−∞
|g2(t)|2dt

in which we set
g1(t) = tg(t)

and

g2(t) =
dg(t)

dt
.
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(b) Consider a Gaussian pulse defined by

g(t) = exp(−πt2).

Show that for this signal, the equality

TrmsWrms =
1

4π

can be reached. Hint:
exp(−πt2)

F←→ exp(−πf 2).

Problem 4. (Minimum Energy for Orthogonal Signaling) Let H ∈ {1, . . . ,m} be uni-
formly distributed and consider the communication problem described by:

H = i : Y = si + Z, Z ∼ N (0, σ2Im),

where s1, . . . , sm , si ∈ Rm , is a set of constant-energy orthogonal signals. Without loss
of generality we assume

si =
√
Eei,

where ei is the i th unit vector in Rm , i.e., the vector that contains 1 at position i and
0 elsewhere, and E is some positive constant.

(a) Describe the statistic of Yj (the j th component of Y ) for j = 1, . . . ,m given that
H = 1 .

(b) Consider a suboptimal receiver that uses a threshold t = α
√
E where 0 < α < 1 .

The receiver declares Ĥ = i if i is the only integer such that Yi ≥ t . If there is no
such i or there is more than one index i for which Yi ≥ t , the receiver declares that
it can’t decide. This will be viewed as an error.

Let Ei = {Yi ≥ t} , Ec
i = {Yi < t} , and describe, in words, the meaning of the event

E1 ∩ Ec
2 ∩ Ec

3 ∩ · · · ∩ Ec
m.

(c) Find an upper bound to the probability that the above event does not occur when
H = 1 . Express your result using the Q function.

(d) Now we let E and lnm go to ∞ while keeping their ratio constant, namely E =
Eb lnm log2 e . (Here Eb is the energy per transmitted bit.) Find the smallest value
of Eb/σ2 (according to your bound) for which the error probability goes to zero as E
goes to ∞ . Hint: Use m− 1 < m = exp(lnm) and Q(x) < 1

2
exp(−x2

2
) .



132 Chapter 4.

Problem 5. (Pulse Amplitude Modulated Signals) Consider using the signal set

si(t) = siφ(t), i = 0, 1, . . . ,m− 1,

where φ(t) is a unit-energy waveform, si ∈ {±d
2
,±3

2
d, . . . ,±m−1

2
d} , and m ≥ 2 is an

even integer.

(a) Assuming that all signals are equally likely, determine the average energy Es as a
function of m . Hint:

∑n
i=0 i

2 = n
6

+ n2

2
+ n3

3
. Note: If you prefer you may determine

an approximation of the average energy by assuming that S(t) = Sφ(t) and S is a
continuous random variable which is uniformly distributed in the interval [−m

2
d, m

2
d] .

(b) Draw a block diagram for the ML receiver, assuming that the channel is AWGN with
power spectral density N0

2
.

(c) Give an expression for the error probability.

(d) For large values of m , the probability of error is essentially independent of m but
the energy is not. Let k be the number of bits you send every time you transmit
si(t) for some i , and rewrite Es as a function of k . For large values of k , how does
the energy behaves when k increases by 1?

Problem 6. (Exact Energy of Pulse Amplitude Modulation) In this problem you will
compute the average energy E(m) of m -ary PAM. Throughout the problem, m is an
arbitrary positive even integer.

(a) Let U and V be a two uniformly distributed discrete random variables that take
values in U = {1, 3, . . . , (m − 1)} and V = {±1,±3, . . . ,±(m − 1)} , respectively.
Argue (preferably in a rigorous mathematical way) that E [U2] = E [V 2] .

(b) Let

g(m) =
∑
i∈U

i2.

The difference g(m+2)−g(m) is a polynomial in m of degree 2. Find this polynomial
p(m) . For later use, notice that the relationship g(m+ 2)− g(m) = p(m) holds also
for m = 0 if we define g(0) = 0 . Let us do that.

(c) Even though we are interested in evaluating g(·) only at positive even integers m ,
our aim is to find a function g : R → R defined over R . Assuming that such a
function exists and that it has second derivative, take the second derivative on both
sides of g(m+ 2)− g(m) = p(m) and find a function g

′′
(m) that fulfills the resulting

recursion. Then integrate twice and find a general expression for g(m) . It will depend
on two parameters introduced by the integration.
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(d) If you could not solve (c), you may continue assuming that g(m) has the general
form g(m) = 1

6
m3 + am+ b for some real valued a and b . Determine g(0) and g(2)

directly from the definition of g(m) given in question (b) and use those values to
determine a and b .

(e) Express E [V 2] in terms of the expression you have found for g(m) and verify if for
m = 2, 4, 6 . Hint: Recall that E [V 2] = E [U2] .

(f) More generally, let S be uniformly distributed in {±d,±3d, . . . ,±(m−1)d} where d
is an arbitrary positive number and define E(d,m) = E [S2] . Use your results found
thus far to determine a simple expression for E(d,m) .

(g) Let T be uniformly distributed in [−md,md] . Computing E [T 2] is straightforward,
and one expects E[S2] to be close to E[T 2] when m is large. Determine E [T 2] and
compare the result obtained via this continuous approximation to the exact value of
E [S2] .
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Chapter 5

Controlling the Spectrum

5.1 Introduction

In many applications, notably cellular communications, the power spectral density of the
transmitted signal has to fit a certain frequency-domain mask. This restriction is meant
to limit the amount of interference that a user can cause to users of adjacent bands.
There are also situations when a restriction is selfimposed. For instance, if the channel
attenuates certain frequencies more than others or the power spectral density of the noise
is stronger at certain frequencies, then the channel is not equally good at all frequencies
and by shaping the power spectral density of the transmitted signal so as to put more
power there where the channel is good one can minimize the total transmit power for a
given performance. This is done according to a technique called water filling. For these
reasons we are interested in knowing how to shape the power spectral density of the
signal produced by the transmitter. Throughout this chapter we consider the framework
of Fig. 5.1, where the noise is white and Gaussian with power spectral density N0

2
and

{ψ(t−jT )}∞j=−∞ forms an orthonormal set. These assumptions guarantee many desirable
properties, in particular that {sj}∞j=−∞ is the sequence of coefficients of the orthonormal
expansion of s(t) with respect to the orthonormal basis {ψ(t− jT )}∞j=−∞ and that Yj is

the output of a discrete-time AWGN channel with input sj and noise variance σ2 = N0

2
.

-
{sj}∞j=−∞ Waveform

Generator
-��� - ψ∗(−t) @@ -

s(t) =
∑
sjψ(t− jT )

R(t) Yj = 〈R,ψj〉

jT

N(t)

6

Figure 5.1: Framework assumed in the current chapter.

The chapter is organized as follows. In Section 5.2 we consider a special and idealized case

135
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that consists in requiring that the power spectral density of the transmitted signal vanishes
outside a frequency interval of the form [−B

2
, B

2
] . Even though such a strict restriction is

not realistic in practice, we start with that case since it is quite instructive. In Section 5.3
we derive the expression for the power spectral density of the transmitted signal when the
symbol sequence can be modeled as a discrete-time wide-sense-stationary process. We will
see that when the symbols are uncorrelated—a condition often fulfilled in practice—the
spectrum is proportional to |ψF |2(f) . In Section 5.4 we derive the necessary and sufficient
condition on |ψF |2(f) so that {ψ(t−jT )}∞j=−∞ forms an orthonormal sequence. Together
sections 5.3 and 5.4 will give us the knowledge we need to tell which spectra are achievable
within our framework and how to design the pulse ψ(t) to achieve that spectrum.

5.2 The Ideal Lowpass Case

As a start, it is instructive to assume that the spectrum of the transmitted signal has
to vanish outside a frequency interval [−B

2
, B

2
] for some B > 0 . This would be the case

if the channel contained an ideal filter such as in Figure 5.2 where the filter frequency
response is

hF(f) =

{
1, |f | ≤ B

2

0, otherwise.

- h(t) -��� -

6

N(t)

AWGN, No
2

Figure 5.2: Lowpass channel model.

For years people have modeled the telephone line that way with B
2

= 4 [KHz]. The
sampling theorem is the right tool to deal with this situation.

Theorem 60. (Sampling Theorem) Let {s(t) : t ∈ R} ∈ L2 be such that sF(f) = 0 for
f 6∈ [−B

2
, B

2
] . Then for all t ∈ R , s(t) is specified by the sequence {s(nT )}∞−∞ of samples

and the parameter T , provided that T ≤ 1
B

. Specifically,

s(t) =
∞∑

n=−∞

s(nT ) sinc
( t
T
− n

)
(5.1)

where sinc(t) = sin(πt)
πt

. 2
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For a proof of the sampling theorem see Appendix 5.A. In the same appendix we have
also reviewed Fourier series since they are a useful tool to prove the sampling theorem
and they will be useful later in this chapter.

The sinc pulse (used in the statement of the sampling theorem) is not normalized to unit
energy. Notice that if we normalize the sinc pulse, namely define ψ(t) = 1√

T
sinc( t

T
) ,

then {ψ(t− jT )}∞j=−∞ forms an orthonormal set. Thus (5.1) can be rewritten as

s(t) =
∞∑

j=−∞

sjψ(t− jT ), ψ(t) =
1√
T

sinc(
t

T
), (5.2)

where sj = s(jT )
√
T . This highlights the way we should think about the sampling

theorem: a signal that fulfills the condition of the sampling theorem is one that lives
in the inner product space spanned by {ψ(t − jT )}∞j=−∞ and when we sample such a
signal we obtain (up to a scaling factor) the coefficients of its orthonormal expansion with
respect to the orthonormal basis {ψ(t− jT )}∞j=−∞ .

Now let us go back to our communication problem. We have just shown that any signal
s(t) that has no energy outside the frequency range [−B

2
, B

2
] can be generated by the

transmitter of Fig. 5.1. The channel in Fig. 5.1 does not contain the lowpass filter
but this is immaterial since, by design, the lowpass filter is transparent to the transmitter
output signal. Hence the receiver front end shown in Fig. 5.1 produces a sufficient statistic
whether or not the channel contains the filter.

It is interesting to observe that the sampling theorem is somewhat used backwards in the
diagram of Figure 5.1. Normally one starts with a signal from which one takes samples
to represent the signal. In the setup of Figure 5.1 we start with a sequence of symbols
produced by the encoder and we use them as the samples of the desired signal. Hence at
the sender we are using the reconstruction part of the sampling theorem. The sampling
is done by the receiver front end of Figure 5.1. In fact the filter with impulse response
ψ(−t) is an ideal lowpass filter that removes every frequency component outside [−B

2
, B

2
] .

Thus {Yj}∞j=−∞ is the sequence of samples of the bandlimited signal at the output of the
receiver front-end filter.

From the input to the output of the block diagram of Figure 5.1 we see the discrete-time
Gaussian channel depicted in Figure 5.3 and studied in Chapter 2. The channel takes and
delivers a new symbol every T seconds.

5.3 Power Spectral Density

Even though we have not proved this, you may guess from the sampling theorem that
the transmitter described in the previous section produces a strictly rectangular spec-
trum. This is true provided some condition (that we now derive) on the symbol sequence
{sj}∞j=−∞ .
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sj -��� - Yj = sj + Zj

6

Z

iid ∼ N (0, N0

2
)

Figure 5.3: Equivalent discrete time channel.

Our aim is to be more general and not be limited to using sinc pulses. The question
addressed in the current section is: how does the power spectral density of the transmitted
signal relate to the pulse?

In order for the question to make sense, the transmitter output must be a wide-sense
stationary process—the only processes for which the power spectral density is defined. As
we will see, this is the case for any process of the form

X(t) =
∞∑

i=−∞

Xiξ(t− iT −Θ), (5.3)

where {Xj}∞j−−∞ is a wide-sense stationary discrete-time process and Θ is a random
dither (or delay) modeled as a uniformly distributed random variable taking value in the
interval [0, T ) . The pulse ξ(t) may be any unit-energy pulse (not necessarily orthogonal
to its shifts by multiples of T ).

The first step to determine the power spectral density is to compute the autocorrelation.
First define

RX [i] = E[Xj+iX
∗
j ] and Rξ(τ) =

∫ ∞
−∞

ξ(α + τ)ξ∗(α)dα. (5.4)
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Now we may compute the autocorrelation

RX(t+ τ, t) = E[X(t+ τ)X∗(t)]

= E
[ ∞∑
i=−∞

Xiξ(t+ τ − iT −Θ)
∞∑

j=−∞

X∗j ξ
∗(t− jT −Θ)

]
= E

[ ∞∑
i=−∞

∞∑
j=−∞

XiX
∗
j ξ(t+ τ − iT −Θ)ξ∗(t− jT −Θ)

]
=

∞∑
i=−∞

∞∑
j=−∞

E[XiX
∗
j ]E[ξ(t+ τ − iT −Θ)ξ∗(t− jT −Θ)]

=
∞∑

i=−∞

∞∑
j=−∞

RX [i− j]E[ξ(t+ τ − iT −Θ)ξ∗(t− jT −Θ)]

=
∞∑

k=−∞

RX [k]
∞∑

i=−∞

1

T

∫ T

0

ξ(t+ τ − iT − θ)ξ∗(t− iT + kT − θ)dθ

=
∞∑

k=−∞

RX [k]
1

T

∫ ∞
−∞

ξ(t+ τ − θ)ξ∗(t+ kT − θ)dθ.

Hence

RX(τ) =
∞∑

k=−∞

RX [k]
1

T
Rξ(τ − kT ), (5.5)

where, with a slight abuse of notation, we have written RX(τ) instead of RX(t+ τ, t) to
emphasize that RX(t + τ, t) depends only on the difference τ between the first and the
second variable. It is straightforward to verify that E[X(t)] does not depend on t either.
Hence X(t) is a wide-sense stationary process.

The power spectral density SX is the Fourier transform of RX . Hence,

SX(f) =
|ξF(f)|2

T

∑
k

RX [k] exp(−j2πkfT ). (5.6)

In the above expression we used the fact that the Fourier transform of Rξ(τ) is |ξF(f)|2 .
This follows from Parseval’s relationship, namely

Rξ(τ) =

∫ ∞
−∞

ξ(α + τ)ξ∗(α)dα =

∫ ∞
−∞

ξF(f)ξ∗F(f) exp(j2πτf)df.

The last term says indeed that Rξ(τ) is the Fourier inverse of |ξF(f)|2 . Notice also that
the summation in (5.6) is the discrete-time Fourier transform of {RX [k]}∞k=−∞ evaluated
at fT .
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In many cases of interest {Xi}∞i=−∞ is a sequence of uncorrelated random variables. Then
RX [k] = Eδk where E = E[|Xj|2] and the formulas simplify to

RX(τ) = ERξ(τ)

T
(5.7)

SX(f) = E |ξF(f)|2

T
. (5.8)

Example 61. When ξ(t) =
√

1/T sinc( t
T

) and RX [k] = Eδk , the spectrum is SX(f) =
E1[−B

2
,B
2

](f) , where B = 1
T

. By integrating the power spectral density we obtain the

power BE = E
T

. This is consistent with our expectation: When we use the pulse sinc( t
T

)
we expect to obtain a spectrum which is flat for all frequencies in [−B

2
, B

2
] and vanishes

outside this interval. The energy per symbol is E . Hence the power is E
T

. 2

5.4 Generalization Using Nyquist Pulses

To simplify the discussion let us assume that the stochastic process that models the
symbol sequence is uncorrelated. Then the power spectral density of the transmitter
output process is given by (5.8). Unfortunately we are not free to choose |ξF(f)|2 , since
we are limited to those choices for which {ξ(t−jT )}∞j=−∞ forms an orthonormal sequence.
The goal of this section is to derive a necessary and sufficient condition on |ξF(f)|2 in
order for {ξ(t − jT )}∞j=−∞ to form an orthonormal sequence. To remind ourself of the
orthonormal condition we revert to our original notation and use ψ(t) to represent the
pulse.

Our aim is a frequency-domain characterization of the property∫ ∞
−∞

ψ(t− nT )ψ∗(t)dt = δn. (5.9)

The form of the left hand side suggests using Parseval’s relationship. Following that lead
we obtain

δn =

∫ ∞
−∞

ψ(t− nT )ψ∗(t)dt =

∫ ∞
−∞

ψF(f)ψ∗F(f)e−j2πnTfdf

=

∫ ∞
−∞
|ψF |2(f)e−j2πnTfdf

(a)
=

∫ 1
2T

− 1
2T

∑
k∈Z

|ψF |2(f − k

T
)e−j2πnTfdf

(b)
=

∫ 1
2T

− 1
2T

g(f)e−j2πnTfdf,
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where in (a) we used the fact that for an arbitrary function u : R→ R and an arbitrary
positive value a , ∫ ∞

−∞
u(x)dx =

∫ a
2

−a
2

∞∑
i=−∞

u(x+ ia)dx,

as well as the fact that e−j2πnT (f− k
T

) = e−j2πnTf , and in (b) we have defined

g(f) =
∑
k∈Z

|ψF |2(f +
k

T
).

Notice that g is a periodic function of period 1/T and the right side of (b) above is 1/T
times the n th Fourier series coefficient An of the periodic function g . Thus the above
chain of equalities establishes that A0 = T and An = 0 for n 6= 0. These are the Fourier
series coefficients of a constant function of value T . Due to the uniqueness of the Fourier
series expansion we conclude that g(f) = T for all values of f . Due to the periodicity
of g , this is the case if and only if g is constant in any interval of length 1/T . We have
proved the following theorem:

Theorem 62. (Nyquist) . A waveform ψ(t) is orthonormal to each shift ψ(t − nT ) if
and only if

∞∑
k=−∞

|ψF(f +
k

T
)|2 = T for all f in some interval of length

1

T
. (5.10)

2

Waveforms that fulfill Nyquist theorem are called Nyquist pulses. A few comments are in
order:

(a) Often we are interested in Nyquist pulses that have small bandwidth, between 1/2T
and 1/T . For pulses that are strictly bandlimited to 1/T or less, the Nyquist criterion
is satisfied if and only if |ψF( 1

2T
− ε)|2 + |ψF(− 1

2T
− ε)|2 = T for ε ∈ [− 1

2T
, 1

2T
]

(See the picture below). If we assume (as we do) that ψ(t) is real-valued, then
|ψF(−f)|2 = |ψF(f)|2 . In this case the above relationship is equivalent to

|ψF(
1

2T
− ε)|2 + |ψF(

1

2T
+ ε)|2 = T, ε ∈ [0,

1

2T
].

This means that |ψF( 1
2T

)|2 = T
2

and the amount by which |ψF(f)|2 increases when
we go from f = 1

2T
to f = 1

2T
− ε equals the decrease when we go from f = 1

2T
to

f = 1
2T

+ ε . An example is given in Figure 5.4.

(b) The sinc pulse is just a special case of a Nyquist pulse. It has the smallest possible
bandwidth, namely 1/2T [Hz], among all pulses that satisfy Nyquist criterion for a
given T . (Draw a picture if this is not clear to you).
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|ψF(f)|2 and |ψF(f − 1
T

)|2
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� HHH

HHH

?

|ψF( 1
2T
− ε)|2 + |ψF(− 1

2T
− ε)|2 = T

1
2T

1
T

Figure 5.4: Nyquist condition for pulses ψF(f) that have support within [− 1
T
, 1
T

] .

(c) Nyquist criterion is a condition expressed in the frequency domain. It is equivalent
to the time domain condition (5.9). Hence if one asks you to “verify that ψ(t) fulfills
Nyquist criterion” it does not mean that you have to take the Fourier transform of
ψ and then check that ψF fulfills (5.10). It may be easier to check if ψ fulfills the
time-domain condition (5.9).

(d) Any pulse ψ(t) that satisfies

|ψF(f)|2 =


T, |f | ≤ 1−β

2T

T
2

(
1 + cos

[
πT
β

(
|f | − 1−β

2T

)])
, 1−β

2T
< |f | < 1+β

2T

0, otherwise

for some β ∈ (0, 1) fulfills Nyquist criterion. Such a pulse is called raised-cosine pulse.
(See Figure 5.7 (top) for a raised-cosine pulse with β = 1

2
.) Using the relationship

cos2 α
2

= 1
2
(1 + cosα) , we can immediately verify that the following ψF(f) satisfies

the above relationship

ψF(f) =


√
T , |f | ≤ 1−β

2T√
T cos πT

2β
(|f | − 1−β

2T
), 1−β

2T
< |f | ≤ 1+β

2T

0, otherwise.

ψF(f) is called square-root raised-cosine pulse1. The inverse Fourier transform of
ψF(f) , derived in Appendix 5.E, is

ψ(t) =
4β

π
√
T

cos
(
(1 + β)π t

T

)
+ (1−β)π

4β
sinc

(
(1− β) t

T

)
1−

(
4β t

T

)2 ,

where sinc(x) = sin(πx)
πx

. Notice that when t = ± T
4β

, both the numerator and the
denominator of the above expression become 0 . One can show that the limit as t
approaches ± T

4β
is β sin

[ (1+β)π
4β

]
+ 2β

π
sin
[ (1−β)π

4β

]
. The pulse ψ(t) is plotted in Figure

5.7 (bottom) for β = 1
2

.

1In is common practice to use the name square-root raised-cosine pulse to refer to the inverse Fourrier
transform of ψF (f) , i.e., to the time-domain waveform ψ(t) .
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(e) We have derived Nyquist criterion inspired by what we have done in Section 5.2.
However, Nyquist criterion is not limited to lowpass signals. If ψ fulfills Nyquist
criterion and has bandpass characteristic then it will give rise to a bandpass signal
s(t) .

5.5 Summary and Conclusion

The communication problem, as we see it in this course, consists of signaling to the recip-
ient the message chosen by the sender. The message is one out of m possible messages.
For each message there is a unique signal used as a proxi to communicate the message
across the channel.

Regardless of how we pick the m signals, which are assumed to be finite-energy and
known to the sender and the receiver, there exists an orthonormal basis ψ1 . . . ψn and a
constellation of points s0, . . . , sm−1 in Cn such that

si(t) =
n∑
j=1

sijψj(t), i = 0, . . . ,m− 1. (5.11)

A minimum-probability-of-error receiver that observes the received signal R may decide
which message was signaled based on the sufficient statistic Y = (Y1, . . . , Yn)T ∈ Cn ,
where Yj = 〈R,ψj〉 .

It is up to us to decide if we want to start by choosing the m waveforms si , i = 0, . . . ,m−1
and then, if we so choose, use the Gram Schmidt procedure to find an orthonormal basis
ψ1 . . . ψn and the associated constellation of n -tuples s0 . . . , sm−1 , or if we want to start
with an arbitrary orthonormal basis ψ1 . . . ψn and a selection of m n -tuples s0 . . . , sm−1

and let the signaling waveforms be obtained through (5.11). The latter approach has the
advantage of decoupling design choices that can be made independently and with different
objectives in mind: The orthonormal basis affects the duration and the bandwidth of the
signals whereas the n -tuples of coefficients affect the transmit power and the probability
of error.

In Chapter 4 we have already come across the idea of letting ψ1, . . . ψn be obtained from a
single pulse ψ by the assignment ψi(t) = ψ(t− iT ) . In that occasion our motivation was
to give an example of a signaling scheme for which the number of dimensions occupied
by the signal space grew linearly with the number k of transmitted bits. Implicit was
the hope that we could let the dimensionality grow by letting the bandwidth be constant
and letting the signal epoch grow linearly with k . In the present chapter we went further
in at least two ways. In Section 5.3 we have seen how exactly the power spectral density
of the transmitted signal depends on |ψF(f)|2 and in Section 5.4 we have derived the
condition that |ψF(f)|2 has to satisfy so that {ψ(t− iT )}∞i=−∞ be an orthonormal set.

Another very important consequence of choosing ψi(t) = ψ(t− iT ) is the simplicity of the
receiver front end: all the projections can be done with a single matched filter of impulse
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response ψ∗(t0 − t) for an arbitrary t0 . Specifically, Yi = 〈R,ψi〉 is the filter output at
time t0 + iT .
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Appendix 5.A Fourier Series

We briefly review the Fourier series focusing on the big picture and on how to remember
things.

Let f(x) be a periodic function, x ∈ R . It has period p if f(x) = f(x+p) for all x ∈ R .
Its fundamental period is the smallest such p . We are using the “physically unbiased”
variable x instead of t (which usually represents time) since we want to emphasize that
we are dealing with a general periodic function, not necessarily a function of time.

The periodic function f(x) can be represented as a linear combination of complex expo-
nentials of the form ej2π

x
p
i . These are all the complex exponentials that have period p .

Hence
f(x) =

∑
i∈Z

Ai e
j2π x

p
i (5.12)

for some sequence of coefficients . . . A−1, A0, A1, . . . with value in C . This says that
a function of fundamental period p may be written as a linear combination of all the
complex exponentials of period p .

Two functions of fundamental period p are identical iff they coincide over a period.
Hence to check if a given series of coefficients . . . A−1, A0, A1, . . . is the correct series, it
is sufficient to verify that

f(x)1[− p
2
, p
2

](x) =
∑
i∈Z

√
pAi

ej
2π
p
xi

√
p

1[− p
2
, p
2

](x),

where we have multiplied and divided by
√
p to make φi(x) = e

j 2π
p xi

√
p

1[− p
2
, p
2

](x), i ∈ Z ,

an orthonormal basis. Hence the right side of the above expression is an orthonormal
expansion. The coefficients of an orthonormal expansion are always found in the same
way. Specifically, the i th coefficient

√
pAi is the result of 〈f, φi〉 . Hence,

Ai =
1

p

∫ p
2

− p
2

f(x)e−j
2π
p
xidx. (5.13)

We hope that this will make it easier for you to remember (or re-derive) (5.12) and (5.13).

Appendix 5.B Sampling Theorem: Fourier Series Proof

As an example of the utility of this relationship we derive the sampling theorem. Recall
that the sampling theorem states that any L2 function s(t) such that sF(f) = 0 for
f 6∈ [−B

2
, B

2
] may be written as

s(t) =
∑
k

s(kT ) sinc

(
t− kT
T

)
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where T = 1
B
.

Proof of the sampling theorem: By assumption, sF(f) = 0 , f /∈ [−B
2
, B

2
] . Hence there is

a one-to-one relationship between sF(f) and its periodic extension defined as s̃F(f) =∑
n sF(f − n/T ) . In fact

sF(f) = s̃F(f)1[−B
2
,B
2

](f).

The periodic extension may be written as a Fourier series. This means that s̃F(f) can
be described by a sequence of numbers. Thus sF(f) as well as s(t) can be described
by the same sequence of numbers. To determine the relationship between s(t) and those
numbers we write

sF(f) = s̃F(f)1[−B
2
,B
2

](f) =
∑
k

Ake
+j 2π

B
fk1[−B

2
,B
2

](f)

and take the Fourier transform on both sides using

1[−B
2
,B
2

](f)⇔ 1

T
sinc(

t

T
), T =

1

B
,

and the time shift property of the Fourier transform

h(t− τ)⇔ hF(f)e−j2πfτ ,

to obtain

s(t) =
∑
k

Ak
T

sinc

(
t+ kT

T

)
.

We still need to determine Ak
T

. It is straightforward to determine Ak from its definition,
but it is easier to observe that if we plug in t = nT on both sides of the expression above
we obtain s(nT ) = A−n

T
. This completes the proof. To see that we may indeed obtain

Ak from the definition (5.13) we write

Ak = T

∫ 1
2T

− 1
2T

s̃F(f)e−j
2π
B
kfdf = T

∫ ∞
−∞

sF(f)e−j
2π
B
kfdf = Ts(−kT ),

where the first equality is the definition of the Fourier coefficient Ak , the second uses
the fact that sF(f) = 0 for f /∈ [−B

2
, B

2
] , and the third is the inverse Fourier transform

evaluated at t = −kT . The above sequence of equalities show that to have the desirable
property that Ak is a sample of s(t) it is key that the support of sF(f) be confined to
one period of s̃F(f) . One could imagine the support of sF(f) be such that it is the union
of disjoint intervals placed in such a way that there is a one to one relationship between
sF(f) and s̃F(f) . In that case it is still true s(t) can be described by a sequence of
numbers (the Fourier series coefficients of s̃F(f) ) but those numbers are not necessarily
the samples of s(t) . 2
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Appendix 5.C The Picket Fence Miracle

The T -spaced picket fence is the train of Dirac delta functions

∞∑
n=−∞

δ(x− nT ).

The picket fence miracle refers to the fact that the Fourier transform of a picket fence is
again a (scaled) picket fence. Specifically,

F

[
∞∑

n=−∞

δ(t− nT )

]
=

1

T

∞∑
n=−∞

δ(f − n

T
).

To prove the above relationship, we expand the periodic function
∑
δ(t−nT ) as a Fourier

series, namely
∞∑

n=−∞

δ(t− nT ) =
1

T

∞∑
n=−∞

ej2π
t
T
n.

Taking the Fourier transform on both sides yields

F

[
∞∑

n=−∞

δ(t− nT )

]
=

1

T

∞∑
n=−∞

δ
(
f − n

T

)
which is what we wanted to prove.

It is convenient to have a notation for the picket fence. Thus we define2

ET (x) =
∞∑

n=−∞

δ(x− nT ).

Using this notation, the relationship that we have just proved may be written as

F [ET (t)] =
1

T
E 1

T
(f).

2The choice of the letter E is suggested by the fact that it looks like a picket fence when rotated by
90 degrees.
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Appendix 5.D Sampling Theorem: Picket Fence Proof

In this Appendix we give a somewhat less rigorous but more pictorial proof of the sampling
theorem. The proof makes use of the picket fence miracle.

Let s(t) be the signal of interest and let {s(nT )}∞n=−∞ be its samples taken every T
seconds. From the samples we can form the signal

s|(t) =
∞∑

n=−∞

s(nT )δ(t− nT ).

(s| is just a name for a function.) Notice that

s|(t) = s(t)ET (t).

Taking the Fourier transform on both sides yields

F [s|(t)] = sF(t) ∗
(

1

T
E 1

T
(f)

)
=

1

T

∞∑
n−∞

sF

(
f − n

T

)
.

Hence the Fourier transform of s|(t) is the superposition of 1
T
sF(f) with all of its shifts

by multiples of 1
T

, as shown in Fig. 5.5.

- f
a b a+ 1

T
b+ 1

T

- f
a b

Figure 5.5: The Fourier transform of s(t) and that of s|(t) =
∑
s(nT )δ(t− nT ) .

From Fig. 5.5 it is obvious that we can reconstruct the original signal s(t) by filtering
s|(t) with a filter that passes sF(f) and blocks

∑∞
n6=−∞ sF

(
f − n

T

)
. Such a filter exists

if, like in the figure, the support of sF(f) lies in an interval I(a, b) of width smaller than
1
T

. We do not want to assume that the receiver knows the support of each individual
sF(f) , but we can assume that it knows that sF(f) belongs to a class of signals that
have support contained in some interval I = (a, b) for some real numbers a < b . (See
Fig. 5.5). If this is the case and we know that b − a < 1

T
then we can reconstruct s(t)

from s|(t) by filtering the latter with any filer of impulse response h(t) that satisfies

hF(f) =

{
T, f ∈ I
0, f ∈

⋃
n 6=0 I + n

T
,
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where by I + n
T

we mean (a+ n
T
, b+ n

T
) . Hence

sF(f) =

(
∞∑

n=−∞

sF

(
f − n

T

))
hF(f),

and, after taking the inverse Fourier transform on both sides, we obtain the reconstruction
(also called interpolation) formula

s(t) =
∞∑

n=−∞

s(nT )h(t− nT ).

We summarize the various relationships in the following diagram that holds for a fixed
T . The diagram says that the samples of a signal s(t) are in one-to-one relationship with
s̃F(f) . From the latter we can reconstruct sF(f) if there is a single sF(f) that could
have lead to s̃F(f) , which is the case if the condition of the sampling theorem is satisfied,
i.e., if b − a < 1

T
. The star on an arrow is meant to remind us that the map in that

direction is unique if the condition of the sapling theorem is met.

{s(nT )}∞n=−∞
m

s(t)
(∗)⇐=

=⇒ s|(t) =
∑∞

n=−∞ s(n)δ(t− nT )
m

sF(f)
(∗∗)⇐=
=⇒ s̃F(f) =

∑
sF(f − n

T
)

To emphasize the importance of knowing I , observe that if s(t) ∈ L2(I) then s(t)e−j
2π
T
t ∈

L2(I + 1
T

) . These are different signals that, when sampled at multiples of nT , lead to
the same sample sequence.

It is clear that the condition b−a < 1
T

is not only sufficient but also necessary to guarantee
that no two signals such that the support of their Fourier transform lies in I do not lead
to the same sample sequence. Fig. 5.6 gives an example of two distinct signals that lead
to the same sequence of samples. This example also shows that the condition for the
sampling theorem to hold is not that sF(f) and sF(f − n

T
) do not overlap when n 6= 0.

This condition is satisfied by the example of Fig. 5.6 yet the map that sends sF(f) to
s̃F(f) is not invertible. Invertibility depends on the domain of the map, i.e. the length
of I , and not just on how the map acts on a single element of the domain.
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-s̃′F(f) =
∑∞

n=−∞ s
′
F(f − n

T
) f

A
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-s̃F(f) =
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n=−∞ sF(f − n
T

) f

A
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1
T
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a b

Figure 5.6: Example of two distinct signals s(t) and s′(t) such that sF(t) and s′F(t) have
domain in I and such that s̃F(t) = s̃′F(t) . When we sample the two signals at t = nT ,
n integer, we obtain the same sequence of samples.
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Appendix 5.E Square-Root Raised-Cosine Pulse

We derive the inverse Fourier transform of the square-root raised-cosine pulse

ψF(f) =


√
T , |f | ≤ 1−β

2T√
T cos πT

2β
(|f | − 1−β

2T
), 1−β

2T
< |f | ≤ 1+β

2T

0, otherwise.

Write ψF(f) = aF(f)+bF(f) where aF(f) =
√
T1[− 1−β

2T
, 1−β

2T
](f) is the central piece of the

square-root raised-cosine pulse and bF(f) accounts for the two square-root raised-cosine
edges.

The inverse Fourier transform of aF(f) is

a(t) =

√
T

πt
sin

(
π(1− β)t

T

)
.

Write bF(f) = b−F(f) + b+
F(f) , where b+

F(f) = bF(f) for f ≥ 0 and zero otherwise. Let
cF(f) = b+

F(f + 1
2T

) . Specifically,

cF(f) =
√
T cos

[
πT

2β

(
f +

β

2T

)]
1[− β

2T
, β
2T

](f).

The inverse Fourier transform c(t) is

c(t) =
β

2
√
T

[
e−j

π
4 sinc

(
tβ

T
− 1

4

)
+ ej

π
4 sinc(

tβ

T
+

1

4
)

]
.

Now we may use the relationship b(t) = 2<{c(t)ej2π 1
2T
t} to obtain

b(t) =
β√
T

[
sinc

(
tβ

T
− 1

4

)
cos

(
πt

T
− π

4

)
+ sinc

(
tβ

T
+

1

4

)
cos

(
πt

T
+
π

4

)]
.

After some manipulations of ψ(f) = a(t) + b(t) we obtain the desired expression

ψ(t) =
4β

π
√
T

cos
(
(1 + β)π t

T

)
+ (1−β)π

4β
sinc

(
(1− β) t

T

)
1−

(
4β t

T

)2 .
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0 1
2T

f

0 T

t

Figure 5.7: Raised cosine pulse |ψF(f)|2 with β = 1
2

(top) and inverse Fourier transform
ψ(t) of the corresponding square-root raised-cosine pulse.

Appendix 5.F Problems

Problem 1. (Eye Diagram) Consider the transmitted signal, S(t) =
∑

iXiψ(t − iT )
where {Xi}∞−∞, Xi ∈ {±1} , is an i.i.d. sequence of random variables and {ψ(t−iT )}∞i=−∞
forms an orthonormal set. Let Y (t) be the matched filter output at the receiver. In this
MATLAB exercise we will try to see how crucial it is to sample at t = iT as opposed to
t = iT + ε . Towards that goal we plot the so-called eye diagram. An eye diagram is the
plot of Y (t+iT ) versus t ∈ [−T

2
, T

2
] , plotted on top of each other for each i = 0 · · ·K−1 ,

for some integer K . Thus at t = 0 we see the superposition of several matched filter
outputs when we output at the correct instant in time. At t = ε we see the superpositoin
of several matched filter outputs when we sample at t = iT + ε .

(a) Assuming K = 100 , T = 1 and 10 samples per time period T , plot the eye diagrams
when,

(i) ψ(t) is a raised cosine with α = 1 .

(ii) ψ(t) is a raised cosine with α = 1
2

.

(iii) ψ(t) is a raised cosine with α = 0 . This is a sinc .

(b) From the plotted eye diagrams what can you say about the cruciality of the sampling
points with respect to α?

Problem 2. (Nyquist Criterion)
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(a) Consider the following |θF(f)|2 . The unit on the frequency axis is 1/T and the unit
on the vertical axis is T . Which ones correspond to Nyquist pulses θ(t) for symbol
rate 1/T ? Note: Figure (d) shows a sinc2 function.

!1.5 !1 !0.5 0 0.5 1 1.5
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f
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2
(b)

f
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2
(c)

f
!3 !2 !1 0 1 2 3

0
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0.4

0.6

0.8

1
(d)

f

(b) Design a (non-trivial) Nyquist pulse yourself.

(c) Sketch the block diagram of a binary communication system that employs Nyquist
pulses. Write out the formula for the signal after the matched filter. Explain the
advantages of using Nyquist pulses.

Problem 3. (Bandpass Nyquist Pulses) Consider a pulse p(t) defined via its Fourier
transform pF(f) as follows:

1

f [Hz]
f0 + B

2
−f0 + B

2
−f0 − B

2
f0 − B

2

pF(f)

(a) What is the expression for p(t)?

(b) Determine the constant c so that ψ(t) = cp(t) has unit energy.

(c) Assume that f0 − B
2

= B and consider the infinite set of functions · · · , ψ(t + T ) ,
ψ(t) , ψ(t − T ) , ψ(t − 2T ) , · · · . Do they form an orthonormal set for T = 1

2B
?

(Explain).

(d) Determine all possible values of f0 − B
2

so that · · · , ψ(t + T ) , ψ(t) , ψ(t − T ) ,
ψ(t− 2T ) , · · · forms an orthonormal set.
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Problem 4. (More on Nyquist Criterion) Consider transmitting

S(t) =
∞∑

i=−∞

Xiψ(t− iT )

across an AWGN channel, where ψ(t) is a Nyquist pulse. We know that an optimal thing
to do at the receiver front end is to send the received signal R(t) through the filter with
impulse response ψ∗(−t) and sample the filter output Y (t) at time t = iT .

(a) Show that, in absence of noise, the filter output Y (iT ) equals Xi .

(b) Now assume that you transmit S(t) =
∑∞

i=−∞Xip(t− iT ) and let the received signal
through a filter of real-valued impulse response q(t) . You would like to retain the
property that, in absence of noise, the filter output at time t = iT be Xi . Show that
this is equivalent to ∫ ∞

−∞
p(kT + t)q(−t)dt = δ(k).

(c) Show that the equivalent condition in the frequency domain is

∞∑
l=−∞

pF(f − l

T
)q∗F(f − l

T
) = T for− 1

2T
≤ f ≤ 1

2T
.

Problem 5. (Mixed Questions)

(a) Consider the signal x(t) = cos(2πt)
(

sin(πt)
πt

)2

. Assume that we sample x(t) with

sampling period T . What is the maximum T that guarantees signal recovery?

(b) Consider the three signals s1(t) = 1, s2(t) = cos(2πt), s3(t) = sin2(πt) , for 0 ≤ t ≤ 1 .
What is the dimension of the signal space spanned by {s1(t), s2(t), s3(t)}?

(c) You are given a pulse p(t) with spectrum pF(f) = T (1− |f |T ) , 0 ≤ |f | ≤ 1
T

. What
is the value of

∫
p(t)p(t− 3T )dt?



Chapter 6

Convolutional Coding and Viterbi
Decoding

In Chapter 5 we have considered signals of the form s(t) =
∑
sjψ(t− jT ) , and we have

focused on the Fourier domain characterization of those pulses ψ(t) for which {ψ(t −
jT )}∞j=−∞ forms an orthonormal set. In this chapter we focus on how to generate the
symbol sequence sj , j = 1, 2, . . . , n . The sequence will be produced by a convolutional
encoder. Some of the ideas presented in this chapter are best explained by means of a
specific example. We do that at the expense of generality, but the reader should have no
difficulty in applying the same techniques to other convolutional encoders.

The receiver will implement the Viterbi algorithm (VA)—a neat and clever way to decode
efficiently in many circumstances. To analyze the bit-error probability we will introduce
a few new tools, notably detour flow graphs and generating functions.

The signals that we will construct will have several desirable properties: The transmitter
and the receiver adapt in a natural way to the number k of bits that need to be com-
municated; the duration of the transmission grows linearly with the number of bits; the
symbol sequence is uncorrelated, implying that the power spectral density of the transmit-

ted signal is Es |ψF (f)|2
T

; the encoding complexity is linear in k and so is the complexity of
the maximum likelihood receiver; for the same energy per bit, the bit error probability is
much smaller than that of bit by bit on a pulse train. The convolutional encoder studied
in this chapter produces two binary symbols per source bit, which implies that the bit
rate [bits/sec] is half that of bit by bit on a pulse train. This is the price we pay to reduce
the bit error probability.

155
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6.1 The Transmitter

Like in bit by bit on a pulse train, the transmitted signal has the form

s(t) =
n∑
j=1

sjψ(t− jT ),

with

sj = xj
√
Es

xj ∈ {±1}.

However, xj is now the j th element of the encoder output sequence rather than being
the j th bit produced by the source.

Notice that there is a slight change in notation with respect to earlier chapters. Up
until now the transmitted signal s(t) had an index i , mainly since our starting point
was the signal constellation specified by a list s1(t), . . . , sm−1(t) of generic signals. (It
was a result of Chapter 3 to show that those signals can always be written in the form
si(t) =

∑
si,jψj(t) .) In this chapter we start with k bits that are mapped to an n tuple

s = (s1, . . . , sn) that leads to s(t) . The fact that there are 2k such signals is implied by
the setup and adding an index i to s(t) seems redundant. In some cases, like in the next
section, it will be useful to have such an index. We will use the index as needed. Hopefully
the going back and forth between the two notations will not create any confusion.

The k bits produced by the source will be denoted by (d1, d2, . . . , dk) , dj ∈ {±1} . At
regular intervals there is one source bit entering the encoder and two binary symbols
coming out. During the j th interval, j = 1, 2, . . . , k , the encoder produces x2j−1, x2j

according to the encoding map

x2j−1 = djdj−2

x2j = djdj−1dj−2,

with d−1 = d0 = 1 set as initial condition. The convolutional encoder is depicted in
Figure 6.1. Notice that the encoder output has length n = 2k . The following example
shows a source output sequence of length k = 5 and the corresponding encoder output
sequence of length n = 10 .

dj 1 −1 −1 1 1
x2j−1, x2j 1, 1 −1,−1 −1, 1 −1, 1 −1,−1

j 1 2 3 4 5

Since the n = 2k encoder output symbols are determined by the k input bits, only 2k

of the 2n n -length binary sequences are codewords. This means that we are using only a
fraction 2k−n = 2−k of all possible n -length binary sequences. Intuitively, we are giving
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Figure 6.1: Rate 1
2

convolutional encoder.

up a factor 2 in the bit rate to make the signal space much less crowded, hoping that
this will significantly reduce the probability of error. There are several ways to describe
a convolutional encoder. We have already seen that we can specify it by the encoding
map and by the encoding circuit of Figure 6.1 . A third way, which will turn out to be
useful in determining the error probability, is via the state diagram of Figure 6.2. The
diagram describes a finite state machine. The state of the convolutional encoder is what
the encoder needs to know about past inputs so that together with the current input it
can determine the current output. For the convolutional encoder of Figure 6.1 the state
at time j may be defined to be dj−1, dj−2 . Hence we have 4 states represented by a box
in the state diagram. As the diagram shows, there are two possible transitions from each
state. The input symbol dj decides which of the two possible transitions is taken at time
j . Transitions are labeled by dj|x2j−1, x2j . Throughout the chapter we assume that the
encoder is in state 1, 1 when the first symbol enters the encoder.

6.2 The Receiver

Let ‖si‖2 =
∑n

j=1 Esx2
i,j = nEs be the signal’s energy (the same for all signals).

A maximum likelihood (ML) decoder decides for one of the i that maximizes

〈r, si〉 −
nEs
2
,

where r is the received signal and the second term is irrelevant since it does not depend
on i .
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1,1

−1,1

−1,−1

1,−1

1|1, 1

1| − 1, 1

1| − 1,−1

−1|1, 1

1|1,−1

−1| − 1, 1

−1| − 1,−1

−1|1,−1

Figure 6.2: State diagram description of the convolutional encoder.

Hence a ML decoder picks a sequence si,1, . . . , si,n that maximizes∫
r(t)

n∑
j=1

si,jψ
∗(t− jT )dt

=
n∑
j=1

si,j

∫
r(t)ψ∗(t− jT )dt

=
n∑
j=1

si,jyj

=
√
Es

n∑
j=1

xi,jyj

=
√
Es〈xi,y〉

where we have defined

yj =

∫
r(t)ψ∗(t− jT )dt.

Recall that yj is the output at time jT of the filter with impulse response ψ∗(−t) and
input r(t) .

To find the xi that maximizes 〈xi,y〉 , one could in principle compute 〈x,y〉 for all
2k sequences that can be produced by the encoder. This brute-force approach would
be quite unpractical. For instance, if k = 100 (which is a relatively modest value for
k ), 2k = (210)10 which is approximately (103)10 = 1030 . Using this approximation, a
VLSI chip that makes 109 inner products per second takes 1021 seconds to check all
possibilities. This is roughly 4 1013 years. The universe is only 2 1010 years old!
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What we need is a method that finds the maximum 〈x,y〉 by making a number of
operations that grows linearly (as opposed to exponentially) in k . By cleverly making
use of the encoder structure we will see that this can be done. The result is the Viterbi
algorithm.

To describe the Viterbi algorithm (VA) we introduce a fourth way of describing a con-
volutional encoder, namely the trellis. The trellis is an unfolded transition diagram that
keeps track of the passage of time. It is obtained by making as many replicas of the states
as there are input symbols. For our example, if we assume that we start at state 1, 1 , that
we encode k = 5 source bits and then feed the encoder with 1, 1 to make it go back to the
initial state and thus be ready for the next transmission, we obtain the trellis description
shown on the top of Figure 6.3. There is a one to one correspondence between a message
i ∈ {0, 1, . . . , 2k−1} , an encoder input sequence di , an encoder output sequence xi , and
a path (or state sequence) from the initial state (1, 1)0 (very left state) to the final state
(1, 1)k+2 (very right state) of the trellis. Hence in the discussion that follows we may refer
to a path by means of an input sequence, an output sequence or a sequence of states.

The trellis on the top of Figure 6.3 has edges labeled by the corresponding output symbols.
To decode using the Viterbi algorithm we replace the label of each edge with the edge met-
ric (also called branch metric) defined as follows. Let Γ = {(1, 1), (1,−1), (−1, 1), (−1,−1)}
be the state space. If there is an edge that connects state α ∈ Γ at depth j − 1 to state
β ∈ Γ at depth j , we let the edge metric µj−1,j(α, β) be

µj−1,j(α, β) = x2j−1y2j−1 + x2jy2j,

wherex2j−1, x2j is the encoder output of the corresponding edge. If there is no such edge
we let µj−1,j(α, β) = −∞ . Notice that µj−1,j(α, β) is the j th term in 〈x,y〉 for any path
that goes through state α at depth j−1 and state β at depth j . Hence 〈x,y〉 is obtained
by adding the edge metrics along the path specified by x . The second subfigure of Figure
6.3 shows the trellis labeled with the edge metric that corresponds to the hypothetical
y = (1, 3), (−2, 1), (4,−1), (5, 5), (−3,−3), (1,−6), (2,−4) , where parentheses have been
inserted to facilitate parsing.

The path metric is the sum of the edge metrics taken along the edges of a path. A longest
path from state 1, 1 at depth j = 0, denoted (1, 1)0 , to a state α at depth j , denoted
αj , is one of the paths that has the largest path metric. The Viterbi algorithm works
by constructing, for each j , a list of the longest paths to the states at depth j . The
following observation is key to understand the Viterbi algorithm. If path ∗ αj−1 ∗ βj is
a longest path to state β of depth j , where path ∈ Γj−2 and ∗ denotes concatenation,
then path∗αj−1 must be a longest path to state α of depth j−1 , for if another path, say
alternatepath ∗ αj−1 were shorter for some alternatepath ∈ Γj−2 , then alternatepath ∗
αj−1 ∗ βj would be shorter than path ∗ αj−1 ∗ βj . So the longest depth j path to a state
can be obtained by checking the extension of the longest depth (j − 1) paths by one
branch.

The following notation is useful for the formal description of the Viterbi algorithm. Let
µj(α) be the metric of a longest path to state αj and let Bj(α) ∈ {±1}j be the encoder
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input sequence that corresponds to this path. We call Bj(α) ∈ {±1}j the survivor since
it is the only paths through state αj that will be extended. (Paths through αj that have
smaller metric have no chance of extending into a maximum likelihood path). For each
state the Viterbi algorithms computes two things, a survivor and its metric. The formal
algorithm follows, where B(β, α) is the encoder input that corresponds to the transition
from state β to state α if there is such a transition and is undefined otherwise.

1. Initially set µ0(1, 1) = 0, µ0(α) = −∞ for all α 6= (1, 1),
B0(1, 1) = ∅, and j = 1.

2. For each α ∈ Γ, find one of the β for which

µj−1(α) + µj−1,j(β, α) is a maximum. Then set

µj(α)← µj−1(α) + µj−1,j(β, α),

Bj(α)← Bj−1(α) ∗B(β, α).

3. If j = k + 2, output the first k bits of Bj(1, 1) and

stop. Otherwise increment j by one and go to Step 2.

The reader should have no difficulty verifying (by induction on j ) that µj(α) as computed
by Viterbi’s algorithm is indeed the metric of a longest path from (1, 1)0 to state α at
depth j and that Bj(α) is the encoder input sequence associated to it.

The third subfigure of Figure 6.3 shows the computation that one does to mimic the
Viterbi algorithm by hand. Each state α at depth j is labeled with a survivor’s metric
µj(α) . We keep track of a survivor to state αj by “pruning” all the other edges to that
state. (In this example there is only one other edge.) A “pruned” edge is one that has
been dashed. Once we have reached state (1, 1)k+2 we can backtrack and follow the only
surviving path (bottom figure). To make it possible to write down the source sequence of
a path without requiring additional labels, we have positioned the states in such a way
that the upper edge out of a state is taken when the input is −1 and the lower edge when
the input is 1 .

The complexity of the Viterbi algorithm is linear in the number of trellis vertices. It is
also linear in the number k of source bits. Recall that the brute force approach had
complexity exponential in k . The saving of the Viterbi algorithm comes from not having
to compute the metric of non-survivors. When we prune an edge at depth j we are in
fact eliminating 2k−j possible extension of that edge. The brute force approach computes
the metric of those extensions but not the Viterbi algorithm.
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Figure 6.3: The Viterbi algorithm. Top figure: Trellis representing the encoder. The
upper edge leaving a state corresponds to source symbol −1 , the lower edge to source
symbol 1 . Edges are labeled with the corresponding output symbols; Second figure:
Edges have been re-labeled with the edge metric corresponding to the received sequence
(1, 3), (−2, 1), (4,−1), (5, 5), (−3,−3), (1,−6), (2,−4) (parentheses have been inserted to facil-
itate parsing); Third figure: Each state has been labeled with the metric of a survivor to that
state and non-surviving edges are pruned (dashed); Fourth figure: Tracing back from the end
we find the decoded path (bold). It corresponds to the source sequence 1, 1, 1, 1,−1, 1, 1 .
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6.3 Bit-Error Probability

We assume that the initial state is 1, 1 and we transmit a number k of bits.

As we have done so far, we determine (an upper bound to) the probability of error by
conditioning on a transmitted signal. It will turn out that our expression does not depend
on the transmitted signal.

Each signal that can be produced by the transmitter corresponds to a path in the trellis.
The path we are conditioning on when we compute (or when we bound) the bit error
probability will be called the reference path.

The task of the decoder is to find (one of) the paths in the trellis that has the largest
〈x,y〉 where x is the encoder output that corresponds to that path. If the decoder does
not come up with the correct path it is because it chooses a path that contains one or
more detour(s).

Detours (with respect to the reference path) are trellis path segments that share with the
reference path only the starting and the ending state.1 (See the figure below.)

Start 1st detour End 1st detour

End 2nd detourStart 2nd detour
Reference path

Errors are produced when the decoder follows a detour and that is the only way to produce
errors. To compute the bit error probability we study the random process produced by
the decoder when it chooses the maximum likelihood trellis path. Each such path is
either the correct path or else it brakes down in some number of detours. To the path
selected by the decoder we associate a sequence w0, w1, . . . , wk−1 defined as follows. If
there is a detour that starts at depth j we let wj be the number of bit errors produced

by that detour. In all other cases we let wj = 0. Then 1
k

∑k−1
j=0 wj is the fraction of errors

produced by the decoder. Over the ensemble of all possible noise processes, wj becomes
a random variable Wj and the bit error probability is

Pb
4
= E

1

k

[
k−1∑
j=0

Wj

]
.

In the next section we learn everything we need to know about detours to be able to
upper bound the above expression.

1For an analogy, the reader may think of the trellis as a road map, of the reference path as of an
intended road for a journey, and the path selected by the decoder as of the actual road that was taken
during the journey. Due to constructions, occasionally the actual path deviates from the intended path to
merge again with it at some later point. A detour is the chunk of road from the deviation to the merge.
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6.3.1 Counting Detours

In this subsection we consider infinite trellises, i.e., trellises that are extended to infinity
on both sides. Each path in such a trellis corresponds to an infinite input sequence
d = . . . d−1, d0, d1, d2, . . . and infinite output sequence x = . . . x−1, x0, x1, x2, . . . . These
are sequences that belong to D∗ = {±1}∞ .

Let d and x be the input and output sequence, respectively, associated to the reference
path and let d̃ and x̃ , also in D∗ , be an alternative input and the associated output.
The reference and the alternative path give rise to one or more detours. To each such
detour we can associate two numbers, namely the input distance i and the output distance
d . The input distance is the number of position in which the two input sequences differ
over the course of the detour. The output distance counts the discrepancies of the output
sequences over the course of the detour.

Example 63. Using the top subfigure of Figure 6.3 as an example, if we take the all one
path (the bottom path) as the reference and consider the detour that splits at depth 0
and merges back with the reference path at depth 3 , we see that this detour has input
distance i = 1 and output distance d = 5 .

The question that we address in this subsection is: for any given reference path x and
integer j representing a trellis depth, what is the number a(i, d) of detours that start at
depth j and have input distance i and output distance d with respect to the reference
path? We will see that this number depends neither on the reference path nor on j .

Example 64. Using again the top subfigure of Figure 6.3 we can verify by inspection
that for each reference path and each positive integer j there is a single detour that starts
at depth j and has parameters i = 1 and d = 5 . Thus a(1, 5) = 1 . We can also verify
that a(2, 5) = 0 and a(2, 6) = 2 . 2

We start by assuming that the reference path is the all-one path. This is the path
generated by the all-one source symbols. The corresponding encoder output sequence
also consists of all ones. For every j , there is a one-to-one correspondence between a
detour that starts at depth j and a path between state a and states e of the following
detour flow graph obtained from the state diagram by removing the self-loop of state (1, 1)
and splitting this state into a starting state denoted by a and an ending state denoted
by e .
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The label I iDd , ( i and d nonnegative integers), on an edge of the detour flow graph
indicates that the input and output distances increase by i and d , respectively, when the
detour takes that edge.

Now we show how to determine a(i, d) . In terms of the detour flow graph, a(i, d) is the
number of paths between a and e that have path label I iDd , where the label of a path
is the product of all labels along that path. We will actually determine the generating
function T (I,D) of a(i, d) defined as

T (I,D) =
∑
i,d

I iDda(i, d).

The letters I and D in the above expression should be seen as “place holders” without
any physical meaning. It is like describing a set of coefficients a0, a1, . . . , an−1 by means
of the polynomial p(x) = a0 + a1x+ . . .+ an−1x

n−1 . To determine T (I,D) we introduce
auxiliary generating functions, one for each intermediate state of the detour flow graph,
namely

Tb(I,D) =
∑
i,d

I iDdab(i, d) (6.1)

Tc(I,D) =
∑
i,d

I iDdac(i, d) (6.2)

Td(I,D) =
∑
i,d

I iDdad(i, d), (6.3)

where in the fist line we have defined ab(i, d) as the number of paths in the detour flow
graph that start at state a , end at state b , and have path label I iDd . Similarly, for
x = c, d , ax(i, d) is the number of paths in the detour flow graph that start at state a ,
end at state x , and have path label I iDd . (In (6.3), the d of ad is a fixed label not to
be confused with the summation variable.)
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From the detour flow graph we see that the following relationships holds. (To simplify
the notation we are writing Tx instead of Tx(I,D) , x = b, c, d and write T instead of
T (I,D) )

Tb = ID2 + Td I

Tc = Tb ID + Tc ID

Td = TbD + TcD

T = TdD
2.

The above system may be solved for T by pure formal manipulations. (Like solving a
system of equations). The result is

T (I,D) =
ID5

1− 2ID
.

As we will see shortly, the generating function T (I,D) of a(i, d) is actually more useful
than a(i, d) itself. However, to show that one can indeed obtain a(i, d) from T (I,D) we
use the expansion 1

1−x = 1 + x+ x2 + x3 + · · · to write

T (I,D) =
ID5

1− 2ID
= ID5(1 + 2ID + (2ID)2 + (2ID)3 + · · ·

= ID5 + 2I2D6 + 22I3D7 + 23I4D8 + · · ·

This means that there is one path with parameters d = 5, i = 1, that there are two
paths with d = 6, i = 2, etc. The general expression for i = 1, 2, . . . is

a(i, d) =

{
2i−1, d = i+ 4

0, otherwise.

The correctness of this expression may be verified by means of the detour flow graph.

In this final paragraph we argue that a(i, d) depends neither on the reference path,
assumed so far to be the all-one path, nor on the starting depth. The reader willing
to accept this fact may skip to the next section. To prove the claim, pick an arbitrary
reference path described by the corresponding input sequence, say d̄ ∈ D∗ . Let f be
the input/output map, i.e., f(d̄) is the encoder output resulting from the input d̄ . It
is not hard to verify (see Problem 6) that f is a linear map in the sense that if d ∈ D∗
is an arbitrary input sequence then f(dd̄) = f(d)(d̄) , where products are understood
componentwise. Let e ∈ D∗ be such that the path specified by the input d̄e has a
detour that starts at depth j and has input distance i with respect to the reference path
specified by d̄ . Notice that the positions of e that contain −1 are precisely the positions
where d̄e differs from d̄ and those positions determine j and i . Hence j and i are
determined by e and are independent of d̄ . Also the output distance d depends only
on e . Indeed it depends on the positions where f(d̄e) differs from f(d̄) which are the
positions where f(d̄e)f(d̄) is −1 . Due to linearity, f(d̄e)f(d̄) = f(d̄)f(e)f(d̄) = f(e) .
We conclude that, independently of the reference path, the set of e ∈ D∗ that identify
in the above way those detours that start at j and have input distance i and output
distance d is the same regardless of the reference path. The size of that set is a(i, d) .
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6.3.2 Upper Bound to Pb

We are now ready for the final step, namely the derivation of an upper bound to the
bit-error probability. We recapitulate.

Fix an arbitrary encoder input sequence, let x = x1, x2 . . . , xn be the corresponding
encoder output sequence and s =

√
Esx be the vector signal. The waveform signal is

s(t) =
n∑
j=1

sjψ(t− jT ).

We transmit this signal over an AWGN channel with power spectral density N0/2 . Let
r(t) = s(t) + z(t) be the received signal (where z(t) is a sample path of the noise process
Z(t) ) and let

y = (y1, . . . , yn)T , yi = 〈r, ψi〉
be a sufficient statistic.

The Viterbi algorithm labels each edge in the trellis with the corresponding edge metric
and finds the path through the trellis with the largest path metric. An edge from depth
j−1 to j with output symbols x2j−1, x2j is assigned the edge metric y2j−1x2j−1 +y2jx2j .

The ML path selected by the Viterbi decoder may contain several detours. Let wj ,
j = 0, 1, . . . , k − 1 , be the number of bit errors made on a detour that begins at depth
j . If at depth j the VD is on the correct path or if it follows a detour started earlier
then wj = 0. Let Wj be the corresponding random variable (over all possible noise
realizations).

For the path selected by the VD the total number of incorrect bits is
∑k−1

j=0 wj and
1
k

∑k−1
j=0 wj is the fraction of errors with respect to the k source bits. Hence we define the

bit-error probability

Pb
4
= E

1

k

[
k−1∑
j=0

Wj

]
=

1

k

k−1∑
j=0

EWj. (6.4)

Let us now focus on a detour. If it starts at depth j and ends at depth l = j + m ,
then the corresponding encoder-output symbols form a 2m tuple ū ∈ {±1}2m . Let
u = (x2j+1, . . . , x2l) ∈ {±1}2m be the corresponding sub-sequence of the reference path
and ρ = (y2j+1, . . . , y2l) the corresponding channel output subsequence.

Detour starts at depth

Detour ends at depth
l = j +m

j
ū

u
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Let d be the Hamming distance dH(u, ū) between u and ū . The Euclidean distance
between the corresponding waveforms is the distance between

√
Esu and

√
Esū which is

dE = 2
√
Esd .

A necessary (but not sufficient) condition for the Viterbi decoder to take the detour
under consideration is that the path metric along the detour be equal or larger that of
the corresponding segment along the reference path, i.e.,

〈ρ,
√
Esu〉 ≤ 〈ρ,

√
Esū〉.

This condition is satisfied iff

‖ρ−
√
Esu‖2 ≥ ‖ρ−

√
Esū‖2.

The probability of the above event is the probability that a ML receiver for the discrete-
time AWGN channel makes an error when the correct vector signal is

√
Esu and the

alternative signal is
√
Esū . This probability is

Q

(
dE
2σ

)
= Q

(√
2Esd
N0

)
≤ exp

{
− Esd
N0

}
= zd, (6.5)

where σ2 = N0

2
, dE = ‖

√
Esu−

√
Esū‖ = 2

√
Esd , and we have defined z = exp

{
− Es

N0

}
.

We are ready for the final steps towards upper bounding Pb .

EWj =
∑

all detours h

i(h)π(h)

where the sum is over all detours that start at depth j with respect to the all-one sequence,
π(h) stands for the probability that the detour h is taken, and i(h) for the input distance
between detour h and the all-one path. Using π(h) ≤ zd(h) where d(h) stands for the
output distance between the detour h and the all-one path we obtain

EWj ≤
∑

all detours h

i(h)zd(h)

=
k∑
i=1

2k∑
d=1

izdã(i, d)

≤
∞∑
i=1

∞∑
d=0

izda(i, d),

where in the second line we have grouped the terms of the sum that have the same i and
d and used ã(i, d) to denote the number of such terms. Notice that ã(i, d) pertains to
the finite trellis and may be smaller than the corresponding number a(i, d) associated to
the semi-infinite trellis. This justifies the last line’s inequality. Using the relationship

∞∑
i=1

if(i) =
∂

∂I

∞∑
i=0

I if(i)

∣∣∣∣
I=1

,
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which holds for any function f , we may write

EWj ≤
∂

∂I

∞∑
i=1

∞∑
d=0

I izda(i, d)

∣∣∣∣
I=1

=
∂

∂I
T (I,D)

∣∣∣∣
I=1,D=z

.

We may plug into (6.4) and use the fact that the bound on EWj does not depend on j
to obtain

Pb =
1

k

k−1∑
j=0

EWj ≤
∂

∂I
T (I,D)

∣∣∣∣
I=1,D=z

. (6.6)

In our specific example T (D, I) = ID5

1−2ID
and ∂T

∂I
= D5

(1−2ID)2
. Thus

Pb ≤
z5

(1− 2z)2
,

where z = exp
{
− Es

N0

}
and Es = Eb

2
(we are transmitting two channel symbols per

information bit).

Notice that in (6.6) the channels characteristic is summarized by the parameter z . Specif-
ically, zd is an upper bound to the probability that a maximum likelihood receiver makes
a decoding error when the choice is between two binary codewords of Hamming distance
d. As shown in Problem 29(ii) of Chapter 2, we may use the Bhattacharyya bound to
determine z for any binary-input discrete memoryless channel. For such a channel,

z =
∑
y

√
P (y|a)P (y|b)

where a and b are the two letters of the input alphabet and y runs over all elements of
the output alphabet. We have also assumed that in one tick the encoder takes k0 = 1
source symbols and outputs n0 = 2 channel symbols. It is straightforward to generalize
the above derivation to any k0 and any n0 in N+ . Details are left as an exercise.

6.4 Concluding Remarks

What have we done and how does it compare to what we have done before? It is convenient
to think of the bit by bit on a pulse train as our starting point.

s(t) =
n−1∑
i=0

siψ(t− iT )

si ∈
{
±
√
Es
}
.
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The relevant design choices for this system are (the subscripts s and b stand for symbol
and bit, respectively):

Rb = Rs =
1

T
bit rate

Eb = Es energy per bit

Pb = Q

(√
Es
σ

)
, bit-error probability.

Using σ =
√

N0

2
and the upper bound Q(x) ≤ exp

{
− x2

2

}
we obtain

Pb ≤ exp
{
− Eb
N0

}
which will be useful in comparing with the coded case.

The added value of this chapter was to have an encoder between the source and the
transmitter that implements bit by bit on a pulse train. The encoder trades the bit error
probability Pb for the bit rate Rb . The new parameters are:

Rb =
Rs

2
=

1

2Ts
Eb = 2Es

Pb ≤
z5

(1− 2z)2
where z = exp

{
− Eb

2N0

}
.

As Eb
2N0

becomes large, the denominator of the above bound for Pb becomes essentially

1 and the bound decreases as z5 . The bound for the uncoded case is z2 . As already
mentioned, the price for the decreased bit error rate is the fact that we are sending two
symbols per bit.

In both cases the expression for the power spectral density is Es
T
|ψF(f)|2 but since the

coded case has twice as many symbols, the energy per symbol Es of the coded case is
halved. Hence the bandwidth is the same in both cases but not the power spectral density.
Since coding reduces the bit-rate by a factor 2 , the bandwidth efficiency, defined as the
number of bits per second per Hz, is smaller by a factor of 2 in the coded case. With
more powerful codes we can further decrease the bit error probability without affecting
the bandwidth efficiency.

The reader may wonder how the code we have considered as an example compares to bit
by bit on a pulse train with each bit sent out twice. In this case the j th bit is sent as
dj
√
Esψ(t− (2j− 1)T ) + dj

√
Esψ(t− 2jT ) which is the same as sending dj

√
Ebψ̃(t− 2jT )

with ψ̃(t) = (ψ(t) +ψ(t−T ))/
√

2 . Hence this scheme is again bit by bit on a pulse train
with the new pulse ψ̃(t) used every 2T seconds. We know that the bit error probability
of bit by bit on a pulse train does not depend on the pulse used. Thus this scheme uses
twice the bandwidth of bit by bit on a pulse train with no benefit in terms of bit error
probability.
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From a “high level” point of view, coding is about exploiting the advantages of working
in a higher dimensional signal space rather than making multiple independent uses of a
small number of dimensions. (Bit by bit on a pulse train uses one dimension at a time.) In
n dimensions, we send some s ∈ Rn and receive Y = s+Z , where Z ∼ N (0, Inσ

2) . By
the law of large numbers,

√
(
∑
z2
i )/n goes to σ as n goes to infinity. This means that

with probability approaching 1 , the received n tuple Y will be in a thin shell of radius√
nσ around s . This phenomenon is referred to as sphere hardening. As n becomes

large, the space occupied by Z becomes more predictable and in fact it becomes a small
fraction of the entire Rn . Hence there is hope that one can find many vector signals that
are distinguishable (with high probability) even after the Gaussian noise has been added.
Information theory tells us that we can make the probability of error go to zero as n goes
to infinity provided that we use fewer than m = 2nC signals, where C = 1

2
log2(1 + Es

σ2 ) .
It also teaches us that the probability of error can not be made arbitrarily small if we
use more than 2nC signals. Since (log2m)/n is the number of bits per dimension that
we are sending when we use m signals embedded in an n dimensional space, it quite
appropriate to call C [bits/dimension] the capacity of the discrete-time additive white
Gaussian noise channel. For the continuous-time AWGN channel of total bandwidth B ,
the channel capacity is

B log2

(
1 +

P

BN0

)
[bits/sec],

where P is the transmitted power. It can be achieved with signals of the form s(t) =∑
j sjψ(t− jT ) .

6.5 Problems

Problem 1. (Power Spectral Density) Block-orthogonal signaling may be the simplest
coding method that achieves Pr{e} → 0 as N →∞ for a non-zero data rate. However,
we have seen in class that the price to pay is that block-orthogonal signaling requires
infinite bandwidth to make Pr{e} → 0 . This may be a small problem for one space
explorer communicating to another; however, for terrestrial applications, there are always
constraints on the bandwidth consumption. Therefore, in the examination of any coding
method, an important issue is to compute its bandwidth consumption. Compute the
bandwidth occupied by the rate−1/2 convolutional code studied in this chapter. The
signal that is put onto the channel is given by

X(t) =
∞∑

i=−∞

Xi

√
Esψ(t− iTs), (6.7)

where ψ(t) is some unit-energy function of duration Ts and we assume that the trellis
extends to infinity on both ends, but as usual we actually assume that the signal is the
wide-sense stationary signal

X̃(t) =
∞∑

i=−∞

Xi

√
Esψ(t− iTs − T0), (6.8)
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where T0 is a random delay which is uniformly distributed over the interval [0, Ts) .

(a) Find the expectation E[XiXj] for i = j , for (i, j) = (2n, 2n + 1) and for (i, j) =
(2n, 2n + 2) for the convolutional code that was studied in class. Then give the
autocorrelation function RX [i − j] = E[XiXj] for all i and j . Hint: Consider the
infinite trellis of the code. Recall that the convolution code studied in the class can
be defined as

X2n = DnDn−2

X2n+1 = DnDn−1Dn−2

(b) Find the autocorrelation function of the signal X̃(t) , that is

RX̃(τ) = E[X̃(t)X̃(t+ τ)] (6.9)

in terms of RX [k] and Rψ(τ) = 1
Ts

∫ Ts
0
ψ(t+ τ)ψ(t)dt .

(c) Give the expression of power spectral density of the signal X̃(t) .

(d) Find and plot the power spectral density that results when ψ(t) is a rectangular
pulse of width Ts centered at 0 .

Problem 2. (Trellis Section) For the convolutional encoder shown below on the left, fill in
the section of the trellis shown below on the right, that is, find the correct arrows and label
them with the corresponding output value pairs (x2n, x2n+1) . The input sequence dn takes
values in {±1} and the outputs fulfill the relationships x3n = dndn−2 ; x3n+1 = dn−1dn−2 ;
x3n+2 = dndn−1dn−2 .

dn dn−1 dn−2s s
- x2n+1

- x2n

1, 1 s s
−1, 1 s s
1,−1 s s
−1,−1 s sState

Problem 3. (Branch Metric) Consider the convolutional code described by the trellis
section below on the left. You may assume that each of the encoder output symbols



172 Chapter 6.

(x2n, x2n+1) , are mapped into orthogonal waveforms, φ1(t) if xi = +1 and φ2(t) if
xi = −1 . The waveforms are of equal energy Es . At the receiver we perform matched
filtering with the filters matched to φ1(t) and φ2(t) . Suppose the output of the matched
filter at time n are (y2n, y2n+1) = (1,−2) . Find the branch metric values to be used by
the Viterbi algorithm and enter them into the trellis section on the right.

STATESTATE

−1,−1

1,−1

−1, 1

1, 1

−1,−1

1,−1

−1, 1

1, 1 1, 1

1, 1

1,−1

1,−1

−1,−1
−1,−1

−1, 1−1, 1

Problem 4. (Viterbi Algorithm)

In the trellis below, the received sequence has already been preprocessed. The labels on
the branches of the trellis are the branch metric values. Find the maximum likelihood
path.

STATE

−1

1 −23

−3

−1

2

1

−1

1

−2

−2

2

2

5

2

3

−3

Problem 5. (Intersymbol Interference) An information sequence U = (U1, U2, . . . , U5) ,
Ui ∈ {0, 1} is transmitted over a noisy intersymbol interference channel. The i th sample
of the receiver-front-end filter (e.g. a filter matched to the pulse used by the sender)

Yi = Si + Zi,

where the noise Zi forms an independent and identically distributed (i.i.d.) sequence of
Gaussian random variables,

Si =
∞∑
j=0

Ui−jhj, i = 1, 2, . . .
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and

hi =


1, i = 0
−2, i = 1
0, otherwise.

You may assume that Ui = 0 for i ≥ 6 and i ≤ 0 .

(a) Rewrite Si in a form that explicitly shows by which symbols of the information
sequence it is affected.

(b) Sketch a trellis representation of a finite state machine that produces the output
sequence S = (S1, S2, . . . , S6) from the input sequence U = (U1, U2, . . . , U5) . Label
each trellis transition with the specific value of Ui|Si .

(c) Specify a metric f(s, y) =
∑6

i=1 f(si, yi) whose minimization or maximization with
respect to s leads to a maximum likelihood decision on S . Specify if your metric
needs to be minimized or maximized. Hint: Think of a vector channel Y = S + Z ,
where Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with Zi ∼ N (0, σ2) .

(d) Assume Y = (Y1, Y2, · · · , Y5, Y6) = (2, 0,−1, 1, 0,−1) . Find the maximum likelihood
estimate of the information sequence U . Please: Do not write into the trellis that
you have drawn in Part (b); work on a copy of that trellis.

Problem 6. (Linear Transformations)

(a) (i) First review the notion of a field. (See e.g. K. Hoffman and R. Kunze, Linear
Algebra, Prentice Hall or your favorite linear algebra book.)

Now consider the set F = {0, 1} with the following addition and multiplication
tables:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Does F , “+”, and “×” form a field?

(ii) Repeat using F = {±1} and the following addition and multiplication tables:

+ 1 −1
1 1 −1
−1 −1 1

× 1 −1
1 1 1
−1 1 −1

(b) (i) Now first review the notion of a vector space. Let F , + and × be as defined in
(i)(a). Let V = F∞ . (The latter is the set of infinite sequences with components
in F . Does V , F , + and × form a vector space?

(ii) Repeat using F , + and × as in (i)(b).
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(c) (i) Review the concept of linear transformation from a vector space I to a vector
space O . Now let f : I → O be the mapping implemented by the encoder
described in this chapter. Specifically, for j = 1, 2, . . . , let x = f(d) be specified
by

x2j−1 = dj−1 ⊕ dj−2 ⊕ dj−3

x2j = dj ⊕ dj−2,

where by convention we let d0 = d−1 = 0 . Show that this f : I → O is linear.

Problem 7. (Rate 1/3 Convolutional Code.) Consider the following convolutional code,
to be used for the transmission of some information sequence di ∈ {−1, 1} :

dn dn−1 dn−2s s
- x3n

- x3n+1

- x3n+2

Figure 6.4: Convolutional encoder. x3n = dndn−2 ; x3n+1 = dn−1dn−2 ; x3n+2 =
dndn−1dn−2 .

(a) Draw the state diagram for this encoder.

(b) Suppose that this code is decoded using the Viterbi algorithm. Draw the detour
flowgraph.

(c) This encoder/decoder is used on an AWGN channel. The energy available per source
digit is Eb and the power spectral density of the noise is N0/2 . Give an upper bound
on the bit error probability Pb as a function of Eb/N0 .

Problem 8. (Convolutional Code.) The following equations define a convolutional code
for a data sequence di ∈ {−1, 1} :

x3n = d2n · d2n−1 · d2n−2 (6.10)

x3n+1 = d2n+1 · d2n−2 (6.11)

x3n+2 = d2n+1 · d2n · d2n−2 (6.12)
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(a) Draw an implementation of the encoder of this convolutional code, using only delay
elements D and multipliers. Hint: Split the data sequence d into two sequences, one
containing only the even-indexed samples, the other containing only the odd-indexed
samples.

(b) What is the rate of this convolutional code?

(c) Draw the state diagram for this convolutional encoder.

(d) Does the formula for the upper bound on Pb that was derived in class still hold? If
not, make the appropriate changes.

(e) (optional) Now suppose that the code is used on an AWGN channel. The energy
available per source digit is Eb and the power spectral density of the noise is N0/2 .
Give the detour flowgraph, and derive an upper bound on the bit error probability
Pb as a function of Eb/N0 .

Problem 9. (PSD of a Basic Encoder) Consider the transmitter shown in Figure 6.5,
when . . . D−i, Di, Di+1, . . . is a sequence of independent and uniformly distributed random
variables taking value in {±1} .

Dk

- Delay -���
- p(t) -

s(t)Dk−1 −
Xk

6

Figure 6.5: Encoder

The transmitted signal is

s(t) =
∞∑

i=−∞

Xip(t− iT −Θ),

where Θ is a random variable, uniformly distributed in [0, T ] .

Xi = Di −Di−1

p(t) = 1[−T2 ,
T
2 ](t).

(a) Determine RX [k] = E[Xi+kXi] .

(b) Determine Rp(τ) =
∫∞
−∞ p(t+ τ)p(t)dt .

(c) Determine the autocorrelation function Rs(τ) of the signal s(t) .
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(d) Determine the power spectral density Ss(f) .

Problem 10. (Convolutional Encoder, Decoder and Error Probability) Consider a chan-
nel, where a transmitter wants to send a sequence {Dj} taking values in {−1,+1} , for
j = 0, 1, 2, · · · , k − 1 . This sequence is encoded using a convolutional encoder. The
channel adds white Gaussian noise to the transmitted signal. If we let Xj denote the
transmitted value, then, the received value is: Yj = Xj +Zj , where {Zj} is a sequence of
i.i.d. zero-mean Gaussian random variables with variance N0

2
. The receiver has to decide

which sequence was transmitted using the optimal decoding rule.

(a) Convolutional Encoder Consider the convolutional encoder corresponding to the finite
state machine drawn below. The transitions are labeled by Dj|X2j, X2j+1 , and the
states by Dj−1, Dj−2 . We assume that the initial content of the memory is (1, 1) .

1 | 1, −1

1,−1
−1 | −1, −1

−1 | 1, 1

−1,1

1 | 1, 1

−1 | −1, 1

1,1

−1,−1
1 | −1, −1

1 | −1, 1
−1 | 1, −1

(i) What is the rate of this encoder?

(ii) Sketch the filter (composed of shift registers and multipliers) corresponding to
this finite state machine. How many shift registers do you need?

(iii) Draw a section of the trellis representing this encoder.

(b) Viterbi Decoder Let X i
j denote the output of the convolutional encoder at time j

when we transmit hypothesis i , i = 0, · · · ,m−1 , where m is the number of different
hypotheses.

Assume that the received vector is Ȳ = (Y1, Y2, Y3, Y4, Y5, Y6) = (−1,−3,−2, 0, 2, 3) .
It is the task of the receiver to decide which hypothesis i was chosen or, equivalently,
which vector X̄ i = (X i

1, X
i
2, X

i
3, X

i
4, X

i
5, X

i
6) was transmitted.



6.5. Problems 177

(i) Use the Viterbi algorithm to find the most probable transmitted vector X̄ i .

(c) Performance Analysis

(i) Suppose that this code is decoded using the Viterbi algorithm. Draw the detour
flow graph, and label the edges by the input weight using the symbol I , and
the output weight using the symbol D .

(ii) Considering the following generating function

T (I,D) =
ID4

1− 3ID
,

What is the value of ∑
i,d

ia(i, d)e
− d

2N0 ,

where a(i, d) is the number of detours with i bit errors and d channel errors?
First compute this expression, then give an interpretation in terms of probability
of error of this quantity.

Hints: Recall that the generating function is defined as T (I,D) =
∑

i,d a(i, d)DdI i .

You may also use the formula
∑∞

k=1 kq
k−1 = 1

(1−q)2 if |q| < 1 .

(Viterbi Decoding in Both Directions)

Consider the trellis diagram given in the top figure of Fig. 6.2 in the class notes. Assume
the received sequence at the output of the matched filter is

(y1, . . . , y14) = (−2,−1, 2, 0, 1,−1, 2,−3,−5,−5, 2,−1, 3, 2).

(a) Run the Viterbi algorithm from left to right. Show the decoded path on the trellis
diagram.

(b) If you run the Viterbi algorithm from right to left instead of left to right, do you
think you will get the same answer for the decoded sequence? Why?

(c) Now, run the Viterbi algorithm from left to right only for the observations (y1, . . . , y6) .
(Do not use the diagram in part-(a), draw a new one.) On the same diagram also
run the Viterbi algorithm from right to left for (y9, . . . , y14) . How can you combine
the two results to find the maximum likelihood path?
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Problem 11. (Trellis with Antipodal Signals) Assume that the sequence X1, X2, . . . is
sent over an additive white Gaussian noise channel, i.e.,

Yi = Xi + Zi,

where the Zi are i.i.d. zero-mean Gaussian random variables with variance σ2 . The
sequence Xi is the output of a convolutional encoder described by the following trellis.

+1
1, 1

1,
−1

−1
−1,−1
−1, 1

j − 1 j

1, 1

1,
−1

−1,−1
−1, 1

j + 1

As the figure shows, the trellis has two states labeled with +1 and −1 , respectively. The
probability assigned to each of the two branches leaving any given state is 1/2 . The trellis
is also labeled with the output produced when a branch is traversed and with the trellis
depths j − 1 , j , j + 1 .

(a) Consider the two paths in the following picture. Which of the two paths is more likely
if the corresponding channel output subsequence y2j−1, y2j, y2j+1, y2(j+1) is 3,−5, 7, 2?

1, 1

1,
−1

j − 1 j

1, 1

−1, 1

j + 1

y = 3,−5 7, 2

(b) Now, consider the following two paths with the same channel output as in the previous
question. Find again the most likely of the two paths.

1, 1

1,
−1

j − 1 j

1,
−1

−1,−1
j + 1

y = 3,−5 7, 2
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(c) If you have made no mistake in the previous two questions, the state at depth j of
the most likely paths is the same in both cases. This is no coincidence as we will now
prove.

The first step is to remark that the metric has to be as in the following picture for
some value of a , b , c , and d .

+1 −a

−b

−1
a

b

j − 1 j

−c

−d

c

d

j + 1

(a) Now let us denote by σk ∈ {±1} the state at depth k , k = 0, 1, · · · , of the maximum
likelihood path. Assume that a genie tells you that σj−1 = 1 and σj+1 = 1 . In terms
of a, b, c, d , write down a necessary condition for σj = 1 . (The condition is also
sufficient up to ties.)

(b) Now assume that σj−1 = 1 and σj+1 = −1 . What is the condition for choosing
σj = 1?

(c) Now assume that σj−1 = −1 and σj+1 = 1 . What is the condition for σj = 1?

(d) Now assume that σj−1 = −1 and σj+1 = −1 . What is the condition for σj = 1?

(e) Are the four conditions equivalent? Justify your answer.

(f) Comment on the advantage, if any, implied by your answer to part (v) of question
(c).

Problem 12. (Convolutional Code: Complete Analysis)

(a) Convolutional Encoder Consider the following convolutional encoder. The input se-
quence Dj takes values in {−1,+1} for j = 0, 1, 2, · · · , k− 1 . The output sequence,
call it Xj , j = 0, · · · , 2k − 1 , is the result of passing Dj through the filter shown
below, where we assume that the initial content of the memory is 1.
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Dj
-

×m -

6

X2j

X2j+1
Shift

register

(i) In the case k = 3 , how many different hypotheses can the transmitter send
using the input sequence (D0, D1, D2) , call this number m .

(ii) Draw the finite state machine corresponding to this encoder. Label the transi-
tions with the corresponding input and output bits. How many states does this
finite state machine have?

(iii) Draw a section of the trellis representing this encoder.

(iv) What is the rate of this encoder?
(number of information bits /number of transmitted bits).

(b) Viterbi Decoder Consider the channel defined by Yj = X i
j + Zj . Let X i

j denote
the ouput of the convolutional encoder at time j when we transmit hypothesis i ,
i = 0, · · · ,m− 1 . Further, assume that Zj is a zero-mean Gaussian random variable
with variance σ2 = 4 and let Yj be the output of the channel.

Assume that the received vector is Ȳ = (Y1, Y2, Y3, Y4, Y5, Y6) = (1, 2,−2,−1, 0, 3) .
It is the task of the receiver to decide which hypothesis i was chosen or, equivalently,
which vector X̄ i = (X i

1, X
i
2, X

i
3, X

i
4, X

i
5, X

i
6) was transmitted.

(i) Without using the Viterbi algorithm, write formally (in terms of Ȳ and X̄ i )
the optimal decision rule. Can you simplify this rule to express it as a function
of inner products of vectors? In that case, how many inner products do you
have to compute to find the optimal decision?

(ii) Use the Viterbi algorithm to find the most probable transmitted vector X̄ i .

(c) Performance Analysis.

(i) Draw the detour flow graph corresponding to this decoder and label the edges
by the input weight using the symbol I , the output weight (of both branches)
using the symbol D .
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Problem 13. (Viterbi for the Binary Erasure Channel) Consider the following convolu-
tional encoder. The input sequence belongs to the binary alphabet {0, 1} . (This means
we are using XOR over {0, 1} instead of multiplication over {±1} .)

dn dn−1 dn−2

x2n

x2n+1

(a) What is the rate of the encoder?

(b) Draw one trellis section for the above encoder.

(c) Consider communication of this sequence through the channel known as Binary Era-
sure Channel (BEC). The input of the channel belongs to {0, 1} and the output
belongs to {0, 1, ?} . The “?” denotes an erasure which means that the output is
equally likely to be either 0 or 1 . The transition probabilities of the channel are
given by

PY |X(0|0) = PY |X(1|1) = 1− ε,
PY |X(?|0) = PY |X(?|1) = ε.

Starting from first principles derive the branch metric of the optimal (MAP) decoder.
(Hint: Start with p(x|y) . Hopefully you are not scared of ∞?)

(d) Assuming that the initial state is (0, 0) , what is the most likely input corresponding
to {0, ?, ?, 1, 0, 1}?

(e) What is the maximum number of erasures the code can correct? (Hint: What is
the minimum distance of the code? Just guess from the trellis, don’t use the detour
graph. :-) )

Problem 14. (Power Spectrum: Manchester Pulse) In this problem you will derive the
power spectrum of a signal

X(t) =
∞∑

i=−∞

Xiφ(t− iTs −Θ)
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where {Xi}∞i=−∞ is an iid sequence of uniformly distributed random variables taking
values in {±

√
Es} , Θ is uniformly distributed in the interval [0, Ts] , and φ(t) is the

so-called Manchester pulse shown in the following figure

t

φ(t)

0 TS

1√
TS

- 1√
TS

(a) Let r(t) =
√

1
Ts

1[−Ts
4
,Ts

4
](t) be a rectangular pulse. Plot r(t) and rF(f) , both ap-

propriately labeled, and write down a mathematical expression for rF(f) .

(b) Derive an expression for |φF(f)|2 . Your expression should be of the form A sinm()
()n

for

some A , m , and n . Hint: Write φ(t) in terms of r(t) and recall that sinx = ejx−e−jx
2j

where j =
√
−1 .

(c) Determine RX [k]
4
= E[Xi+kXi] and the power spectrum

SX(f) =
|φF(f)|2

TS

∞∑
k=−∞

RX [k]e−j2πkfTs .
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Complex-Valued Random Variables and
Processes

7.1 Introduction

In this chapter we define and study complex-valued random variables and complex-valued
stochastic processes. We need them to model the noise of the baseband-equivalent channel.
Besides being practical in many situations, working with complex-valued random variables
and processes turns out to be more elegant than working with the real-valued counterparts.

We will focus on the subclass of complex-valued random variables and processes called
proper (to be defined). We do so since the class is big enough to contain what we need ad
at the same time it is simpler to work with than with the general class of complex-valued
random variables and processes.

7.2 Complex-Valued Random Variables

A complex-valued random variable U (hereafter simply called complex random variable)
is defined as a random variable of the form

U = UR + jUI , j =
√
−1,

where UR and UI are real-valued random variables.

The statistical properties of U = UR + jUI are determined by the joint distribution
PURUI (uR, uI) of UR and UI .

A real random variable X is specified by its cumulative distribution function FX(x) =
Pr(X ≤ x) . For a complex random variable Z , since there is no natural ordering in
the complex plane, the event Z ≤ z does not make sense. Instead, we specify a com-
plex random variable by giving the joint distribution of its real and imaginary parts

183
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F<{Z},={Z}(x, y) = Pr(<{Z} ≤ x, ={Z} ≤ y) . Since the pair of real numbers (x, y) can
be identified with a complex number z = x + iy , we will write the joint distribution
F<{Z},={Z}(x, y) as FZ(z) . Just as we do for real valued random variables, if the function
F<{Z},={Z}(x, y) is differentiable in x and y , we will call the function

p<{Z},={Z}(x, y) =
∂2

∂x∂y
F<{Z},={Z}(x, y)

the joint density of (<{Z},={Z}) , and again associating with (x, y) the complex number
z = x+ iy , we will call the function

pZ(z) = p<{Z},={Z}(<{z},={z})

the density of the random variable Z .

A complex random vector Z = (Z1, . . . , Zn) is specified by the joint distribution of
(<{Z1}, . . . ,<{Zn},={Z1}, . . . ,={Zn}) , and we define the distribution of Z as

FZ(z) = Pr(<{Z1} ≤ <{z1}, . . . ,<{Zn} ≤ <{zn},={Z1} ≤ ={z1}, . . . ,={Zn} ≤ ={zn}),

and if this function is differentiable in <{z1}, . . . ,<{zn},={z1}, . . . ,={zn} , then we define
the density of Z as

pZ(x1 + iy1, . . . , xn + iyn) =
∂2n

∂x1 · · · ∂xn∂y1 · · · ∂yn
FZ(x1 + iy1, . . . , xn + iyn).

The expectation of a real random vector X is naturally generalized to the complex case

E[U ] = E[UR] + jE[U I ].

Recall that the covariance matrix of two real-valued random vectors X and Y is defined
as

KXY = cov[X,Y ]
4
= E[(X − E[X])(Y − E[Y ])T ]. (7.1)

To specify the “covariance” of the two complex random vectors U = UR + jU I and
V = V R + jV I the four covariance matrices

KURV R
= cov[UR,V R]

KUIV R
= cov[U I ,V R]

KURV I
= cov[UR,V I ]

KUIV I
= cov[U I ,V I ]

(7.2)

are needed. These four real-valued matrices are equivalent to the following two complex-
valued matrices, each of which is a natural generalization of (7.1)

KUV
4
= E[(U − E[U ])(V − E[V ])†]

JUV
4
= E[(U − E[U ])(V − E[V ])T ]

(7.3)

The reader is encouraged to verify that the following (straightforward) relationships hold:

KUV = KURV R
+KUIV I

+ j(KUIV R
−KURV I

)

JUV = KURV R
−KUIV I

+ j(KUIV R
+KURV I

).
(7.4)
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This system may be solved for KURV R
, KUIV I

, KUIV R
, and KURV I

to obtain

KURV R
= 1

2
<{KUV + JUV }

KUIV I
= 1

2
<{KUV − JUV }

KUIV R
= 1

2
={KUV + JUV }

KURV I
= 1

2
={−KUV + JUV }

(7.5)

proving that indeed the four real-valued covariance matrices in (7.2) are in one-to-one
relationship with the two complex-valued covariance matrices in (7.3).

In the literature KUV is widely used and it is called covariance matrix (of the complex
random vectors U and V ). Hereafter JUV will be called the pseudo-covariance matrix
(of U and V ). For notational convenience we will write KU instead of KUU and JU
instead of JUU .

Definition 65. U and V are said to be uncorrelated if all four covariances in (7.2)
vanish.

From (7.3), we now obtain the following.

Lemma 66. The complex random vectors U and V are uncorrelated iff KUV = JUV =
0 .

Proof. The “if” part follows from (7.5) and the “only if” part from (7.4).

7.3 Complex-Valued Random Processes

We focus on discrete-time random processes since corresponding results for continuous-
time random processes follow in a straightforward fashion.

A discrete-time complex random process is defined as a random process of the form

U [n] = UR[n] + jUI [n]

where UR[n] and UI [n] are a pair of real discrete-time random processes.

Definition 67. A complex random process is wide-sense stationary (w.s.s.) if its real and
imaginary parts are jointly w.s.s., i.e., if the real and the imaginary parts are individually
w.s.s. and the cross-correlation depends on the time difference.

Definition 68. We define

rU [m,n]
4
= E [U [n+m]U∗[n]]

sU [m,n]
4
= E [U [n+m]U [n]]

as the autocorrelation and pseudo-autocorrelation functions of U [n] .
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Lemma 69. A complex random process U [n] is w.s.s. if and only if E[U [n]] , rU [m,n] ,
and sU [m,n] are independent of n .

Proof. The proof is left as an exercise.

7.4 Proper Complex Random Variables

Proper random variables are of interest to us since they arise in practical applications and
since they are mathematically easier to deal with than their non-proper counterparts.1

Definition 70. A complex random vector U is called proper if its pseudo-covariance
JU vanishes. The complex random vectors U 1 and U 2 are called jointly proper if the

composite random vector
[
U1
U2

]
is proper.

Lemma 71. Two jointly proper, complex random vectors U and V are uncorrelated, if
and only if their covariance matrix KUV vanishes.

Proof. The proof easily follows from the definition of joint properness and Lemma 66.

Note that any subvector of a proper random vector is also proper. By this we mean that
if
[
U1
U2

]
is proper, then U1 and U2 are proper. However, two individual proper random

vectors are not necessarily jointly proper.

Using the fact that (by definition) KURUI = KT
UIUR

, the pseudo-covariance matrix JU
may be written as

JU = (KUR −KUI ) + j(KUIUR +KT
UIUR

).

Thus:

Lemma 72. A complex random vector U is proper iff

KUR = KUI and KUIUR = −KT
UIUR

,

i.e. JU vanishes, iff UR and U I have identical auto-covariance matrices and their cross-
covariance matrix is skew-symmetric.2

Notice that the skew-symmetry of KUIUR implies that KUIUR has a zero main diagonal,
which means that the real and imaginary part of each component Uk of U are uncorre-
lated. The vanishing of JU does not, however, imply that the real part of Uk and the
imaginary part of Ul are uncorrelated for k 6= l .

1Proper Gaussian random vectors also maximize entropy among all random vectors of a given covari-
ance matrix. Among the many nice properties of Gaussian random vectors, this is arguably the most
important one in information theory.

2A matrix A is skew-symmetric if AT = −A .
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Notice that a real random vector is a proper complex random vector, if and only if it is
constant (with probability 1), since KUI = 0 and Lemma 72 imply KUR = 0.

Example 73. One way to satisfy the first condition of Lemma 72 is to let UR and U I

be identically distributed random vectors. This will guarantee KUR = KUI . If UR and
U I are also independent then KUIUR = 0 and the second condition of lemma 72 is also
satisfied. Hence a vector U = UR + jU I is proper if UR and U I are independent and
identically distributed. 2

Example 74. Let us construct a vector V which is proper in spite of the fact that its real
and imaginary parts are not independent. Let U = X + jY with X and Y independent
and identically distributed and let

V = (U, aU)T

for some complex-valued number a = aR + jaI . Clearly V R = (X, aRX − aIY )T and
V I = (Y, aRY + aIX)T are identically distributed. Hence KV R

= KV I
. If we let σ2 be

the variance of X and Y we obtain

KV IV R
=

(
0 aIσ

2

−aIσ2 (aRaI − aRaI)σ2

)
=

(
0 aIσ

2

−aIσ2 0

)
Hence V is proper in spite of the fact that its real and imaginary parts are correlated.
2

The above example was a special case of the following general result.

Lemma 75 (Closure Under Affine Transformations). Let U be a proper n -di-
mensional random vector, i.e., JU = 0 . Then any vector obtained from U by an affine
transformation, i.e. any vector V of the form V = AU + b , where A ∈ Cm×n and
b ∈ Cm are constant, is also proper.

Proof. From
E[V ] = AE[U ] + b

it follows
V − E[V ] = A(U − E[U ])

Hence we have

JV = E[(V − E[V ])(V − E[V ])T ]

= E{A(U − E[U ])(U − E[U ])TAT}
= AJUA

T = 0

Corollary 76. Let U and V be as in the previous Lemma. Then U and V are
jointly proper.
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Proof. The vector having U and V as subvectors is obtained by the affine transformation[
U
V

]
=

[
In
A

]
U +

[
0
b

]
.

The claim now follows from Lemma 75.

Lemma 77. Let U and V be two independent complex random vectors and let U be
proper. Then the linear combination W = a1U + a2V , a1, a2 ∈ C, a2 6= 0 , is proper iff
V is also proper.

Proof. The independence of U and V and the properness of U imply

JW = a2
1JU + a2

2JV = a2
2JV .

Thus JW vanishes iff JV vanishes.

7.5 Relationship Between Real and Complex-Valued Op-
erations

Consider now an arbitrary vector u ∈ Cn (not necessarily a random vector), let A ∈
Cm×n , and suppose that we would like to implement the operation that maps u to
v = Au . Suppose also that we implement this operation on a DSP which is programmed
at a level at which we can’t rely on routines that handle complex-valued operations. A
natural question is: how do we implement v = Au using real-valued operations? More
generally, what is the relationship between complex-valued variables and operations with
respect to their real-valued counterparts? We need this knowledge in the next section to
derive the probability density function of proper Gaussian random vectors.

A natural approach is to define the operation that maps a general complex vector u into
a real vector û according to

û =

[
uR
uI

]
4
=

[
<[u]
=[u]

]
(7.6)

and hope for the existence of a real-valued matrix Â such that

v̂ = Âû.

From v̂ we can then immediately obtain v . Fortunately such a matrix exists and it is
straightforward to verify that

Â =

[
AR −AI
AI AR

]
4
=

[
<[A] −=[A]
=[A] <[A]

]
. (7.7)

A set of operations on complex-valued vectors and matrices and the corresponding real-
valued operations are described in the following Lemma.
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Lemma 78. The following properties hold:

ÂB = ÂB̂ (7.8a)

Â+B = Â+ B̂ (7.8b)

Â† = Â† (7.8c)

Â−1 = Â−1 (7.8d)

det(Â) = | det(A)|2 = det(AA†) (7.8e)

û+ v = û+ v̂ (7.8f)

Âu = Âû (7.8g)

<(u†v) = û†v̂ (7.8h)

Proof. The properties (7.8a), (7.8b) and (7.8c) are immediate. For instance, property
(7.8a) is verified as follows:

ÂB =

[
(AB)R −(AB)I
(AB)I (AB)R

]
=

[
ARBR − AIBI −ARBI − AIBR

ARBI + AIBR ARBR − AIBI

]
=

[
AR −AI
AI AR

] [
BR −BI

BI BR

]
= ÂB̂

Property (7.8d) follows from (7.8a) and the fact that În = I2n . To prove (7.8e) we
use the fact that the determinant of a product is the product of the determinant and
the determinant of a block triangular matrix is the product of the determinants of the
diagonal blocks. Hence:

det(Â) = det

([
I jI
0 I

]
Â

[
I −jI
0 I

])
= det

([
A 0
=(A) A∗

])
= det(A) det(A)∗.

Properties (7.8f), (7.8g) and (7.8h) are immediate.

Corollary 79. If U ∈ Cn×n is unitary then Û ∈ R2n×2n is orthonormal.

Proof. U †U = In ⇐⇒ (Û)†Û = În = I2n .

Corollary 80. If Q ∈ Cn×n is non-negative definite, then so is Q̂ ∈ R2n×2n . Moreover,
u†Qu = û†Q̂û .



190 Chapter 7.

Proof. Assume that Q is non-negative definite. Then u†Qu is a non-negative real-valued
number for all u ∈ Cn . Hence,

u†Qu = <{u†(Qu)} = û†(̂Qu)

= û†Q̂û

where in the last two equalities we used (7.8h) and (7.8g), respectively.

Exercise 81. Verify that a random vector U is proper iff 2KÛ = K̂U .

7.6 Complex-Valued Gaussian Random Variables

A complex-valued Gaussian random vector U is defined as a vector with jointly Gaussian
real and imaginary parts. Following Feller [2, p. 86], we consider Gaussian distributions
to include degenerate distributions concentrated on a lower-dimensional manifold, i.e.,
when the 2n× 2n -covariance matrix

cov

([
UR

U I

]
,

[
UR

U I

])
=

[
KUR KUIUR
KUIUR KUI

]
is singular and the pdf does not exist unless one admits generalized functions.

Hence, by definition, a complex-valued random vector U ∈ Cn with nonsingular covari-
ance matrix KÛ is Gaussian iff

fU (u) = fÛ (û) =
1

[det(2πKÛ )]
1
2

e−
1
2

(û− m̂ )TK−1

Û
(û− m̂ ). (7.9)

Theorem 82. Let U ∈ Cn be a proper Gaussian random vector with mean m and
nonsingular covariance matrix KU . Then the pdf of U is given by

fU (u) = fÛ (û) =
1

det(πKU )
e−(u−m )†K−1

U (u−m ). (7.10)

Conversely, let the pdf of a random U be given by (7.10) where KU is some Hermitian
and positive definite matrix. Then U is proper and Gaussian with covariance matrix KU
and mean m .

Proof. If U is proper then by Exercise 81√
det 2πKÛ =

√
detπK̂U = | detπKU | = detπKU ,

where the last equality holds since the determinant of an Hermitian matrix is always real.
Moreover, letting v̂ = û− m̂ , again by Exercise 81

v̂†(2KÛ )−1v̂ = v̂†(K̂U )−1v̂ = v†(KU )−1v

where for last equality we used Corollary 80 and the fact that if a matrix is positive
definite, so is its inverse. Using the last two relationships in (7.9) yields the direct part
of the theorem. The converse follows similarly.
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Notice that two jointly proper Gaussian random vectors U and V are independent,
iff KUV = 0, which follows from Lemma 71 and the fact that uncorrelatedness and
independence are equivalent for Gaussian random variables.
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Appendix 7.A Densities after Linear transformations of com-
plex random variables

We know that X is a real random vector with density pX , and if A is a non-singular
matrix, then the density of Y = AX is given by

pY (y) = | det(A)|−1pX(A−1y).

If Z is a complex random vector with density pZ and if A is a complex non-singular
matrix, then W = AZ is again a complex random vector with[

<{W}
={W}

]
=

[
<{A} −={A}
={A} <{A}

] [
<{Z}
={Z}

]
and thus the density of W will be given by

pW (w) =

∣∣∣∣det

([
<{A} −={A}
={A} <{A}

])∣∣∣∣−1

pZ(A−1w).

From (7.8e) we know that

det

([
<{A} −={A}
={A} <{A}

])
= | det(A)|2,

and thus the transformation formula becomes

pW (w) = | det(A)|−2pZ(A−1w). (7.11)

Appendix 7.B Circular Symmetry

We say that a complex valued random variable Z is circularly symmetric if for any
θ ∈ [0, 2π) , the distribution of Zejθ is the same as the distribution of Z .

Using the linear transformation formula (7.11), we see that the density of Z must satisfy

pZ(z) = pZ(z exp(jθ))

for all θ , and thus, pZ must not depend on the phase of its argument, i.e.,

pZ(z) = pZ(|z|).

We can also conclude that, if Z is circularly symmetric,

E[Z] = E[ejθZ] = ejθE[Z],
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and taking θ = π , we conclude that E[Z] = 0 . Similarly, E[Z2] = 0 .

For (complex) random vectors, the definition of circular symmetry is that the distribution
of Z should be the same as the distribution of ejθZ . In particular, by taking θ = π , we
see that

E[Z] = 0,

and by taking θ = π/2 , we see that the pseudo covariance

JZ = E[ZZT ] = 0.

We have shown that if Z is circularly symmetric, then it is also zero mean and proper.

If Z is a zero-mean Gaussian random vector, then the converse is also true, i.e., properness
implies circular symmetry. To see this let Z be zero-mean proper and Gaussian. Then
e−jθZ is also zero-mean and Gaussian. Hence Z and e−jθZ have the same density iff
they have the same covariance and pseudo-covariance matrices. The pseudo-covariance
matrices vanish in both cases (Z is proper and e−jθZ is also proper since it is the linear
transformation of a proper random vector). Using the definition, one immediately sees
that Z and e−jθZ have the same covariance matrix. Hence they have the same density.

Appendix 7.C On Linear Transformations and Eigenvectors

The material developed in this appendix is not relevant for the subject covered in this
textbook. The reason for including it is that it is both instructive and important for
topics related to the subject in this class.

The Fourier transform is a useful tool in dealing with linear time-invariant (LTI) systems.
This is so since the input/output relationship if a LTI system is easily described in the
Fourier domain. In this section we learn that this is just a special case of a more general
principle that applies to linear transformations (not necessarily time-invariant). Key
ingredients are the eigenvectors.

7.C.1 Linear Transformations, Toepliz, and Circulant Matrices

A linear transformation from Cn to Cn can be described by an n× n matrix H . If the
matrix is Toepliz, meaning that Hij = hi−j , then the transformation which sends u ∈ Cn

to v = Hu can be described by the convolution sum

vi =
∑
k

hi−kuk.

A Toepliz matrix is a matrix which is constant along its diagonals.



194 Chapter 7.

In this section we focus attention on Toepliz matrices of a special kind called circulant.
A matrix H is circulant if Hij = h[i−j] where here and hereafter the operator [.] applied
to an index denotes the index taken modulo n . When H is circulant, the operation that
maps u to v = Hu may be described by the circulant convolution

vi =
∑
k

h[i−k]uk.

Example 83.

H =

3 1 5
5 3 1
1 5 3

 is a circulant matrix.

A circulant matrix H is completely described by its first column h (or any column or
row for that matter). 2

7.C.2 The DFT

The discrete Fourier transform of a vector u ∈ Cn is the vector U ∈ Cn defined by

U = F †u

F = (f 1,f 2, . . . ,fn)

f i =
1√
n


βi0

βi1

...
βi(n−1)

 i = 1, 2, . . . , n,

(7.12)

where β = ej
2π
n is the primitive n -th root of unity in C . Notice that f 1,f 2, . . . ,fn is

an orthonormal basis for Cn .

Usually, the DFT is defined without the
√
n in (7.12) and with a factor 1

n
(instead of

1/
√
n) in the inverse transform. The resulting transformation is not orthonormal, and a

factor n must be inserted in Parseval’s identity when it is applied to the DFT. In this
class we call F †u the DFT of u .

7.C.3 Eigenvectors of Circulant Matrices

Lemma 84. Any circulant matrix H ∈ Cn×n has exactly n (normalized) eigenvectors
which may be taken as f 1, . . . ,fn . Moreover, the vector of eigenvalues (λ1, . . . , λn)T

equals
√
n times the DFT of the first column of H , namely

√
nF †h .

Example 85. Consider the matrix

H =

[
h0 h1

h1 h0

]
∈ C2×2.
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This is a circulant matrix. Hence

f1 =
1√
2

[
1
−1

]
and f2 =

1√
2

[
1
1

]
are eigenvectors and the eigenvalues are[

λ1

λ2

]
=
√

2F †h =

[
1 −1
1 1

] [
h0

h1

]
=

[
h0 − h1

h0 + h1

]
indeed

Hf 1 =
1√
2

[
h0 − h1

h1 − h0

]
=
h0 − h1√

2

[
1
−1

]
= λ1f 1

and

Hf 2 =
1√
2

[
h0 + h1

h1 + h0

]
=
h0 + h1√

2

[
1
1

]
= λ2f 2

Proof.

(Hf i)k =
1√
n

n−1∑
e=0

hk−eβ
ie

=

(n−1∑
m=0

hmβ
−im
)

1√
n
βik

=
√
nf †ih

1√
n
βik = λi

1√
n
βik,

where λi =
√
nf †ih . Going to vector notation we obtain Hf i = λif i .

7.C.4 Eigenvectors to Describe Linear Transformations

When the eigenvectors of a transformation H ∈ Cn×n (not necessarily Toepliz) span Cn ,
both the vectors and the transformation can be represented with respect to a basis of
eigenvectors. In that new basis the transformation takes the form H ′ = diag(λ1, . . . , λn) ,
where diag( ) denotes a matrix with the arguments on the main diagonal and 0s elsewhere,
and λi is the eigenvalue of the i -th eigenvector. In the new basis the input/output
relationship is

v′ = H ′u′

or equivalently, v′i = λiu
′
i , i = 1, 2, . . . , n . To see this, let ϕi, i = 1 . . . n , be n eigenvec-

tors of H spanning Cn . Letting u =
∑

iϕiu
′
i and v =

∑
iϕiv

′
i and plugging into Hu

we obtain

Hu = H
(∑

i

ϕiu
′
i

)
=
∑
i

Hϕiu
′
i =

∑
ϕiλiu

′
i
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u
′
1ϕ1 + . . .+ u

′
nϕn

- H - u
′
1λ1ϕ1 + . . .+ u

′
nλnϕn

Figure 7.1: Input/output representation via eigenvectors.

showing that v′i = λiu
′
i .

Notice that the key aspects in the proof are the linearity of the transformation and the
fact that ϕiu

′
i is sent to ϕiλiu

′
i , as shown in Figure 7.1.

It is often convenient to use matrix notation. To see how the proof goes with matrix
notation we define Φ = (ϕ1, . . . ,ϕn) as the matrix whose columns span Cn . Then
u = Φu′ and the above proof in matrix notation is

v = Hu = HΦu′ = ΦH ′u′,

showing that v′ = H ′u′ .

For the case where H is circulant, u = Fu′ and v = Fv′ . Hence u′ = F †u and
v′ = F †v are the DFT of u and v , respectively. Similarly, the diagonal elements of
H ′ are

√
n times the DFT of the first column of H . Hence the above representation

via the new basis says (the well-know result) that a circular convolution corresponds to a
multiplication in the DFT domain.

7.C.5 Karhunen-Loève Expansion

In Appendix 7.C, we have seen that the eigenvectors of a linear transformation H can
be used as a basis and in the new basis the linear transformation of interest becomes a
componentwise multiplication.

A similar idea can be used to describe a random vector u as a linear combination of
deterministic vectors with orthogonal random coefficient. Now the eigenvectors are those
of the correlation matrix ru . The procedure, that we now describe, is the Karhunen-Loève
expansion.

Let ϕ1, . . . ,ϕn be a set of eigenvectors of ru that form an orthonormal basis of Cn . Such
a set exists since ru is Hermitian. Hence

λiϕi = ruϕi, i = 1, 2, . . . , n

or, in matrix notation,
ΦΛ = ruΦ

where Λ = diag(λ1, . . . , λn) and Φ = [ϕ1, . . . ,ϕn] is the matrix whose columns are
the eigenvectors. Since the eigenvectors are orthonormal, Φ is unitary (i.e. Φ†Φ = I) .
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Solving for Λ we obtain
Λ = Φ†ruΦ.

Notice that if we solve for ru we obtain ru = ΦΛΦ† which is the well known result that
an Hermitian matrix can be diagonalized.

Since Φ forms a basis of Cn we can write

u = Φu′ (7.13)

for some vector of coefficient u′ with correlation matrix

ru′ = E[u′(u′)†] = Φ†E[uu†]Φ = Φ†ruΦ

= Λ

Hence (7.13) expresses u as a linear combination of deterministic vectors ϕ1, . . . ,ϕn with
orthogonal random coefficients u′1, . . . , u

′
n . This is the Karhunen-Loève expansion of u .

If ru is circulant, then Φ = F and u′ = Φ†u is the DFT of u .

Remark 86. ‖u‖2 = ‖u′‖2 =
∑
|u′i|2 . Also E‖u‖2 =

∑
λi.

7.C.6 Circularly Wide-Sense Stationary Random Vectors

We consider random vectors in Cn . We will continue using the notation that u and U
denotes DFT pairs. Observe that if U is random then u is also random. This forces us
to abandon the convention that we use capital letters for random variables.

The following definitions are natural.

Definition 87. A random vector u ∈ Cn is circularly wide sense stationary (c.w.s.s.) if

mu
4
= E[u] is a constant vector

ru
4
= E[uu†] is a circulant matrix

su
4
= E[uuT ] is a circulant matrix

Definition 88. A random vector u is uncorrelated if Ku and Ju are diagonal.

We will call ru and su the circular correlation matrix and circular pseudo-correlation
matrix, respectively.

Theorem 89. Let u ∈ Cn be a zero-mean proper random vector and U = F †u be its
DFT. Then u is c.w.s.s. iff U is uncorrelated. Moreover,

ru = circ(a) (7.14)

if and only if

rU =
√
n diag(A) (7.15)

for some a and its DFT A .
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Proof. Let u be a zero-mean proper random vector. If u is c.w.s.s. then we can write
ru = circ(a) for some vector a . Then, using Lemma 84,

rU
4
= E[F †uu†F ] = F †ruF

= F †
√
nFdiag(F †a)

=
√
n diag(A),

proving (7.15). Moreover, mU = 0 since mu = 0 and therefore sU = JU . But JU = 0
since the properness of u and Lemma 75 imply the properness of U . Conversely, let
rU = diag(A) . Then

ru = E[uu†] = FrUF
†.

Due to the diagonality of rU , the element (k, l) of ru is

√
n
∑
m

Fk,mAm(F †)m,l =
∑
m

Fk,mF
∗
l,mAm

√
n

=
1√
n

∑
m

Ame
j 2π
n
m(k−l)

= ak−l

Appendix 7.D Problems

To be filled in



Chapter 8

Passband Communication via Up/Down
Conversion

In Chapter 5 we have learned how a wide-sense-stationary symbol sequence {Xj : j ∈ N}
and a finite-energy pulse ψ(t) determine the power spectral density of the random process

X(t) =
∞∑

i=−∞

Xiψ(t− iT −Θ), (8.1)

where T is an arbitrary positive number and Θ is uniformly distributed in an arbitrary in-
terval of length T . An important special case is when the wide-sense-stationary sequence
{Xj : j ∈ N} is also uncorrelated. Then, up to a scaling factor, the power spectral density
of X(t) is ‖ψF(f)‖2 . This is a particularly convenient case since Nyquist criterion to
check whether or not ψ(t) is orthogonal to its shifts by multiples of T also depends solely
on ‖ψF(f)‖2 .

From a practical point of view the above is saying that we should choose ψ(t) by starting
from ‖ψF(f)‖2 . For a baseband pulse which is sufficiently narrow in the frequency do-
main, meaning that that the width of the support set does not exceed 2/T , the condition
for ‖ψF(f)‖2 to fulfill Nyquist criterion is particularly straightforward (see item (a) of
the discussion following Theorem 62). Of course we are particularly interested in band-
pass communication. In this chapter we learn how to transform a real or complex-valued
baseband process that has power spectral density S(f) into a real-valued passband pro-
cess that has power spectral density [S(f − f0) + S(−f + f0)]/2 for an arbitrary1 center
frequency f0 . The transformation and its inverse are handled by the top layer of Figure
2.1. As a “sanity check” notice that [S(f − f0) + S(−f + f0)]/2 is an even function of
f , which must be the case or else it can’t be the power spectral density of a real-valued
process.

1The expression [S(f − f0) + S(−f + f0)]/2 is the correct power spectral density provided that the
center frequency f0 is sufficiently large, i.e., provided that the support of S(f−f0) and that of S(f−f0)
do not overlap. In all typical scenarios this is the case.

199
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The up/down-conversion technique discussed in this chapter is an elegant way to sepa-
rate the choice of the center frequency from anything else. Being able to do so is quite
convenient since in a typical wireless communication scenario the sender and the receiver
need to have the agility to vary the center frequency f0 so as to minimize the interference
with other signals. The up/down-conversion technique has also other desired properties
including the fact that it fits well with the modular approach that we have pursued so
far (see once again Figure 2.1) and has implementation advantages to be discussed later.
In this chapter we also develop the equivalent channel model seen from the up-converter
input to the down-converter output. Having such a model makes it possible to design the
core of the sender and that of the receiver pretending that the channel is baseband.

8.1 Baseband-Equivalent of a Passband Signal

In this section we learn how to go back and forth between a passband signal x(t) and
its baseband-equivalent xE(t) , passing through the analytic-equivalent x̂(t) . These are
precisely what we will need in the next section to describe up/down conversion.

We start by recalling a few basic facts from Fourier analysis. If x(t) is a real-valued signal,
then its Fourier transform xF(f) satisfies the symmetry property

xF(f) = x∗F(−f)

where x∗F denotes the complex conjugate of xF . If x(t) is a purely imaginary signal,
then its Fourier transform satisfies the anti-symmetry property

xF(f) = −x∗F(−f)

The symmetry and the anti-symmetry properties can easily be verified from the definition
of the Fourier transform using the fact that the complex conjugate operator commutes
with the integral, i.e., [

∫
x(t)dt]∗ =

∫
[x(t)]∗dt .

The symmetry property implies that the Fourier transform xF(f) of a real-valued signal
x(t) has redundant information: if we know xF(f) for f ≥ 0 then we can infer xF(f)
for f ≤ 0 . This implies that the set of real-valued signals in L2 is in one-to-one cor-
respondence with the set of complex-valued signals in L2 that have vanishing negative
frequencies. The correspondence map associates a real-valued signal x(t) to the signal
obtained by setting to zero the negative frequency components of x(t) . The latter, scaled
appropriately so as to have the same L2 norm as x(t) , will be referred to as the analytic
equivalent of x(t) and will be denoted by x̂(t) .

To remove the negative frequencies of x(t) we use the filter of impulse response h>(t)
that has Fourier transform

h>,F(f) =


1 for f > 0
1/2 for f = 0
0 for f < 0.

(8.2)
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Hence an arbitrary real-valued signal x(t) and its analytic-equivalent may be described
in the Fourier domain by

x̂F(f) =
√

2xF(f)h>,F(f)

where the factor
√

2 ensures that the original and the analytic-equivalent have the same
norm. (The part removed by filtering contains half of the signal’s energy.)

How to go back from x̂(t) to x(t) may seem less obvious at first but it turns out to be
even simpler. We claim that

x(t) =
√

2<{x̂(t)} . (8.3)

One way to see this is to use the relationship

h>,F(f) =
1

2
+

1

2
sign(f)

to obtain

x̂F(f) =
√

2xF(f)h>,F(f)

=
√

2xF(f)[
1

2
+

1

2
sign(f)]

=
xF(f)√

2
+
xF(f)√

2
sign(f).

The first term of last line satisfies the symmetry property (by assumption) and therefore
the second term satisfies the anti-symmetry property. Hence, taking the inverse Fourier
transform, x̂(t) equals x(t)√

2
plus an imaginary term, implying (8.3). Another way to prove

the same is to write √
2<{x̂(t)} =

1√
2

(x̂(t) + x̂∗(t))

and take the Fourier transform on the right side. The result is

xF(f)h>,F(f) + x∗F(−f)h∗>,F(−f).

For positive frequencies the first term equals xF(f) and the second term vanishes. Hence√
2<{x̂(t)} and x(t) agree for positive frequencies. Since they are real-valued they must

agree everywhere.

To go from x̂(t) to the baseband-quivalent xE(t) we use the frequency shift property of
the Fourier transform that we rewrite for reference:

x(t) exp{j2πf0t} ←→ xF(f − f0).

The baseband-equivalent of x(t) is the signal

xE(t) = x̂(t) exp{−j2πf0t}

and its Fourier transform is
xE,F(f) = x̂F(f + f0).
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The transformation from |xF(f)| to |xE,F(f)| is depicted in the following frequency-
domain representation (factor

√
2 omitted).

f

f
0

f
0

0

Going the other way is straightforward:

x(t) =
√

2<
{
xE(t) exp{j2πf0t}

}
.

In this subsection the signal x(t) was real-valued but otherwise arbitrary.

When x(t) is the transmitted signal s(t) , the concepts developed in this section lead to the
relationship between s(t) and its baseband-equivalent sE(t) . In many implementations
the sender first forms sE(t) and then it converts it to s(t) via a stage that we refer to as
the up-converter. The block diagram of Figure 1.2 reflects this approach. At the receiver
the down-converter implements the reverse processing. Doing so is advantageous since the
up/down-converters are hen the only transmitter/receiver stages that explicitly depend
on the carrier frequency. As we will discuss, there are other implementation advantages
to this approach. Up/down-conversion is discussed in the next section.

When the generic signal x(t) is the channel impulse response h(t) then, up to a scaling
factor introduced for a valid reason, hE(t) becomes the baseband-equivalent impulse re-
sponse. This idea, developed in the section following next, is useful to relate the baseband-
equivalent received signal to the baseband-equivalent transmitted signal via a baseband-
equivalnt channel model. The baseband-equivalent channel model is an abstraction that
allows us to hide the passband issues in the channel model.

8.2 Up/Down Conversion

In this section we describe the top layer of Figure 1.2. To generate a passband signal, the
transmitter first generates a complex-valued baseband signal sE(t) . The signal is then
converted to the signal s(t) that has the desired center frequency f0 . This is done by
means of the operation

s(t) =
√

2<
{
sE(t) exp{j2πf0t}

}
.



8.3. Baseband-Equivalent Channel Model 203

With the frequency domain in mind, the process is called up-convertion. We see that the
signal sE(t) is the baseband-equivalent of the transmitted signal s(t) .

The up-converter block diagram is depicted in the top part of Figure 8.1. The rest of the
figure shows the channel and the down-converter at the receiver leading to

RE(t) =
√

2(R ∗ h>)(t) exp{−j2πf0t}.

The signal RE(t) at the down-converter output is a sufficient statistic since the two
operations performed by the donw-converter are reversible.

In the next section we model the channel between the up-converter input and the dwon-
converter output.

RE(t) = sE(t) +NE(t)

h(t)e j 2πf0t

e−j 2πf0t

sE(t) s(t)

N(t)

Down converter

Up converter

R(t) = s(t) +N(t)

√
2<{·}

√
2h>(t)

Figure 8.1: Up/down conversion. Double lines denote complex signals.

8.3 Baseband-Equivalent Channel Model

In this section we show that the channel seen from the up-converter input to the down-
converter output is a baseband additive Gaussian noise channel as modeled in Figure 8.2.
We start by describing the baseband-equivalent impulse response, denoted hE(t)√

2
in the

figure, and then turn our attention to the baseband-equivalent noise NE(t) . Notice that
we are allowed to study the signal and the noise separately since the system is linear,
albeit time-varying.
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Assume that the bandpass channel has an arbitrary real-valued impulse response h(t) .
Without noise the input/output relationship is

r(t) = (h ? s)(t).

Taking the Fourier transform on both sides we get the first of the equations below. The
other follow via straightforward manipulations of the first equality and the notions devel-
oped in the previous subsection.

rF(f) = hF(f)sF(f)

rF(f)h>,F(f)
√

2 = hF(f)h>,F(f)sF(f)h>,F(f)
√

2

r̂F(f) =
ĥF(f)√

2
ŝF(f)

rE,F(f) =
hE,F(f)√

2
sE,F(f). (8.4)

Hence, when we send a signal s(t) through a channel of impulse response h(t) it is as
sending the baseband equivalent signal sE(t) through a channel of baseband equivalent

impulse response hE(t)√
2

. This is the baseband-equivalent channel impulse response.

RE(t) = sE(t) +NE(t)
hE(t)√

2

sE(t)

NE(t)

Figure 8.2: Baseband-equivalent channel model.

Let us now focus on the noise. With reference to Figure 8.1, observe that NE(t) is a
zero-mean (complex-valued) Gaussian random process. Indeed it is obtained from linear
(complex-valued) operations on Gaussian noise. Furthermore:

(a) The analytic equivalent N̂(t) of N(t) is a Gaussian process since obtained by filtering
a Gaussian noise. Its power spectral density is

SN̂(f) = SN(f)
∣∣∣√2h>,F(f)

∣∣∣2 =


2SN(f), f > 0
1
2
SN(f), f = 0

0, f < 0.

(8.5)

(b) Let NE(t) = N̂(t) e−j 2πf0t be the baseband-equivalent noise. The autocorrelation of
NE(t) is given by:

RNE(τ) = E
[
N̂(t+ τ) e−j 2πf0(t+τ)N̂∗(t) e j 2πf0t

]
= RN̂(τ)e−j 2πf0τ (8.6)
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where we have used the fact that N̂(t) is WSS (since it is obtained from filtering a
WSS process). We see that NE(t) is itself WSS. Its power spectral density is given
by:

SNE(f) = SN̂(f + f0) =


2SN(f + f0), f > −f0

1
2
SN(f + f0), f = −f0

0, f < −f0.

(8.7)

(c) We now show that N̂(t) is proper.

E[N̂(t)N̂(s)] = E

[∫ +∞

−∞

√
2h>(α)N(t− α) dα

∫ +∞

−∞

√
2h>(β)N(s− β) dβ

]
= 2

∫ +∞

−∞

∫ +∞

−∞
h>(α)h>(β)RN(t− α− s+ β) dα dβ

= 2

∫
α

∫
β

h>(α)h>(β) dα dβ

∫ +∞

−∞
SN(f) e j 2πf(t−α−s+β) df

= 2

∫
f

SN(f) e j 2πf(t−s)h>,F(f)h>,F(−f) df

= 0 (8.8)

since h>,F(f)h>,F(f) = 0 for all frequencies except for f = 0. Hence the integral

vanishes. Thus N̂(t) is proper.

(d) NE(t) is also proper since

E[NE(t)NE(s)] = E
[
N̂(t) e−j 2πf0tN̂(s) e−j 2πf0s

]
= e−j 2πf0(t+s)E

[
N̂(t)N̂(s)

]
= 0 (8.9)

(We could have simply argued that NE(t) is proper since it is obtained from the
proper process N̂(t) via a linear transformation.)

(e) The real and imaginary components of NE(t) have the same autocorrelation function.
Indeed,

0 = E[NE(t)NE(s)] = E [(<{NE(t)}<{NE(s)} − ={NE(t)}={NE(s)})
+ j (<{NE(t)}={NE(s)}+ ={NE(t)}<{NE(s)})] .(8.10)

implies
E [(<{NE(t)}<{NE(s)}] = E [={NE(t)}={NE(s)}]

As claimed.
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(f) Furthermore, if SN(f0−f) = SN(f0 +f) ) then the real and imaginary parts of NE(t)
are uncorrelated, hence they are independent. To see this we expand as follows

E[NE(t)N∗E(s)] = E [(<{NE(t)}<{NE(s)}+ ={NE(t)}={NE(s)})
− j (<{NE(t)}={NE(s)} − ={NE(t)}<{NE(s)})] .

(8.11)

and observe that if the power spectral density of NE(t) is an even function then the
autocorrelation of NE(t) is real-valued. Thus

E [<{NE(t)}={NE(s)} − ={NE(t)}<{NE(s)}] = 0.

On the other hand, from (8.10) we have

E [<{NE(t)}={NE(s)}+ ={NE(t)}<{NE(s)}] = 0.

The last two expressions imply

E [<{NE(t)}={NE(s)}] = E [={NE(t)}<{NE(s)}] = 0,

which is what we have claimed.

We summarize what concerns the noise. NE(t) is a proper zero-mean Gaussian random
process. Furthermore, from (8.7) we see that for the interval f ≥ −f0 , the power spectral
density of of NE(t) equals that of N(t) translated towards baseband by f0 and scaled
by a factor 2. The fact that this relationship holds only for f ≥ −f0 is immaterial for
all practical cases. Indeed, in practice, the center frequency f0 is much larger than the
signal bandwidth and any noise component which is outside the signal bandwidth will be
eliminated by the front end receiver that projects the baseband equivalent of the received
signal onto the baseband equivalent signal space. Even in suboptimal receivers that do
not project the signal onto the signal space there is a front-end filter that eliminates the
out of band noise. For these reasons we may simplify our expressions and assume that, for
all frequencies, the the power spectral density of of NE(t) equals that of N(t) translated
towards baseband by f0 and scaled by a factor 2.

To remember where the factor 2 goes, it suffices to keep in mind that the variance of the
noise within the band of interest is the same for both processes. To find the variance of
N(t) in the band of interest we have to integrate its power spectral density over 2B Hz.
For that of NE(t) we have to integrate over B Hz. Hence the power spectral density of
NE(t) must be twice that of N(t) .

The real and imaginary parts of NE(t) have the same autocorrelation functions hence
the same power spectral densities. If S(f) is symmetric with respect to f0 , then the
real and imaginary parts of NE(t) are uncorrelated, and since they are Gaussian they are
independent. In this case their power spectral density must be half that of NE(t) .
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8.4 Implications

What we have learned in this chapter has several implications. Let us take a look at what
they are.

Signal Design: By signal design we mean the choice of parameters that specify s(t) . The
signal design ideas and techniques we have learned in previous chapters apply generally to
any additive white Gaussian noise channel, regardless whether it is baseband or passband.
However, applying Nyquist criterion to a passband pulses ψ(t) is a bit more tricky. (Point
to a problem). In particular, for a desirable baseband power spectral density S(f) that

“fulfills Nyqist criterion” in the sense that |ψF(f)|2 = TS(f)
E fulfills Nyquist criterion form

some T andE , it is possible to find a pulse ψ̃(t) that fulfills Nyquist criterion and leads
to the spectrum S(t−f0) for some f0 and not for others. This is annoying enough. What
is also annoying is that if we rely on the pulse ψ̃(t) to determine not only the “shape”
but also the center frequency of the power spectral density then the pulse will depend on
the center frequency. Fortunately the technique developed in the this chapter allows us to
do the signal design assuming a baseband-equivalent signal which is independent of f0 .

Performance Analysis Once we have a tentative baseband-equivalent signal, the next step
is to assess the resulting error probability. For this we need to have a channel model. The
technique developed in this chapter allows us to determine the channel model seen by
the baseband-equivalent signal. It is often the case that over the passband interval of
interest the channel impulse response has a flat magnitude and linear phase. Then the
baseband-equivalent impulse response has also a flat magnitude and linear phase around
the origin. Since the transmitted signal is not affected by the channels frequency response
outside the baseband interval of interest, we may as well assume that the magnitude is
flat and the phase is linear over the entire frequency range. Hence we may assume that
hE(t)√

2
= aδ(t − τ) for some constants a and τ . The effect of the baseband equivalent

channel is to scale the symbol alphabet by a and delay by τ . As we see in this example,
the impulse response of the baseband equivalent channel need not be more complicated
than that of the actual (passband) channel.

Implementation Decomposing the transmitter into a baseband transmitter and an up-
converter is a good thing to do also for practical reasons. We summarize a few facts that
justify this claim.

(a) Task Decomposition Senders and a a receivers are signal processing devices. In many
situations, notably in wireless communication, the sender and the receiver exchange
radio-frequency signals. Very few people are expert in implementing signal processing
as well as in designing radio-frequency devices. Decomposing the design into baseband
and a radio-frequency part makes it possible to partition the design task into subtasks
that can be accomplished independently by people that have the appropriate skills.

(b) Complexity At various stages of a sender and a receiver there are filters and amplifiers.
In the baseband transmitter those filters do not depend on f0 and the amplifiers
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have to fulfill the design specifications only over the frequency range occupied by the
baseband-equivalent signal. Such filters and amplifiers would be more expensive if
their characteristic depended on f0 .

(c) Oscillation The “ringing” produced by a sound system when the microphone is placed
too close to the speaker is a well-known effect that occurs when the signal at the out-
put of an amplifier manages to feed back to the amplifier input. When this happens
the amplifiers turns into an oscillator. The problem is particularly challenging in
dealing with radio-frequency amplifiers. In fact a wire of appropriate length can act
as a transmit or as a receive antenna of a radio-frequency signal. The signal produced
by the up-converter output is sufficiently strong to travel long-distance over the air,
which means that in principle it can easily feed back to the up-converter input. This
is not a problem though since the input has a filter that passes “only” baseband
signals.

8.5 Problems

In the problem session we should have a problem that shows how a delay causes the
baseband equivalent signal to rotate.

Problem 1. (Fourier Transform)

(a) Prove that if x(t) is a real-valued signal, then its Fourier transform X(f) satisfies
the symmetric property

X(f) = X∗(−f) (Symmetry Property)

where X∗ is the complex conjugate of X .

(b) Prove that if x(t) is a purely imaginary-valued signal, then its Fourier transform
X(f) satisfies the anti-symmetry property

X(f) = −X∗(−f) (Anti-Symmetry Property)

Problem 2. (Baseband Equivalent Relationship) In this problem we neglect noise and
consider the situation in which we transmit a signal X(t) and receive

R(t) =
∑
i

αiX(t− τi).

Show that the baseband equivalent relationship is

RE(t) =
∑
i

βi XE(t− τi).

Express βi explicitly.
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Problem 3. (Equivalent Representations) A bandpass signal x(t) may be written as
x(t) =

√
2<{xE(t)ej2πf0t} , where xE(t) is the baseband equivalent of x(t) .

(a) Show that a signal x(t) can also be written as x(t) = a(t) cos[2πf0t + θ(t)] and
describe a(t) and θ(t) in terms of xE(t) . Interpret this result.

(b) Show that the signal x(t) can also be written as x(t) = xEI(t) cos 2πf0t−xEQ(t) sin(2πf0t) ,
and describe xEI(t) and xEQ(t) in terms of xE(t) . (This shows how you can obtain
x(t) without doing complex-valued operations.)

(c) Find the baseband equivalent of the signal x(t) = A(t) cos(2πf0t + ϕ) , where A(t)
is a real-valued lowpass signal. Hint: You may find it easier to guess an answer and
verify that it is correct.

Problem 4. (Equivalent Baseband Signal)

(a) You are given a “passband” signal ψ(t) whose spectrum is centered around f0 . Write
down in a generic form the different steps needed to find the baseband equivalent
signal.

(b) Consider the waveform

ψ(t) = sinc

(
t

T

)
cos(2πf0t).

What is the equivalent baseband signal of this waveform.

(c) Assume that the signal ψ(t) is passed through the filter with impluse response
h(t) where h(t) is specified by its baseband equivalent impulse response hE(t) =

1
T
√

2
sinc2

(
t

2T

)
. What is the output signal, both in passband as well as in baseband?

Hint: The Fourier transform of cos (2πf0t) is 1
2
δ(f − f0) + 1

2
δ(f + f0) . The Fourier

transform of 1
T

sinc( t
T

) is equal to 1[− 1
2T
, 1
2T

](f) with 1[− 1
2T
, 1
2T

](f) = 1 if f ∈ [− 1
2T
, 1

2T
]

and 0 otherwise.

Problem 5. (Up-Down Conversion) We want to send a “passband” signal ψ(t) whose
spectrum is centered around f0 , through a waveform channel defined by its impulse
response h(t) . The Fourier transform H(f) of the impulse response is given by

|H(f)|

1

f1 − 1
2T f1 + 1

2T

f

where f1 6= f0 .
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(a) Write down in a generic form the different steps needed to send ψ(t) at the correct
frequency f1 .

(b) Consider the waveform

ψ(t) = sinc

(
t

T

)
cos(2πf0t).

What is the output signal, in passband (at center frequency f1 ) as well as in base-
band?

(c) Assume that f0 = f1 + ε , with ε � 1
2T

, and that the signal ψ(t) is directly trans-
mitted without any frequency shift. What will be the central frequency of the output
signal? Hint: The Fourier transform of cos (2πf0t) is 1

2
δ(f − f0) + 1

2
δ(f + f0) . The

Fourier transform of 1
T

sinc( t
T

) is equal to 1[− 1
2T
, 1
2T

](f) with 1[− 1
2T
, 1
2T

](f) = 1 if

f ∈ [− 1
2T
, 1

2T
] and 0 otherwise.

Problem 6. (Smoothness of Bandlimited Signals) In communications one often finds the
statement that if s(t) is a signal of bandwidth W , then it can’t vary too much in a small
interval τ << 1/W . Based on this, people sometimes substitute s(t) for s(t + τ) . In
this problem we will derive an upper bound for |s(t+ τ)− s(t)| . It is assumed that s(t)
is a finite energy signal with Fourier transform satisfying S(f) = 0 , |f | > W .

(a) Let H(f) be the frequency response of the ideal lowpass-filter defined as 1 for |f | ≤
W and 0 otherwise. Show that

s(t+ τ)− s(t) =

∫
s(ξ)[h(t+ τ − ξ)− h(t− ξ)]dξ. (8.12)

(b) Use Schwarz inequality to prove that

|s(t+ τ)− s(t)|2 ≤ 2Es[Eh −Rh(τ)], (8.13)

where Es is the energy of s(t) ,

Rh(τ) =

∫
h(ξ + τ)h(ξ)dξ

is the (time) autocorrelation function of h(t) , and Eh = Rh(0) .

(c) Show that Rh(τ) = h ∗ h(τ) , i.e., for h the convolution with itself equals its auto-
correlation function. What makes h have this property?

(d) Show that Rh(τ) = h(τ) .
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(e) Put things together to derive the upperbound

|s(t+ τ)− s(t)| ≤
√

2Es[Eh − h(τ)] =

√
4WEs

(
1− sin(2πWτ)

2πWτ

)
. (8.14)

[Can you determine the impulse response h(t) without looking it up an without
solving integrals? Remember the “mnemonics” given in class?] Verify that for τ = 0
the bound is tight.

(f) Let ED be the energy in the difference signal s(t + τ) − s(t) . Assume that the
duration of s(t) is T and determine an upperbound on ED .

(g) Consider a signal s(t) with parameters 2W = 5 Mhz and T = 5/2W . Find a
numerical value Tm for the time difference τ so that ED(τ) ≤ 10−2Es for |τ | ≤ Tm .
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