More Exercises

Problem 1 (AEP)

In the following, we consider an i.i.d. sequence $x^n = (X_1, X_2, \ldots, X_n)$, where $X_i \sim Br(\theta)$. Furthermore, we define the function $L(x^n)$ to be the Hamming weight of x^n , i.e., the number of ones in the sequence x^n .

For every $\theta > 0$, let $A_{\epsilon}^{(n)}$ denote the typical set as defined in class and in the textbook.

- (a) If $\theta = 1/2$, for which values of $\epsilon > 0$ is the all-zero sequence a typical sequence?
- (b) For general θ , show that knowledge of the Hamming weight $L(x^n)$ of a sequence x^n is sufficient to determine whether x^n is a member of the typical set.
- (c) For general θ , and n arbitrarily large, are the typical sequences "approximately equiprobable?" Note that we say that the elements of a set of sequences are approximately equiprobable if the ratio of the probabilities of the most likely and least likely sequences in the set tends to a constant as n grows.
- (d) For $\theta > 0$, $0 \le p \le 1$, we define the following set

$$C^{(n)}(\alpha, p) = \{ x^n \in \mathcal{X}^n : pn - n\alpha \le L(x^n) \le pn + n\alpha \},\$$

where $\mathcal{X} = \{0, 1\}$. For $\theta > 1/2$, is it possible to adjust the value of α and p so that $A_{\epsilon}^{(n)} = C^{(n)}(\alpha, p)$?

Problem 2 (RANDOM 20 QUESTIONS)

Let X be uniformly distributed over $\{1, \ldots, m\}$. Assume that $m = 2^n$. We ask random questions: Is $X \in S_1$? is $X \in S_2$?... until only one integer remains. All 2^m subsets S of $\{1, \ldots, m\}$ are equally likely to be asked.

- (a) Without loss of generality, suppose that X = 1 is the random object. What is the probability that object 2 yields the same answers for the k questions as does object 1?
- (b) What is the expected number of objects in $\{2, \ldots, m\}$ that have the same answers to the questions as does the correct object 1?
- (c) Suppose that we ask $n + \sqrt{n}$ random questions. What is the expected number of wrong objects agreeing with the answers?
- (d) Use Markov's inequality $\Pr\{X \ge t\mu\} \le \frac{1}{t}$, to show that the probability of error (one or more wrong objects remaining) goes to zero as $n \to \infty$.

Problem 3 (Secret Sharing)

For a given set of participants \mathcal{P} , and a collection \mathcal{A} of subsets of \mathcal{P} , a secret sharing scheme is a random variable S and a family of random variables $\{X_p : p \in \mathcal{P}\}$ such that for all $A \in \mathcal{A}$,

$$H(S|X_A) = 0,$$

and for all $B \notin \mathcal{A}$

 $H(S|X_B) = H(S).$

The set \mathcal{A} specifies the *access structure* of the scheme: For a subset A of \mathcal{P} , by pooling their shares, if $A \in \mathcal{A}$, the participants in A can reconstruct S, otherwise, hey can know nothing about S.

(a) Prove that for $A, B \subset \mathcal{P}$, if $B \notin \mathcal{A}$ and $A \cup B \in \mathcal{A}$, then

$$H(X_A|X_B) = H(S) + H(X_A|X_B, S).$$

(b) Prove that if $B \in \mathcal{A}$, then

$$H(X_A|X_B) = H(X_A|X_B, S).$$

(c) Prove that for $A, B, C \subset \mathcal{P}$ such that $A \cup C \in \mathcal{A}, B \cup C \in \mathcal{A}$, and $C \notin \mathcal{A}$, then

$$I(X_A; X_B | X_C) \ge H(S).$$

Problem 4

In this question we find two inequalities relating probability of error and entropy.

(a) Show that if X and X' are i.i.d. with entropy H(X),

$$Pr(X = X') \ge 2^{-H(X)},$$

with equality if and only if X has a uniform distribution.

(b) Show that if X and X' are independent random variables from p(x) and q(x) respectively, then

$$P(X = X') \ge 2^{-H(p) - D(p||q)},$$

$$P(X = X') \ge 2^{-H(q) - D(q||p)}.$$

Problem 5 (ENTROPY RATE)

(a) Consider a stationary stochastic process X_1, \ldots, X_n , and let Y_1, \ldots, Y_n be defined by

$$Y_i = \Phi(X_i), \ i = 1, 2, \cdots$$

for some function Φ . Prove that $H(\mathcal{Y}) \leq H(\mathcal{X})$.

(b) What is the relationship between the entropy rates $H(\mathcal{Z})$ and $H(\mathcal{X})$ if

$$Z_i = \Psi(X_i, X_{i+1}), \ i = 1, 2, \cdots$$

for some function Ψ ?

(c) What is the relationship between the entropy rates $H(\mathcal{Z})$ and $H(\mathcal{X})$ if

$$Z_i = \Psi(X_i, \dots, X_{i+l}), \ i = 1, 2, \cdots$$

for a fixed l and some function Ψ ?

(d) Consider a second order Markov process over alphabet $\{0, 1\}$. Note that in a second order Markov process, X_n only depends on the two previous values X_{n-1} and X_{n-2} (compare it with a Markov Chain in which X_n only depends on X_{n-1}). Specifically, assume that the process we are considering is realized as follows:

$$X_n = \begin{cases} Br(0.5) & X_{n-1} = X_{n-2} \\ Br(0.9) & \text{otherwise} \end{cases}$$

Find the entropy rate $H(\mathcal{X})$.

Hint: Define $Z_n = (X_n, X_{n+1})$ and argue that $\{Z_n\}$ makes a first order Markov process (a Markov Chain). Then find the entropy rate $H(\mathcal{Z})$ and relate it to $H(\mathcal{X})$.