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Solution to Midterm

Problem 1

(a)

H(X|Y ) = H(Z + Y |Y ) = H(Z|Y )

Furthermore, since conditioning decreases entropy,

H(Z|Y ) ≤ H(Z)

and thus

H(X|Y ) ≤ H(Z)

(b) H(X|Y ) = H(Z) if and only if H(Z|Y ) = H(Z). That is Z and Y are independent.

(c) The goal is to show that

I(U ;W ) + I(U ;T ) ≤ I(U ;V ) + I(W ;T ).

By adding the term I(U ;T |W ) to both sides, it suffices to show that

I(U ;T |W ) + I(U ;W ) + I(U ;T ) ≤ I(U ;V ) + I(W ;T ). + I(U ;T |W )

By using chain rule, we have that I(U ;T |W ) + I(U ;W ) = I(U ;T,W ) at the left hand
side, and I(U ;T |W ) + I(W ;T ) = I(U,W ;T ) at the right hand side. Thus it suffices to
show that

I(U ;T,W ) + I(U ;T ) ≤ I(U ;V ) + I(U,W ;T ).

From the Markov chain U ↔ V ↔ (W,T ), I(U ;W,T ) ≤ I(U ;V ).
Furthremore, I(U ;T ) ≤ I(U,W ;T ) = I(U ;T ) + I(W ;T |U) since I(W ;T |U) ≥ 0. This
concludes the solution

Some Remarks:

(1) Note that having the Markov chain U ↔ V ↔ (W,T ) leads to having the following two
Markov chains: U ↔ V ↔ W and U ↔ V ↔ T . Nonetheless, the other way does not
necessarily hold; i.e., U ↔ V ↔ (W,T ) is a stronger Markov chain than U ↔ V ↔ W
and U ↔ V ↔ T .

(2) Note that I(U ;W,T ) is not the same as I(U,W ;T ). By chain rule we have:

I(U ;W,T ) = I(U ;W ) + I(U ;T |W )

= I(U ;T ) + I(U ;W |T );

and

I(U,W ;T ) = I(T ;U) + I(T ;W |U)

= I(T ;W ) + I(T ;U |W ).
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Problem 2

(a) Let yn = p(x1, · · · , xn)
1

n . Since X1,X2, · · · is an i.i.d. sequence, we have p(x1, · · · , xn) =
∏n

i=1 p(xi) and

log yn =
1

n
p(x1, · · · , xn)

=
1

n
log

n
∏

i=1

p(xi)

=
1

n

n
∑

i=1

log p(xi)

in prob.
→ E(log p(x)) = −H(X),

where the last statement is due to the fact that the average of n i.i.d. samples of a
random variable converges in probability to the expectation of the random variable. As a
result, since log yn converges in probability to −H(X), yn itself converges in probability
to 2−H(X).

(b) If we go along the same lines as part (a), assuming yn = (
∏n

i=1 f(xi))
1

n we obtain

log yn =
1

n

n
∑

i=1

log f(xi) → E(log f(x)).

Thus yn → 2E(logf(X)).

(c) Firstly we have g′′(u) = 1
n( 1

n − 1)(u)
1

n
−2 ≤ 0 . As a result g is a concave function. Thus

given a random variable Y , by Jensen’s inequality we have

E(g(Y )) ≤ g(E(Y )).

Now if we take Y =
∏n

i=1 f(xi), we have

E(g(Y )) = E((

n
∏

i=1

f(xi))
1

n )

≤ g(E(Y ))

= (E(

n
∏

i=1

f(xi)))
1

n

= (

n
∏

i=1

E(f(xi)))
1

n

= E(f(X)).

Note that this inequality holds for any n ∈ N and we have not considered the convergence
issues.

Problem 3

(a) We look at two different solutions:
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Solution (1)

H(X|Y ) = H(X,Y ) − H(Y )

(1)
= H(X) − H(Y )

where (1) follows since Y = f(X).
To caculate H(X|Y ) = H(X)−H(Y ) we need to find p(X = i)∀i ∈ {2, · · · , 12} and
p(Y = A), P (Y = B), and P (Y = C):

H(X) = −

12
∑

i=2

p(X = i) log p(X = i),

H(Y ) = −p(Y = A) log p(Y = A) − p(Y = B) log p(Y = B) − p(Y = C) log p(Y = C).

Since the two dice are fair, each outcome (i, j) occurs with probability 1
36 . This way,

p(X = 2) = Pr{(1, 1)} =
1

36
,

p(X = 3) = Pr{(1, 2), (2, 1)} =
2

36
,

p(X = 4) = Pr{(1, 3), (3, 1), (2, 2)} =
3

36
,

p(X = 5) = Pr{(1, 4), (4, 1), (3, 2), (2, 3)} =
4

36
,

p(X = 6) = Pr{(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)} =
5

36
,

p(X = 7) = Pr{(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} =
6

36
,

p(X = 8) = Pr{(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)} =
5

36
,

p(X = 9) = Pr{(3, 6), (6, 3), (4, 5), (5, 4)} =
4

36
,

p(X = 10) = Pr{(4, 6), (6, 4), (5, 5)} =
3

36
,

p(X = 11) = Pr{(5, 6), (6, 5)} =
2

36
,

p(X = 12) = Pr{(6, 6)} =
1

36
.

Similarly,

p(Y = A) = p(X = 2) + p(X = 12) =
2

36
,

p(Y = B) = p(X = 3) + p(X = 11) =
4

36
,

p(Y = C) = 1 − p(Y = A) − p(Y = B) =
30

36
.

From equations (1) and (1), H(X) and H(Y ) are calculated to be H(X) = 3.7052
and H(Y ) = 0.8031 Thus H(X|Y ) = 3.7052 − 0.8031 = 2.9021.

Solution (2) One should note that

H(X|Y ) = p(Y = A)H(X|Y = A)p(Y = B)H(X|Y = B) + p(Y = C)H(X|Y = C).
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and furthermore,

H(X|Y = S) = −
12
∑

i=2

pX|Y (X = i|Y = S) log pX|Y (X = i|Y = S), ∀S ∈ {A,B,C}.

p(Y = A) = 2
36 , p(Y = B) = 4

36 , and p(Y = C) = 30
36 are found as above. To

calculate H(X|Y = S), we need pX|Y (X = i|Y = S) ∀i ∈ {2, · · · , 12}:

pX|Y (X = i|Y = A) =

{

0 if i /∈ {2, 12}
1
2 if i ∈ {2, 12}

pX|Y (X = i|Y = B) =

{

0 if i /∈ {3, 11}
1
2 if i ∈ {3, 11}

pX|Y (X = i|Y = C) =

{

0 if i /∈ {4 · · · , 10}
p(X=i)
p(Y =C) if i ∈ {4, 10}

Thus,

H(X|Y ) =
2

36

(

−
1

2
log(2) −

1

2
log(2)

)

+
4

36

(

−
1

2
log(2) −

1

2
log(2)

)

+

30

36

(

−2 ∗
3

30
log

(

30

3

)

− 2 ∗
4

30
log

(

30

4

)

− 2 ∗
5

30
log

(

30

5

)

−

6

30
log

(

30

6

))

= 2.9

(b)

I(X;Y ) = H(X) − H(X|Y )

= H(Y ) − H(Y |X)

Since H(X) is fixed, and since H(Y |X) = 0, maximizing I(X;Y ) is just equivalent to
maximizing H(Y ), or minimizing H(X|Y ). In order to maximize H(Y ), we know that
the maximum is achieved for uniform distribution on Y ; i.e., Pr(Y = A) = Pr(Y = B) =
Pr(Y = C) = 1

3 and one such configuration is given by:






A if i ∈ {2, 5, 6, 11}
B if i ∈ {3, 7, 10, 12}
C if i ∈ {4, 8, 9}

In this case, I(X;Y ) = log(3)
Some Remarks:

Although building a ternary Huffman tree on X, divides the X outcomes to three groups
of roughly the same probability, in words, in the first layer of the tree, this is not the
optimal method to construct Y . Huffman procedure is proved optimal in terms of average
codeword-length, or average depth of tree and this is not what we intend to optimize here.
you should always be careful when talking about optimality of Huffman procedure. It
always matters what quantity you are optimizing.

(c)

I(X;Y ) = H(X) − H(X|Y )

= H(Y ) − H(Y |X)
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since H(X) is fixed, maximizing I(X;Y ) is equivalent to minimizing H(X|Y ). Since
H(X|Y ) ≥ 0, choosing for example







A if i ∈ {2}
B if i ∈ {8}
C if i ∈ {3, 4, 5, 6, 7, 9, 10, 11, 12}

makes H(X|Y ) = 0 and achieves the minimum possible H(X|Y ). One notes that with
this random variable Y , there is a one to one correspondence between X and Y and both
H(X|Y ) = 0 and H(Y |X) = 0. In this case I(X;Y ) = H(X) = H(p), where we have
assumed p to be the probability of X = 2 and 1 − p the probability of X = 8.

Problem 4

The set of outcome probabilities are p1 = 1
12 , p2 = 1

9 , p3 = 1
18 , p4 = 1

6 , p5 = 1
12 , p6 = 1

2 , where
pi = P [X = i].

(a) For the entropy H(X) we have

H(X) = −

6
∑

i=1

pi log2 pi

=
1

12
log2 12 +

1

9
log2 9 +

1

18
log2 18 +

1

6
log2 6 +

1

12
log2 12 +

1

2
log2 2

=
1

6
log2 (3 × 22) +

1

9
log2 (32) +

1

18
log2 (2 × 32) +

1

6
log2 (2 × 3) +

1

2

=
1

6
(2 + log2 3) +

2

9
log2 3 +

1

18
(2 log2 3 + log2 2) +

1

6
(log2 2 + log2 3) +

1

2

= (
1

3
+

1

18
+

1

6
+

1

2
) + (

1

6
+

2

9
+

1

9
+

1

6
) log2 3

=
19

18
+

2

3
log2 3 bits

≈ 2.11 bits.

(b) For the equivalence of source coding problem and 20 questions problem you may refer to
the lectures or you can find the explanation in the book Elements of Information Theory,
second edition by Cover and Thomas on page 120.

You can see the Huffman tree for this set of probabilities in Figure 1. To find the best
strategy to ask questions, we start from the root of the tree and ask the question wheather
the dice outcome belong to the right branch of the tree or not. Depending on the answer
to the this question we go to the right or left branch and continue to ask the same question
until we reach a leaf of the tree (the outcome of the dice). So the sequence of questions
whould be

S1 = {6} →































Yes: X = 6

No: S2 = {2, 5} →























Yes: S3 = {2} →

{

Yes: X = 2
No: X = 5

No: S3 = {4} →







Yes: X = 4

No: S4 = {1} →

{

Yes: X = 1
No: X = 3
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Then for the average number of questions we can write

L =
6

∑

i=1

pili

= 1/2 × 1 + (1/6 + 1/9 + 1/12) × 3 + (1/12 + 1/18) × 4

= 77/36 bits

= 2.14 bits.

p3 = 1/18 p1 = 1/12 p4 = 1/6 p5 = 1/12 p2 = 1/9 p6 = 1/2

5/36 7/36

11/36

18/36

1

Figure 1: The Huffman tree.

(c) In this part we toss the same dice until the first 6 appears. The random variable Y is the
number of required tosses until the first 6 appears. For example if the outcome of tossing
is 1, 4, 2, 4, 6, then Y = 5.

Now we want to find the probability P [Y = k]. We know that the probability of observing
a 6 is 1/2 and the probability of not observing 6 is also 1/2. Because the trials are
independent we have

P [Y = k] = P [Probability of not observing 6 for the first k − 1 tossing]

× P [Probability of observing 6 at the kth tossing]

=

(

1

2

)k−1

×

(

1

2

)

=

(

1

2

)k

.
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(d) For the entropy of Y we can wirte

H(Y ) = −

∞
∑

k=1

P [Y = k] · log2 P [Y = k]

=
∞

∑

k=1

(

1

2

)k

· log2 2k

=
∞

∑

k=1

k ·

(

1

2

)k

=
r

(1 − r)2

∣

∣

∣

∣

r=1/2

= 2 bits.

(e) Again we should use the huffman procedure to find the optimal sequence of “Yes-No”
questions. The Huffman tree for the random variable Y is depicted in Figure 2. So

1

P [Y = 1] = 1/2

P [Y = 2] = 1/4

P [Y = 3] = 1/8

P [Y = 4] = 1/16
...

Figure 2: The Huffman tree for the second experiment.

according to the Figure 2 the sequence of questions are S1 = {1}, S2 = {2}, etc. or
equivalently “Is Y = 1 ?”, “Is Y = 2 ?”, etc.

(f) With the set of questions designed in part (e), the probability of finding the value of Y
after asking k questions is equal to

P [Finding the answer after asking k questions] = P [Y = k] = (1/2)k ,

so for the average number of required questions need to be asked we have

ENumber of required questions =

∞
∑

k=1

k × (1/2)k = H(Y ).

In this case the average number of required questions is the same as the entropy of Y .
Remember that the length of codewords in the Huffman procedure are ⌈− log2 P [Y = k]⌉
where in this case there is no need to apply the function ⌈·⌉ because the probabilities are
so that − log2 P [Y = k] are integers themselves.
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Problem 5

(a) We can easily observe that the two output bits x2i and x2i−1 only depend on the previous
two bits x2i−2 and x2i−3 so formally we have

P [x2i, x2i−1|x2i−2, . . . , x1] = P [x2i, x2i−1|x2i−2, x2i−3].

Then for the probabilities we can write

P [x2i−1 = 0, x2i = 1|x2i−3 = 1, x2i−2 = 0] = 1/2,

P [x2i−1 = 1, x2i = 0|x2i−3 = 1, x2i−2 = 0] = 1/2,

P [x2i−1 = 0, x2i = 1|x2i−3 = 0, x2i−2 = 1] = 1/2,

P [x2i−1 = 0, x2i = 0|x2i−3 = 0, x2i−2 = 1] = 1/2,

P [x2i−1 = 1, x2i = 0|x2i−3 = 0, x2i−2 = 0] = 1/2.

(b) We can group the outputs of the FSM two by two. Then from part (a) we know that the
sequence {(X2i−1,X2i)} form a Markov chain. For the state of the new Markov chain we
define Zi , (X2i−1,X2i). Then we have Figure 3 for the transition graph of this Markov
chain by using results from part (a).

01 00

10

1/2

1/2

1/2

1/2
1/2

1/2

Figure 3: The transition graph of the Markov chain for problem 5, part (b).

(c) For the entropy rate of the source, H(X), by definition we have

H(X) , lim
n→∞

1

2n
H(X1, . . . ,X2n)

= lim
n→∞

1

2n
H(Z1, . . . , Zn)

=
1

2
lim

n→∞

1

n
H(Z1, . . . , Zn)

=
1

2
H(Z),

so the entropy rate of the source is half of the entropy rate of the markov chain defined
in part (b).
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(d) From parts (b) and (c) we know that to find the entropy rate of the source it is sufficient
to find the entropy rate of the Markov chain defined in part (b), see Figure 3.

For the transition matrix of the markov chain {Zi} we can write

00 01 10

P =
00
01
10





0 0.5 0.5
0.5 0.5 0
0 0.5 0.5



 ,

where Pij = P [Zn = j|Zn−1 = i] and i, j ∈ {00, 01, 01}.

To find the entropy rate of this Markov chain whave to find its stationary distribution so
we have to solve the following linear equation

µ · P = µ,

constraint to
∑

i µi = 1. It can be easily shown that the solution to this equation is as
follows

µ00 = µ10 = 1/4, µ01 = 1/2.

Then for the entropy rate of the Markov chain {Zi} we have

H(Z) = H(Z2|Z1)

= −
∑

i,j∈{00,10,01}

µiPij log2 Pij

= −1/4(1/2 log2 1/2 + 1/2 log2 1/2) − 1/2(1/2 log2 1/2 + 1/2 log2 1/2)

− 1/4(1/2 log2 1/2 + 1/2 log2 1/2)

= 1.

So from part (c) for the entropy rate of the source we have

H(X) =
1

2
H(Z) = 1/2.
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