
Information Theory and Coding EPFL Winter Semester 2009/2010
Prof. Suhas Diggavi Handout # 7, Friday, 9 October, 2009

Solutions: Homework Set # 1

Problem 1

When a prefix code satisfies the Kraft’s inequality with equality, every sequence of code alphabet
symbols corresponds to a sequence of codewords, since the probability that a random generated
sequence begins with a codeword is at most

m
∑

i=1

D−li = 1

If the code does not satisfy the prefix condition, then at least one codeword, say C(m1) is
a prefix of another. Then the probability that a random generated sequence begins with a
codeword is at most

m−1
∑

i=1

D−li ≤ 1 − D−lm ≤ 1

which shows that not every sequence of code alphabet symbols is the beginning of a sequence
of codewords.

Problem 2

(a) We will simply start with the most probable until we find the bad one. (But don’t taste
the last one, it is useless!) I will taste bottle 1 first (prob = 8

23
).

(b) In that case, we can use Huffman coding. So the strategy would be to mix wines of the
first and the second bottles and taste the mixture. If it was bad, we taste one of them,
otherwise we continue on the other branch of the Huffman tree.

1

14/23

9/23
5/23

3/23

pili

8/23

6/23

4/23

2/23

2/23

1/23

2

2

2

3

4

4

1

L = 2.
8

23
+ 2.

6

23
+ 2.

4

23
+ 3.

2

23
+ 4.

2

23
+ 4.

1

23

=
16 + 12 + 8 + 6 + 8 + 4

23

=
54

23

(c) No, it is optimal as we saw in part (c) that it is possible to find the bad wine with less
average number of tastings.

Problem 3

(a) We want to minimize C =
∑

picili subject to
∑

2−li ≤ 1. We will assume equality in the
constraint and define ri = 2−li and Q =

∑

pici. Also define qi = (pici)/Q. Then q forms
a probability distribution and we can write C as

C =
∑

picini

= Q
∑

qi log
1

ri

= Q

(

∑

qi log
qi

ri

−
∑

qi log qi

)

= Q (D(q||r) + H(q)) .

Since the only freedom is in the choice of ri, we can minimize C by choosing r = q or

l∗i = − log
pici

∑

pjcj

,

where we have ignored any integer constraints on li. The minimum cost C∗ for this
assignment of codewords is

C∗ = QH(q).

(b) If we use q instead of p for the Huffman procedure, we obtain a code minimizing expected
cost.

(c) Now we can account for the integer constraints. Let

li = ⌈− log qi⌉.

Then
− log qi ≤ li < − log qi + 1.

Multiplying both side by pici and summing over i, we get the relationship

C∗ ≤ CHuffman < C∗ + Q.

2

Problem 4

(a) Assume each of the codewords have a length multiple of m. We can associate to each m
bits a number from 0 to 2m−1. Thus such a code can be converted to a 2m-arry code in a
natural way. Thus the procedure would be to design a 2m-ary Huffman code and convert
it to a binary code. Sine the Huffman codes are optimal, the reader can easily verify the
optimality in this case.

(b) We have

H2m(X) = −
∑

pi log2m (pi)

Thus

Hm(X) =
H2(X)

m

By the above procedure we have

H2(X) ≤ E{lm} < H2(X) + m

(c) Let the source have 2m alphabets with uniform distribution and the rest is clear.

(d) If we have a code in a way that each codeword length is a multiple of m, then

li ≥ m ⇒ E{l} ≥ m,

since
H2(X) = E{l},

we must have
H2(X) ≥ m.

This means that X must have at least 2m alphabets.

(e) By the following procedure, the hypothesis is clear: To each codeword derived by huffman
procedure add redundant bits such that the length of the codeword is a multiple of m (at
most m − 1 redundant bits are enough). This would result in a uniquely decodable code
which its codeword lengths are multiples of m.

(f) Let pi = ǫ
2m for 1 ≤ i ≤ 2m and p2m+1 = 1 − ǫ where ǫ < 1

2
. Then it can be checked that

lH = mǫ + 1

and
lm = m(1 + ǫ)

Thus
lm − lH = m − 1

3

Problem 5

(a) Regardless of what we have as the probability distribution, we have Pr[A] = 1

2
and

Pr[B] = 1

4
. Specifically,

p (A) = λ
1

2
+ (1 − λ)

1

2
=

1

2

p (B) = λ
1

4
+ (1 − λ)

1

4
=

1

4

p (C) = λ
1

16
+ (1 − λ) 0 =

λ

16

p (D) = λ
1

16
+ (1 − λ) 0 =

λ

16

p (E) = λ
1

16
+ (1 − λ)

2

16
=

1

8
−

λ

16

p (F) = p (E) =
1

8
−

λ

16

For 0 < λ < 1, p (E) = p (F) > p (C) = p (D).
If λ = 1, p (E) = p (F) = p (C) = p (D) (model 1),
If λ = 0 model 2, obviously.

So for 0 < λ < 1, we add p (C) + p (D) = λ
8
. Is this smaller than 1

8
− λ

16
?

λ
8

< 1
8
− λ

16
⇒ 3

16
λ < 1

8
, λ < 2

3
. So for 0 < λ < 2

3
, Huffman procedure goes on by

adding;λ
8

+ 1
8
− λ

16
= λ

16
+ 1

8
> 1

8
− λ

16
, but smaller than 1

4
.

To sum up: For λ = 0,

A

B

C

D

which means l(A) = 1, l(B) = 2, l(C) = l(D) = 0, l(E) = l(F) = 3

⇒ L =
1

2
1 +

1

4
2 +

1

8
3 +

1

8
3 = 1.75

For 0 < λ < 2
3
,

A

B

C

E

F

D

which means l(A) = 1, l(B) = 2, l(C) = l = (D) = l(E) = (F) = 4

⇒ L =
1

2
+

1

4
2 +

(

1

8
−

λ

16

)

3 +

(

1

8
−

λ

16

)

4 + 52
λ

16
=

7

8
+

3

16
λ

4

For 2
3

< lambda ≤ 1,

A

B

E

F

C

D which means l(A) = 1, l(B) = 2, l(C) =
l(D) = 0, l(E) = l(F) = 3

⇒ L =

(b) If the model is known, then the optimal strategies are the ones we found for λ = 0 or
λ = 1 in part (a). Average length L =.

(c) They think the model 1 is valid, so according to this they construct their codes like we
have shown in part (a). Then

L =
1

2
1 +

1

4
.2 + 0.4 + 0.4 +

1

8
.4 +

1

8
.4 = 2

The average length for the true model is 1.75 as found. So Lfalse − Ltrue = 2 − 1.75 =
0.25bits.

D (p (x) ||q (x)) =
∑

x

p (x) log
p (x)

q (x)

=
∑

x

p (x) log
1

q (x)
−

∑

x

p (x) log
1

p (x)

Let’s find D (P2||P1) for this question (since the real model is model 2).

D (P2||P1) =
1

2
log 1 +

1

4
log 1 +

1

8
log

1/8

1/16
+

1

8
log

1/8

1/16
=

1

4

We see that D (P2||P1) = 1
4

= Lfalse −Ltrue, which is expected. Apart from any rounding
effects due to the log function, D distance is the difference between the average false code
and the average true code.

Problem 6

(a) Note that the process is a (first-order) Markov chain since the the probability of being in
each state (building) for the next time only depends on the current state (building).

(b) The transition matrix for this process would be

P =

IN CO SG
IN
CO
SG





0 2/3 1/3
2/6 2/6 2/6
1/3 2/3 0



 ,

where Pij is the probability of going to state j given that we are in state i.

5

(c) The stationary distribution is a vector Π = (ΠIN ΠCO ΠSG) = (p1, p2, p3), where ΠP =
Π.

1

3
p2 +

1

3
p3 = p1

2

3
p1 +

1

3
p2 +

2

3
p3 = p2

1

3
p1 +

1

3
p2 = p3

p1 + p2 + p3 = 1

p2 + p3 = 3p1

2p1 + p2 + 2p3 = 3p2

p1 + p2 = 3p3

p1 + p2 + p3 = 1

⇒ Π =
(

1
4

1
2

1
4

)

.

6

