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Solutions: Homework Set # 10

Problem 1

Parallel channels and waterfilling. By the result of parallel channels that you have seen in the
course, it follows that we will put all the signal power into the channel with less noise until the
total power of noise + signal in that channel equals the noise power in the other channel. After
that, we will split any additional power evenly between the two channels. Thus the combined
channel begins to behave like a pair of parallel channels when the signal power is equal to the
difference of the two noise powers, i.e., when 2P = σ2

1 − σ2
2 .

Problem 2

Normally one would water-fill over the eigenvalues of the noise covariance matrix. Here we have
the degenerate case (i.e., one of the eigenvalue is zero), which we can exploit easily.
Musing upon the structure of the noise covariance matrix, one can see Z1 + Z2 = Z3 . Thus, by
processing the output vector as Y1+Y2−Y3 = (X1+Z1)+(X2+Z2)−(X3+Z3) = X1+X2−X3;
we can get rid of the noise completely. Therefore, we have infnite capacity.
Note that we can reach the conclusion by water-filling on the zero eigenvalue.

Problem 3

(a) By data processing inequality we can write

I(Sk; Ŝk) ≤ I(Xm;Y m).

Then we can write
min

p(ŝ|s): E[d(s,ŝ)]≤D
I(Sk; Ŝk) ≤ I(Xm;Y m).

Let p∗(ŝ|s) be the minimizer for I(Sk; Ŝk). This means that the encoder and decoder
are chosen such that minimize I(Sk; Ŝk). So these particular choise for the encoder and
decoder impose some input distribution for the Gaussian channel i.e., impose some distri-
bution on the sequence Xm which can be different from the distribution which maximize
I(Xm;Y m). So we can write

R(D) = min
p(ŝ|s): E[d(s,ŝ)]≤D

I(Sk; Ŝk) ≤ I(Xm;Y m) ≤ max
p(x): E[ρ(X)]≤P

I(Xm;Y m) = C(P ).

(b) We want to find an expression for R(D) where

R(D) = min
p(ŝ|s): E[d(s,ŝ)]≤D

I(Sk; Ŝk).
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Let us write

I(S; Ŝ) = H(S) − H(S|Ŝ)

= 1/2 log(2πeQ) − H(S|Ŝ)

= 1/2 log(2πeQ) − H(S − Ŝ|Ŝ)

≥ 1/2 log(2πeQ) − H(S − Ŝ)

≥ 1/2 log(2πeQ) − H(N (0, E(S − Ŝ)2))

= 1/2 log(2πeQ) − 1/2 log(2πeE(S − Ŝ)2)

≥ 1/2 log(2πeQ) − 1/2 log(2πeD)

= 1/2 log
Q

D
,

so I(S; Ŝ) ≥
(

1
2 log Q

D

)+
, and remember that it is shown in the course that in fact this

rate is acheivable so finally we have

R(D) =

[
1

2
log

Q

D

]+

.

Now let us compute C(P ). We have

C(P ) = max
p(x): E[X2]≤P

.

Then we can write

I(X;Y ) = H(Y ) − H(Y |X)

= H(Y ) − H(X + Z|X)

= H(Y ) − H(Z)

= H(Y ) − 1/2 log(2πeN).

We know that X and Z are independent so EY 2 = EX2 + N ≤ P + N . Then we have
I(X;Y ) ≤ 1/2 log(1+P/N) and this rate is acheivable by choosing the input distribution
to be Gaussian, so we have

C(P ) =
1

2
log

(

1 +
P

N

)

.

From part (a) we conclude that
NQ

N + P
≤ D.

(c) We have Xℓ = αSℓ so we can write EX2
ℓ = α2

ES2
ℓ . Then we have P = α2Q which means

α =

√

P

Q
.

For the second part we have Yℓ = αSℓ + Zℓ and Ŝℓ = βYℓ. Then we can write

E

[

(Sℓ − Ŝℓ)
2
]

= E
[
(Sℓ − αβSℓ − βZℓ)

2
]
.
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Taking the derivative with respect to β and setting it to zero we have

E[(Sℓ − αβSℓ − βZℓ)(αSℓ + Zℓ)] = 0,

then
α(1 − αβ)ES2

ℓ − βEZ2
ℓ = 0,

so we have α(1 − αβ) P
α2 = βN . Finally, we can write

β =

√
PQ

P + N
.

(d) Here we have ρ(x) = x2 and x = f(s) = α′s and we want to check that the condition (ii)
is satisfied. We have

PY |X(y|x) =
1√

2πN
exp

{

−(y − x)2

2N

}

.

Moreover we have Y = X + Z = α′S + Z so Y ∼ N (0, α′2Q + N
︸ ︷︷ ︸

σ2
Y

) then we can write

PY (y) =
1

√

2πσ2
Y

exp

{

− y2

σ2
Y

}

.

Now let us find D(PY |X ||PY ). We can write

D(PY |X ||PY ) =

∫

PY |X log
PY |X

PY

dy

=

∫
1√

2πN
exp

[

−(y − x)2

2N

]

log

(

σY√
N

e
− (y−x)2

2N
+ y2

2σ2
Y

)

dy

= log

√

σ2
Y

N
+

(
N

2σ2
Y

− 1/2

)

log e +
log e

2σ2
Y

x2,

so choosing a =
2σ2

Y

log e
and b = −

(

log

√
σ2

Y

N
+ ( N

2σ2
Y

− 1/2) log e

)

we would obtain ρ(x) =

aD(·||·) + b.

Problem 4

(a) Let us write

I(X; X̂ |Y ) = h(X|Y ) − h(X|X̂, Y )

= h(X|Y ) − h(X − X̂|X̂, Y )

≥ h(X|Y ) − h(X − X̂|Y )

≥ h(X|Y ) − h(X − X̂)

≥ h(X|Y ) − 1/2 log (2πeD).
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Now for h(X|Y ) we can write

h(X|Y ) = h(X,Y ) − h(Y )

= 1/2 log

[

(2πe)2 det

(
1 ρ
ρ 1

)]

− 1/2 log [2πe × 1]

= 1/2 log
[
(2πe)(1 − ρ2)

]
,

so

R(D) ≥ 1/2 log
[
(2πe)(1 − ρ2)

]
− 1/2 log 2πeD = −1/2 log

1 − ρ2

D
.

(b) Consider the test channel depicted in Fig. 1. Let us choose

X̂ |Y ∼ N (0, 1 − ρ2 − D),

and
Z ∼ N (0,D),

and Z is independent of X̂ and Y . Then we have

X̃|Y ∼ N (0, 1 − ρ2).

Let us choose X = X̃ then we can write

I(X; X̂ |Y ) = h(X|Y ) − h(X|X̂, Y )

= h(X|Y ) − h(Z)

= 1/2 log
1 − ρ2

D
,

so we have shown that the lower bound is achieved.

X̂

Z

X̃

Y

X

Figure 1: Test channel for the problem 4 part b.

Problem 5

Hamming distortion. X is uniformly distributed on the set {1, · · · ,m}. The distortion measure
is

d(x, x̂) =

{
0 if x = x̂
1 if x 6= x̂

(1)

Consider any joint distribution that satisfies the distortion constraint D. Since D = Pr(X 6= X̂)
, we have by Fano’s inequality

H(X|X̂) ≤ H(D) + D log(m − 1)
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and hence
I(X; X̂) = H(X) − H(X|X̂) ≥ log m − H(D) − D log(m − 1).

We can achieve this lower bound by choosing p(x̂)to be the uniform distribution, and the
conditional distribution of p(x|x̂) to be

p(x|x̂) =

{
1 − D if x = x̂

D
m−1 if x 6= x̂

(2)

It is easy to verify that this gives the right distribution on X and satisfies the bound with
equality for D < 1 − 1

m
. Hence

R(D) =

{
1 log(m) − H(D) − D log(m − 1) if 0 ≤ D ≤ 1 − 1

m

0 if D > 1 − 1
m

(3)

5


