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Solutions: Homework Set # 9

Problem 1

(a)

max
I(Xn;Y n)

n

a
≤ max

I(X1;Y1)
n

b
≤

1
2 log(1 + nP

n )
n

.

where (a) comes from the constraint that all our power, nP , be used at time 1 and (b)
comes from that fact that given Gaussian noise and a power constraint nP , I(X;Y ) ≤
1
2 log(1 + nP

N ) .

(b) We have

max
I(Xn;Y n)

n

a
≤ max

nI(X;Y )
n

= maxI(X;Y )
b
≤ 1

2
log(1 +

P

N
).

where (a) comes from the fact that the channel is memoryless. Notice that the quantity
in part (a) goes to zero as n → ∞ while the quantity in part (b) stays constant. Hence
the impulse scheme is suboptimal.

Problem 2

This problem has been posed in two different ways in the exercise session and we give the
solution to both questions:

(1) X is not assumed to be Gaussian, h(X̂|X) is asked to be calculated in part (b).

(a) In order to have E(‖X̂−X‖2) minimized, it can be shown that E
(

(X̂−X)Yt
)

= 0.
So,

E(X̂Yt) = E(XYt) (1)
⇒ FE(YYt) = E(XYt) (2)

⇒ F = E(XYt)
(
E(YYt)

)−1 (3)

⇒ F = E(X(Xt + Zt))
(
E((X + Z)(Xt + Zt))

)−1 (4)

⇒ F = KX (KX + I)−1 (5)
(6)
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The last line follows because X and Z are independent and thus E(XZt) = 0. Fur-
thermore, KX is defined to be the covariance matrix of X, KX = E(XXt).
Then,

E(‖X̂−X‖2) = E(‖FY −X‖2)
= E((FY −X)t(FY −X))
= E(Tr(FY −X)(FY −X)t)
= TrE((FY −X)(FY −X)t)
= TrE(FY(FY −X)t)− TrE(X(FY −X)t)
= TrFE(YYt)Ft − TrFE(YXt)− TrE(XYt)Ft + TrE(XX)t

= −TrFE(YXt) + TrE(XX)t from equation(2)
= Tr

(
−FE((X + Z)Xt) + E(XX)t

)
= Tr

(
−KX (KX + I)−1 KX + KX

)

(b)

h(X̂|X) = h(FY|X)
= h(F(X + Z)|X)
= h(FZ|X)
= h(FZ) Since X and Y are independent

Z ∼ N (0, I), Thus FZ is also Gaussian, with covariance matrix K = E
(
(FZ)tFZ

)
=

E
(
FtZtZF

)
= FtF. Thus,

h(X̂|X) = h(FZ)

=
1
2

log(2πedet(FtF))

= log
(

2πedet
(
KX (KX + I)−1

))
.

(c) The relation between part (a) and (b) is just through KX as calculated above.

(2) X is assumed to be Gaussian, h(X|X̂) is asked to be calculated in part (b).

(a) In order to have E(‖X̂−X‖2) minimized, it can be shown that

E
(

(X̂−X)Yt
)

= 0. (7)

So,

E(X̂Yt) = E(XYt)
⇒ FE(YYt) = E(XYt)

⇒ F = E(XYt)
(
E(YYt)

)−1

⇒ F = E(X(Xt + Zt))
(
E((X + Z)(Xt + Zt))

)−1

⇒ F = KX (KX + I)−1
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The last line follows because X and Z are independent and thus E(XZt) = 0. Fur-
thermore, KX is defined to be the covariance matrix of X, KX = E(XXt).
Then,

E(‖X̂−X‖2) = E((X̂−X)t(X̂−X))
= ETr((X̂−X)(X̂−X)t)
= TrKe.

where Ke is the covariance matrix of the random variable e = X− X̂.

(b)

h(X|X̂) = h(X− X̂|X̂)
= h(e|FY) define e = X− X̂
?= h(e)

=
1
2

log(2πedet(Ke)) X and X̂ are both Gaussian and thus so is e

In this set of equalities, (?) follows because:
From (7), we know that E(eYt) = 0. This says that E(eFYt) = 0 and thus e and FY
are uncorrelated. At the same time, we know that for Gaussian random variables,
being uncorrelated means being independent. Thus e and FY are independent and
thus h(e|FY) = h(e).

(c) The relation between (a) and (b) is through Ke as calculated above. i.e., E(‖X̂ −
X‖2) = TrKe and h(X|X̂) = 1

2 log(2πedet(Ke)).

Problem 3

(a) Following the hint, what remains is to maximize the quantity h(Y1, U1)−h(Z1, U1). Since
Z1 and U1 are quassian, then the vector (Z1, U1) is a gaussian vector with covariance
matrix

[ N µN
µN N

]
. As a result, h(Z1, U2) = 1

2 log(2πe)2N2(1−µ2). Also the vector (Y1, Z1)
has a covariance matrix

[ P+N µN
µN N

]
so the maximum possible value of its entropy is when

it is a gaussian vector and is h(Z1, U2) = 1
2 log(2πe)2(PN +N2(1− µ2)). As a result the

capacity is given by 1
2 log(1 + P

(1−µ2N)
).

(b) I(Ỹ1;X1) ≤ I(Y1, U1;X1) holds by data processing inequality.
To have I(Ỹ1;X1) = I(Y1, U2;X1), let calculate each term separately:

I(Ỹ1;X1) = I(Y1 + λU1;X1)
= H(Y1 + λU1) +H(X1)−H(X1, Y1 + λU1)

=
1
2

log
(P +N + λ2N + λµ1N)(P )

det
[
P P
P P +N + λ2N + λµ1N)

]

and you have already calculated I(U1, Y1;X1) in part (a). Setting them equal gives the
answer for λ
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(c) Following the hint,

E[(X̂1 −X1)2] = E[(α1Y1 + β1U1 −X1)2]
= E[((α1 − 1)X1 + α1Z1 + β1U1)2]
= E[((α1 − 1)X1)2 + (α1Z1 + β1U1)2]
= (α1 − 1)2E[X2

1 ] + α2
1E[Z2

1 ] + β2
1E[U2

1 ] + 2α1β1E[Z1U1]
= (α1 − 1)2P + α2

1N + β2
1N + 2α1β1µN

To minimize this value, we take the derivative of it with respect to α1 and β1 and set it
to zero: {

2(α1 − 1)P + 2α1N + 2β1µN = 0
2β1N + 2α1µN = 0.

Solving this set of equations gives the optimal α1 and β1.

(d) Since X1 and X2 are chosen independently to maximize I(X1;U1, Y1) and I(X2;U2, Y2)
respectively, we know that both of them should be Gaussian and thus:

C = H(U1, Y1)−H(U1, Y1|X1) +H(U2, Y2)−H(U2, Y2|X2) (8)
= H(U1, Y1)−H(U1, Z1) +H(U2, Y2)−H(U2, Z2). (9)

since (U1, Z1) is independent of X1, and (U2, Z2) is independent of X2. From the correla-
tion between the Gaussian noises that is given in the question, and knowing the fact that
the optimizing X1, X2 has a Gaussian distribution of power P1, P2 respectively, each term
can now be computed:

H(U1, Y1) =
1
2

log det
(

2πe
[
N + P1 µ1N
µ1N N

])
H(U1, Z1) =

1
2

log det
(

2πe
[

N µ1N
µ1N N

])
H(U2, Y2) =

1
2

log det
(

2πe
[
N + P2 µ2N
µ2N N

])
H(U2, Z2) =

1
2

log det
(

2πe
[

N µ2N
µ2N N

])
Thus

C = max
P1,P2: P1+P2≤P

1
2

log
(1− µ1)2N2 + P1N

(1− µ1)2N2
+

1
2

log
(1− µ2)2N2 + P2N

(1− µ2)2N2

If you define N1 = (1 − µ1)2N2 and N2 = (1 − µ2)2N2,It would become just a simple
water filling problem to find P1, P2 and in fact you have already seen that

P1 = (ν −N1)+,

and
P2 = (ν −N2)+,

where ν is found by P1 + P2 = P .
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Problem 4

The channel reduces to Y = 2X + Z1 + Z2. The power constraint on the input 2X is 4P . Z1

and Z2 are zero mean, and therefore so is Z1 + Z2 . Then

Var(Z1 + Z2) = E[Z2
1 + Z2

2 + 2Z1Z2]

= 2σ2 + 2ρσ2.

Thus the noise distribution is N (0; 2σ2(1 + ρ)).

(a) Plugging the noise and power values into the formula for the one-dimensional (P ;N)
channel capacity, C = 1

2 log(1 + P
N ) , we get C = 1

2 log(1 + 2P
σ2(1+ρ)

).

(b) When ρ = 0, C = 1
2 log(1 + 2P

σ2 ). When ρ = 1, C = 1
2 log(1 + P

σ2 ). When ρ = −1, C =∞.
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