Solutions: Homework Set \# 9

Problem 1

(a)

$$
\begin{aligned}
\max \frac{I\left(X^{n} ; Y^{n}\right)}{n} & \stackrel{a}{\leq} \max \frac{I\left(X_{1} ; Y_{1}\right)}{n} \\
& \leq \frac{b}{\leq} \\
& \frac{\frac{1}{2} \log \left(1+\frac{n P}{n}\right)}{n}
\end{aligned}
$$

where (a) comes from the constraint that all our power, $n P$, be used at time 1 and (b) comes from that fact that given Gaussian noise and a power constraint $n P, I(X ; Y) \leq$ $\frac{1}{2} \log \left(1+\frac{n P}{N}\right)$.
(b) We have

$$
\begin{aligned}
\max \frac{I\left(X^{n} ; Y^{n}\right)}{n} & \stackrel{a}{\leq \max \frac{n I(X ; Y)}{n}} \\
& =\max I(X ; Y) \\
& \leq \frac{b}{2} \log \left(1+\frac{P}{N}\right) .
\end{aligned}
$$

where (a) comes from the fact that the channel is memoryless. Notice that the quantity in part (a) goes to zero as $n \rightarrow \infty$ while the quantity in part (b) stays constant. Hence the impulse scheme is suboptimal.

Problem 2

This problem has been posed in two different ways in the exercise session and we give the solution to both questions:
(1) \mathbf{X} is not assumed to be Gaussian, $h(\hat{\mathbf{X}} \mid \mathbf{X})$ is asked to be calculated in part (b).
(a) In order to have $\mathbb{E}\left(\|\hat{\mathbf{X}}-\mathbf{X}\|^{2}\right)$ minimized, it can be shown that $\mathbb{E}\left((\hat{\mathbf{X}}-\mathbf{X}) \mathbf{Y}^{t}\right)=\mathbf{0}$. So,

$$
\begin{align*}
& \mathbb{E}\left(\hat{\mathbf{X}} \mathbf{Y}^{t}\right)=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right) \tag{1}\\
\Rightarrow & \mathbf{F} \mathbb{E}\left(\mathbf{Y} \mathbf{Y}^{t}\right)=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right) \tag{2}\\
\Rightarrow & \mathbf{F}=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right)\left(\mathbb{E}\left(\mathbf{Y} \mathbf{Y}^{t}\right)\right)^{-1} \tag{3}\\
\Rightarrow & \mathbf{F}=\mathbb{E}\left(\mathbf{X}\left(\mathbf{X}^{t}+\mathbf{Z}^{t}\right)\right)\left(\mathbb{E}\left((\mathbf{X}+\mathbf{Z})\left(\mathbf{X}^{t}+\mathbf{Z}^{t}\right)\right)\right)^{-1} \tag{4}\\
\Rightarrow & \mathbf{F}=\mathbf{K}_{X}\left(\mathbf{K}_{X}+\mathbf{I}\right)^{-1} \tag{5}
\end{align*}
$$

The last line follows because X and Z are independent and thus $\mathbb{E}\left(\mathbf{X Z} \mathbf{Z}^{t}\right)=0$. Furthermore, \mathbf{K}_{X} is defined to be the covariance matrix of $X, \mathbf{K}_{X}=\mathbb{E}\left(\mathbf{X X}^{t}\right)$.
Then,

$$
\begin{aligned}
\mathbb{E}\left(\|\hat{\mathbf{X}}-\mathbf{X}\|^{2}\right) & =\mathbb{E}\left(\|\mathbf{F} \mathbf{Y}-\mathbf{X}\|^{2}\right) \\
& =\mathbb{E}\left((\mathbf{F} \mathbf{Y}-\mathbf{X})^{t}(\mathbf{F} \mathbf{Y}-\mathbf{X})\right) \\
& =\mathbb{E}\left(\operatorname{Tr}(\mathbf{F Y}-\mathbf{X})(\mathbf{F Y}-\mathbf{X})^{t}\right) \\
& =\operatorname{Tr} \mathbb{E}\left((\mathbf{F Y}-\mathbf{X})(\mathbf{F Y}-\mathbf{X})^{t}\right) \\
& =\operatorname{Tr} \mathbb{E}\left(\mathbf{F Y}(\mathbf{F Y}-\mathbf{X})^{t}\right)-\operatorname{Tr} \mathbb{E}\left(\mathbf{X}(\mathbf{F Y}-\mathbf{X})^{t}\right) \\
& =\operatorname{Tr} \mathbf{F E}\left(\mathbf{Y} \mathbf{Y}^{t}\right) \mathbf{F}^{t}-\operatorname{Tr} \mathbf{F} \mathbb{E}\left(\mathbf{Y} \mathbf{X}^{t}\right)-\operatorname{Tr} \mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right) \mathbf{F}^{t}+\operatorname{Tr} \mathbb{E}(\mathbf{X X})^{t} \\
& =-\operatorname{Tr} \mathbf{F} \mathbb{E}\left(\mathbf{Y} \mathbf{X}^{t}\right)+\operatorname{Tr} \mathbb{E}(\mathbf{X X})^{t} \quad \text { from equation }(2) \\
& =\operatorname{Tr}\left(-\mathbf{F} \mathbb{E}\left((\mathbf{X}+\mathbf{Z}) \mathbf{X}^{t}\right)+\mathbb{E}(\mathbf{X X})^{t}\right) \\
& =\operatorname{Tr}\left(-\mathbf{K}_{X}\left(\mathbf{K}_{X}+\mathbf{I}\right)^{-1} \mathbf{K}_{X}+\mathbf{K}_{X}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
h(\hat{\mathbf{X}} \mid \mathbf{X}) & =h(\mathbf{F Y} \mid \mathbf{X}) \\
& =h(\mathbf{F}(\mathbf{X}+\mathbf{Z}) \mid \mathbf{X}) \\
& =h(\mathbf{F Z} \mid \mathbf{X}) \\
& =h(\mathbf{F Z}) \quad \text { Since } X \text { and } Y \text { are independent }
\end{aligned}
$$

$Z \sim \mathcal{N}(0, \mathbf{I})$, Thus $\mathbf{F Z}$ is also Gaussian, with covariance matrix $\mathbf{K}=\mathbb{E}\left((\mathbf{F Z})^{t} \mathbf{F Z}\right)=$ $\mathbb{E}\left(\mathbf{F}^{t} \mathbf{Z}^{t} \mathbf{Z} \mathbf{F}\right)=\mathbf{F}^{t} \mathbf{F}$. Thus,

$$
\begin{aligned}
h(\hat{\mathbf{X}} \mid \mathbf{X}) & =h(\mathbf{F Z}) \\
& =\frac{1}{2} \log \left(2 \pi e \operatorname{det}\left(\mathbf{F}^{t} \mathbf{F}\right)\right) \\
& =\log \left(2 \pi e \operatorname{det}\left(\mathbf{K}_{X}\left(\mathbf{K}_{X}+\mathbf{I}\right)^{-1}\right)\right)
\end{aligned}
$$

(c) The relation between part (a) and (b) is just through \mathbf{K}_{X} as calculated above.
(2) \mathbf{X} is assumed to be Gaussian, $h(\mathbf{X} \mid \hat{\mathbf{X}})$ is asked to be calculated in part (b).
(a) In order to have $\mathbb{E}\left(\|\hat{\mathbf{X}}-\mathbf{X}\|^{2}\right)$ minimized, it can be shown that

$$
\begin{equation*}
\mathbb{E}\left((\hat{\mathbf{X}}-\mathbf{X}) \mathbf{Y}^{t}\right)=\mathbf{0} \tag{7}
\end{equation*}
$$

So,

$$
\begin{aligned}
& \mathbb{E}\left(\hat{\mathbf{X}} \mathbf{Y}^{t}\right)=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right) \\
\Rightarrow & \mathbf{F} \mathbb{E}\left(\mathbf{Y} \mathbf{Y}^{t}\right)=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right) \\
\Rightarrow & \mathbf{F}=\mathbb{E}\left(\mathbf{X} \mathbf{Y}^{t}\right)\left(\mathbb{E}\left(\mathbf{Y} \mathbf{Y}^{t}\right)\right)^{-1} \\
\Rightarrow & \mathbf{F}=\mathbb{E}\left(\mathbf{X}\left(\mathbf{X}^{t}+\mathbf{Z}^{t}\right)\right)\left(\mathbb{E}\left((\mathbf{X}+\mathbf{Z})\left(\mathbf{X}^{t}+\mathbf{Z}^{t}\right)\right)\right)^{-1} \\
\Rightarrow & \mathbf{F}=\mathbf{K}_{X}\left(\mathbf{K}_{X}+\mathbf{I}\right)^{-1}
\end{aligned}
$$

The last line follows because X and Z are independent and thus $\mathbb{E}\left(\mathbf{X Z} \mathbf{Z}^{t}\right)=0$. Furthermore, \mathbf{K}_{X} is defined to be the covariance matrix of $X, \mathbf{K}_{X}=\mathbb{E}\left(\mathbf{X X}^{t}\right)$.
Then,

$$
\begin{aligned}
\mathbb{E}\left(\|\hat{\mathbf{X}}-\mathbf{X}\|^{2}\right) & =\mathbb{E}\left((\hat{\mathbf{X}}-\mathbf{X})^{t}(\hat{\mathbf{X}}-\mathbf{X})\right) \\
& =\mathbb{E} \operatorname{Tr}\left((\hat{\mathbf{X}}-\mathbf{X})(\hat{\mathbf{X}}-\mathbf{X})^{t}\right) \\
& =\operatorname{Tr} \mathbf{K}_{e}
\end{aligned}
$$

where \mathbf{K}_{e} is the covariance matrix of the random variable $\mathbf{e}=\mathbf{X}-\hat{\mathbf{X}}$.
(b)

$$
\begin{aligned}
h(\mathbf{X} \mid \hat{\mathbf{X}}) & =h(\mathbf{X}-\hat{\mathbf{X}} \mid \hat{\mathbf{X}}) \\
& =h(\mathbf{e} \mid \mathbf{F Y}) \quad \text { define } \mathbf{e}=\mathbf{X}-\hat{\mathbf{X}} \\
& \stackrel{\star}{=} h(\mathbf{e}) \\
& =\frac{1}{2} \log \left(2 \pi e \operatorname{det}\left(\mathbf{K}_{e}\right)\right) \quad \mathbf{X} \text { and } \hat{\mathbf{X}} \text { are both Gaussian and thus so is } \mathbf{e}
\end{aligned}
$$

In this set of equalities, (\star) follows because:
From (7), we know that $\mathbb{E}\left(\mathbf{e} \mathbf{Y}^{t}\right)=0$. This says that $\mathbb{E}\left(\mathbf{e F} \mathbf{Y}^{t}\right)=0$ and thus \mathbf{e} and $\mathbf{F Y}$ are uncorrelated. At the same time, we know that for Gaussian random variables, being uncorrelated means being independent. Thus e and FY are independent and thus $h(\mathbf{e} \mid \mathbf{F Y})=h(\mathbf{e})$.
(c) The relation between (a) and (b) is through \mathbf{K}_{e} as calculated above. i.e., $\mathbb{E}(\| \hat{\mathbf{X}}-$ $\left.\mathbf{X} \|^{2}\right)=\operatorname{Tr} \mathbf{K}_{e}$ and $h(\mathbf{X} \mid \hat{\mathbf{X}})=\frac{1}{2} \log \left(2 \pi e \operatorname{det}\left(\mathbf{K}_{e}\right)\right)$.

Problem 3

(a) Following the hint, what remains is to maximize the quantity $h\left(Y_{1}, U_{1}\right)-h\left(Z_{1}, U_{1}\right)$. Since Z_{1} and U_{1} are quassian, then the vector $\left(Z_{1}, U_{1}\right)$ is a gaussian vector with covariance $\operatorname{matrix}\left[\begin{array}{cc}N & \mu N \\ \mu N & N\end{array}\right]$. As a result, $h\left(Z_{1}, U_{2}\right)=\frac{1}{2} \log (2 \pi e)^{2} N^{2}\left(1-\mu^{2}\right)$. Also the vector $\left(Y_{1}, Z_{1}\right)$ has a covariance matrix $\left[\begin{array}{cc}P+N & \mu N \\ \mu N & N\end{array}\right]$ so the maximum possible value of its entropy is when it is a gaussian vector and is $h\left(Z_{1}, U_{2}\right)=\frac{1}{2} \log (2 \pi e)^{2}\left(P N+N^{2}\left(1-\mu^{2}\right)\right)$. As a result the capacity is given by $\frac{1}{2} \log \left(1+\frac{P}{\left(1-\mu^{2} N\right)}\right)$.
(b) $I\left(\tilde{Y}_{1} ; X_{1}\right) \leq I\left(Y_{1}, U_{1} ; X_{1}\right)$ holds by data processing inequality.

To have $I\left(\tilde{Y}_{1} ; X_{1}\right)=I\left(Y_{1}, U_{2} ; X_{1}\right)$, let calculate each term separately:

$$
\begin{aligned}
I\left(\tilde{Y}_{1} ; X_{1}\right) & =I\left(Y_{1}+\lambda U_{1} ; X_{1}\right) \\
& =H\left(Y_{1}+\lambda U_{1}\right)+H\left(X_{1}\right)-H\left(X_{1}, Y_{1}+\lambda U_{1}\right) \\
& =\frac{1}{2} \log \frac{\left(P+N+\lambda^{2} N+\lambda \mu_{1} N\right)(P)}{\operatorname{det}\left[\begin{array}{cc}
P & P \\
P & \left.P+N+\lambda^{2} N+\lambda \mu_{1} N\right)
\end{array}\right]}
\end{aligned}
$$

and you have already calculated $I\left(U_{1}, Y_{1} ; X_{1}\right)$ in part (a). Setting them equal gives the answer for λ
(c) Following the hint,

$$
\begin{aligned}
\mathbb{E}\left[\left(\hat{X}_{1}-X_{1}\right)^{2}\right] & =\mathbb{E}\left[\left(\alpha_{1} Y_{1}+\beta_{1} U_{1}-X_{1}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\left(\alpha_{1}-1\right) X_{1}+\alpha_{1} Z_{1}+\beta_{1} U_{1}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\left(\alpha_{1}-1\right) X_{1}\right)^{2}+\left(\alpha_{1} Z_{1}+\beta_{1} U_{1}\right)^{2}\right] \\
& =\left(\alpha_{1}-1\right)^{2} \mathbb{E}\left[X_{1}^{2}\right]+\alpha_{1}^{2} \mathbb{E}\left[Z_{1}^{2}\right]+\beta_{1}^{2} \mathbb{E}\left[U_{1}^{2}\right]+2 \alpha_{1} \beta_{1} \mathbb{E}\left[Z_{1} U_{1}\right] \\
& =\left(\alpha_{1}-1\right)^{2} P+\alpha_{1}^{2} N+\beta_{1}^{2} N+2 \alpha_{1} \beta_{1} \mu N
\end{aligned}
$$

To minimize this value, we take the derivative of it with respect to α_{1} and β_{1} and set it to zero:

$$
\left\{\begin{array}{l}
2\left(\alpha_{1}-1\right) P+2 \alpha_{1} N+2 \beta_{1} \mu N=0 \\
2 \beta_{1} N+2 \alpha_{1} \mu N=0 .
\end{array}\right.
$$

Solving this set of equations gives the optimal α_{1} and β_{1}.
(d) Since X_{1} and X_{2} are chosen independently to maximize $I\left(X_{1} ; U_{1}, Y_{1}\right)$ and $I\left(X_{2} ; U_{2}, Y_{2}\right)$ respectively, we know that both of them should be Gaussian and thus:

$$
\begin{align*}
C & =H\left(U_{1}, Y_{1}\right)-H\left(U_{1}, Y_{1} \mid X_{1}\right)+H\left(U_{2}, Y_{2}\right)-H\left(U_{2}, Y_{2} \mid X_{2}\right) \tag{8}\\
& =H\left(U_{1}, Y_{1}\right)-H\left(U_{1}, Z_{1}\right)+H\left(U_{2}, Y_{2}\right)-H\left(U_{2}, Z_{2}\right) . \tag{9}
\end{align*}
$$

since $\left(U_{1}, Z_{1}\right)$ is independent of X_{1}, and $\left(U_{2}, Z_{2}\right)$ is independent of X_{2}. From the correlation between the Gaussian noises that is given in the question, and knowing the fact that the optimizing X_{1}, X_{2} has a Gaussian distribution of power P_{1}, P_{2} respectively, each term can now be computed:

$$
\begin{array}{r}
H\left(U_{1}, Y_{1}\right)=\frac{1}{2} \log \operatorname{det}\left(2 \pi e\left[\begin{array}{cc}
N+P_{1} & \mu_{1} N \\
\mu_{1} N & N
\end{array}\right]\right) \\
H\left(U_{1}, Z_{1}\right)=\frac{1}{2} \log \operatorname{det}\left(2 \pi e\left[\begin{array}{cc}
N & \mu_{1} N \\
\mu_{1} N & N
\end{array}\right]\right) \\
H\left(U_{2}, Y_{2}\right)=\frac{1}{2} \log \operatorname{det}\left(2 \pi e\left[\begin{array}{cc}
N+P_{2} & \mu_{2} N \\
\mu_{2} N & N
\end{array}\right]\right) \\
H\left(U_{2}, Z_{2}\right)=\frac{1}{2} \log \operatorname{det}\left(2 \pi e\left[\begin{array}{cc}
N & \mu_{2} N \\
\mu_{2} N & N
\end{array}\right]\right)
\end{array}
$$

Thus

$$
C=\max _{P_{1}, P_{2}: P P_{1}+P_{2} \leq P} \frac{1}{2} \log \frac{\left(1-\mu_{1}\right)^{2} N^{2}+P_{1} N}{\left(1-\mu_{1}\right)^{2} N^{2}}+\frac{1}{2} \log \frac{\left(1-\mu_{2}\right)^{2} N^{2}+P_{2} N}{\left(1-\mu_{2}\right)^{2} N^{2}}
$$

If you define $N_{1}=\left(1-\mu_{1}\right)^{2} N^{2}$ and $N_{2}=\left(1-\mu_{2}\right)^{2} N^{2}$, It would become just a simple water filling problem to find P_{1}, P_{2} and in fact you have already seen that

$$
P_{1}=\left(\nu-N_{1}\right)^{+},
$$

and

$$
P_{2}=\left(\nu-N_{2}\right)^{+},
$$

where ν is found by $P_{1}+P_{2}=P$.

Problem 4

The channel reduces to $Y=2 X+Z_{1}+Z_{2}$. The power constraint on the input $2 X$ is $4 P$. Z_{1} and Z_{2} are zero mean, and therefore so is $Z 1+Z 2$. Then

$$
\begin{aligned}
& \operatorname{Var}\left(Z_{1}+Z_{2}\right)=E\left[Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2}\right] \\
& =2 \sigma^{2}+2 \rho \sigma^{2} .
\end{aligned}
$$

Thus the noise distribution is $\mathcal{N}\left(0 ; 2 \sigma^{2}(1+\rho)\right)$.
(a) Plugging the noise and power values into the formula for the one-dimensional $(P ; N)$ channel capacity, $C=\frac{1}{2} \log \left(1+\frac{P}{N}\right)$, we get $C=\frac{1}{2} \log \left(1+\frac{2 P}{\sigma^{2}(1+\rho)}\right)$.
(b) When $\rho=0, C=\frac{1}{2} \log \left(1+\frac{2 P}{\sigma^{2}}\right)$. When $\rho=1, C=\frac{1}{2} \log \left(1+\frac{P}{\sigma^{2}}\right)$. When $\rho=-1, C=\infty$.

