Solutions: Homework Set \# 8

Problem 1

(a) Kuhn-Tucker condition:

$$
\sum_{y} P(y \mid x) \log \frac{P(y \mid x)}{P(x)}=C \quad \forall P(x)>0
$$

For $x=1$, this will be $\log \frac{1}{1-2 \pi}$ and for $x=2$ and $x=33$ it would be $(1-\epsilon) \log \frac{1-\epsilon}{\pi}+\epsilon \log \frac{\epsilon}{\pi}$ Thus,

$$
\begin{align*}
& \log \frac{1}{1-2 \pi}=(1-\epsilon) \log \frac{1-\epsilon}{\pi}+\epsilon \log \frac{\epsilon}{\pi} \\
& \Rightarrow \frac{1}{1-2 \pi}=\left(\frac{1-\epsilon}{\pi}\right)^{1-\epsilon}\left(\frac{\epsilon}{\pi}\right)^{\epsilon} \\
& \Rightarrow \frac{\pi}{1-2 \pi}=(1-\epsilon)^{1-\epsilon} \epsilon^{\epsilon}=\delta \\
& \Rightarrow \pi=\delta-2 \pi \delta \tag{1}\\
& \Rightarrow(1+2 \delta) \pi=\delta \tag{2}\\
& \Rightarrow \pi=\frac{\delta}{1+2 \delta} \\
& C=\log \frac{1}{1-2 \pi}=\log \frac{1}{1-\frac{2 \delta}{1+2 \delta}}=\log (1+2 \delta)=\log \left(1+2(1-\epsilon)^{1-\epsilon} \epsilon^{\epsilon}\right)
\end{align*}
$$

(b) If $\epsilon=0 \rightarrow \lim _{\epsilon \rightarrow 0} \epsilon^{\epsilon}=1$. Then,

$$
\begin{aligned}
C & =\log 1+2=\log 3 \text { bits } \\
& =\log |\mathcal{Y}|
\end{aligned}
$$

If $\epsilon=\frac{1}{2}$, then

$$
C=\log \left(1+2\left(\frac{1}{2}\right)^{\frac{1}{2}}\left(\frac{1}{2}\right)^{\frac{1}{2}}\right)=\log 2=1 \quad \text { bits }
$$

If $\epsilon=0$, we have a perfect noiseless channel with $|\mathcal{X}|=|\mathcal{Y}|=3$.

$$
\begin{aligned}
I(X ; Y)=H(Y) & -H(Y \mid X)=H(Y) \text { since } H(Y \mid X)=0 \\
& \rightarrow \max H(Y)=C=\log 3
\end{aligned}
$$

If $\epsilon=\frac{1}{2}, X=2$ and $X=3$ will be received completely random. So we can say that only one bit is transmitted, Hence, $C=1$ bit.

Problem 2

(a) We know for each of two channels there is an input distribution $p_{1}^{*}(x)$ and $p_{2}^{*}(x)$ such that they achieve capacitites C_{1} and C_{2} respectively. Assume sender choses the alphabet \mathcal{X}_{1} with probability p and \mathcal{X}_{2} with probability $(1-p)$. Therefore,

$$
\left.\begin{array}{c}
\operatorname{Pr}\left\{x: x \in \mathcal{X}_{1} \cup \mathcal{X}_{2}\right\}=\left\{\begin{array}{cc}
p p_{1}^{*}(x) & x \in \mathcal{X}_{1} \\
(1-p) p_{2}^{*}(x) & x \in \mathcal{X}_{2}
\end{array}\right. \\
\operatorname{Pr}\{Y=y\}=\sum_{x \in \mathcal{X}_{1} \cup \mathcal{X}_{2}} \operatorname{Pr}\{X=x\} \operatorname{Pr}\{Y=y \mid X=x\} \\
=p \sum_{x \in \mathcal{X}_{1}} p_{1}^{*}(x) \operatorname{Pr}\{Y=y \mid X=x\} \\
+(1-p) \sum_{x \in \mathcal{X}_{2}} p_{2}^{*}(x) \operatorname{Pr}\{Y=y \mid X=x\}
\end{array}\right\} \begin{array}{r}
\operatorname{Pr}\{Y=y \mid X=x\}=\left\{\begin{array}{cc}
p_{1}(y \mid x) & x \in \mathcal{X}_{1} \text { and } y \in \mathcal{Y}_{1} \\
p_{2}(y \mid x) & x \in \mathcal{X}_{2} \text { and } y \in \mathcal{Y}_{2} \\
0 & \text { otherwise }
\end{array}\right. \\
\Rightarrow \operatorname{Pr}\{Y=y\}=\left\{\begin{array}{c}
p P_{1}^{*}(y) \\
(1-p) P_{2}^{*}(y) \\
y \in \mathcal{Y}_{1} \\
\left(1-\mathcal{Y}_{2}\right.
\end{array}\right. \\
P_{1}^{*}(y)=\sum p_{1}^{*}(x) p_{1}(y \mid x) \\
P_{2}^{*}(y)=\sum p_{2}^{*}(x) p_{2}(y \mid x)
\end{array}
$$

$$
\text { while } \quad \begin{aligned}
& P_{1}^{*}(y)=\sum p_{1}^{*}(x) p_{1}(y \mid x)
\end{aligned}
$$

We write Kuhn-Tucker conditions. If $x_{i} \in \mathcal{X}_{1}$:

$$
\begin{aligned}
\sum p\left(y \mid x_{i}\right) \log \frac{p\left(y \mid x_{i}\right)}{p(y)} & =\sum_{y \in \mathcal{Y}_{1}} p_{1}\left(y \mid x_{i}\right) \frac{p_{1}\left(y \mid x_{i}\right)}{p P_{1}^{*}(y)} \\
& =\sum_{y \in \mathcal{Y}_{1}} p_{1}\left(y \mid x_{i}\right) \frac{p_{1}\left(y \mid x_{i}\right)}{P_{1}^{*}(y)}-\log p \sum_{y \in \mathcal{Y}_{1}} p_{1}\left(y \mid x_{i}\right) \\
& =C_{1}-\log p
\end{aligned}
$$

If $x_{i} \in \mathcal{X}_{2}$, similarly we get

$$
\sum p\left(y \mid x_{i}\right) \log \frac{p\left(y \mid x_{i}\right)}{p(y)}=C_{2}-\log (1-p)
$$

Now with proper choice of p, we can satisfy K-T conditions for the new union channel, thus:

$$
C_{1}-\log p=C_{2}-\log (1-p) \quad \Rightarrow \quad \frac{p}{1-p}=2^{C_{1}-C_{2}} \Rightarrow p=\frac{1}{1+2^{C_{1}-C_{2}}}
$$

Thus,

$$
\begin{aligned}
& C=C_{1}+\log \left(1+2^{C_{1}-C_{2}}\right) \\
& 2^{C}=2^{C_{1}}\left(1+2^{C_{1}-C_{2}}\right) \\
& \Rightarrow 2^{C}=2^{C_{1}}+2^{C_{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) & =H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1}, Y_{2} \mid X_{1}, X_{2}\right) \\
P\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =P\left(x_{1}, x_{2}\right) P\left(y_{1} \mid x_{1}, x_{2}\right) P\left(y_{2} \mid y_{1}, x_{1}, x_{2}\right) \\
& =P\left(x_{1}, x_{2}\right) P\left(y_{1} \mid x_{1}\right) P\left(y_{2} \mid x_{2}\right) \\
\rightarrow H\left(Y_{1}, Y_{2} \mid X_{1}, X_{2}\right) & =H\left(Y_{1}, \mid X_{1}\right)+H\left(Y_{2} \mid X_{2}\right)
\end{aligned}
$$

Since $Y_{1} \rightarrow X_{1} \rightarrow X_{2} \rightarrow Y_{2}$ forms a Markov chain.

$$
\begin{aligned}
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) & =H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1}, \mid X_{1}\right)-H\left(Y_{2} \mid X_{2}\right) \\
& \geq H\left(Y_{1}\right)-H\left(Y_{1}, \mid X_{1}\right)+H\left(Y_{2}\right)-H\left(Y_{2} \mid X_{2}\right)
\end{aligned}
$$

with equality iff Y_{1} and Y_{2} are independent, i.e. X_{1} and X_{2} are independent.

$$
\rightarrow \max I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)=C
$$

(c) Using part (a), we have $C=\log \left(2^{C_{1}}+\log 2^{C_{2}}\right), C_{1}=1-H_{2}(P)$ and $C_{2}=0$

$$
\rightarrow C=\log \left(2^{1-H_{2}(P)}+2^{0}\right)=\log \left(1+2^{1-H_{2}(p)}\right)
$$

Problem 3

(a) We note that channel S_{1} is symmetric. Hence, $\Pi=1-\Pi=\frac{1}{2}$.

$$
\begin{aligned}
& P(y=+1)=\frac{1}{2}(1-\epsilon) \\
& P(y=-1)=\frac{1}{2}(1-\epsilon) \\
& P(y=\epsilon)=\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon \\
& C_{1}=\sum_{y} P\left(y \mid x_{i}\right) \log \frac{P\left(y \mid y_{i}\right)}{P(y)}=(1-\epsilon) \log \frac{1-\epsilon}{0.5(1-\epsilon)}+\epsilon \log \frac{\epsilon}{\epsilon}=1-\epsilon
\end{aligned}
$$

In class we saw that the capacity of the Z-channel with $P_{\text {error }}=\gamma$ is

$$
C_{2}=\log (1+\delta(1-\gamma))
$$

where $\delta=\gamma^{\frac{\gamma}{1-\gamma}}$.
For $\gamma=0.5, C=\log (1+0.50 .5)=\log \frac{5}{4}$
(b)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\pi_{1} & \pi_{2}
\end{array}\right]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=\left[\begin{array}{ll}
\pi_{1} & \pi_{2}
\end{array}\right]} \\
& \pi_{1}(1-a)+\left(1-\pi_{1}\right) b=\pi_{1} \rightarrow \pi_{1}-\pi_{1} a+b-\pi_{1} b=\pi_{1} \\
& \rightarrow \pi_{1}=\frac{b}{a+b} \quad \pi_{2}=\frac{a}{a+b}
\end{aligned}
$$

(c) In fact, we only derive a transmission rate and show that this rate is achievable. Showing the optimality of this rate is more technical.
We claim that $R=\pi_{1} C_{1}+\pi_{2} C_{2}$ is achievable. We propose the following simple scheme to transmit at rate R. The transmitter designs two capacity achieving codes C_{1} and C_{2} for transmission over the two erasure and Z channels, respectively. Depending on the state of the channel, it sends the first remaining bit (the next bit in the sequence) of the corresponding codeword. Since the receiver also knows the state of the channel, it can collect all the bits and then re-arrange them to obtain channel output as if the same codeword was used for transmission on a single binary symmetric channel. For large duration of time, the channel would be in the bad state for π_{1} fraction of time, and in the good state for the remaining π_{2} fraction. Since we transmit at capacity rate for each fraction, the total rate would be $R=\pi_{1} C_{1}+\pi_{2} C_{2}$.
(d)

$$
\begin{aligned}
C_{N S I}= & \frac{1}{n} I\left(X^{n} ; Y^{n}\right) \\
\leq & \frac{1}{n} I\left(X^{n} ; Y^{n}, S^{n}\right) \\
= & \frac{1}{n} I\left(X^{n} ; S^{n}\right)+\frac{1}{n} I\left(X^{n} ; Y^{n} \mid S^{n}\right) \\
= & \frac{1}{n}\left(H\left(Y^{n} \mid S^{n}\right)-H\left(Y^{n} \mid X^{n}, S^{n}\right)\right) \\
& \left(I\left(X^{n} ; S^{n}\right)=0 \text { since the encoder does not have access to the knowledge of channel state }\right) \\
= & \frac{1}{n} \sum_{i}\left(H\left(Y_{i} \mid S^{n} Y_{1}^{i-1}\right)-H\left(Y_{i} \mid X^{n}, S^{n}, Y_{1}^{i-1}\right)\right) \\
\leq & \frac{1}{n} \sum_{i}\left(H\left(Y_{i} \mid S_{i}\right)-H\left(Y_{i} \mid X^{n}, S^{n}, Y_{1}^{i-1}\right)\right) \quad \text { Conditioning reduces entropy } \\
\leq & \frac{1}{n} \sum_{i}\left(H\left(Y_{i} \mid S_{i}\right)-H\left(Y_{i} \mid X_{i}, S_{i}\right)\right) \quad X^{n}, S^{n}, Y_{1}^{i-1} \longrightarrow S_{i}, X_{i} \longrightarrow Y_{i} \text { forms a Markov chain } \\
= & \frac{1}{n} \sum_{i} I\left(X_{i} ; Y_{i} \mid S_{i}\right) \\
= & \frac{1}{n} \sum_{i} I\left(X_{i} ; Y_{i}, S_{i}\right) \\
& \left(I\left(X_{i} ; S_{i}\right)=0 \text { since the encoder does not have access to the knowledge of channel state }\right)
\end{aligned}
$$

Note that X_{i} is NOT only dependent on Y_{i} and S_{i} and thus $H\left(X_{i} \mid Y^{n}, S^{n}, X_{1}^{i-1}\right) \neq$ $H\left(X_{i} \mid Y_{i}, S_{i}\right)$! So the hint was not the right path to prove $C_{N S I} \leq \frac{1}{n} \sum_{i} I\left(X_{i} ; Y_{i} \mid S_{i}\right)$.

Problem 4 (Channel with Memory)

In this problem we consider the memory-less channel $Y_{i}=Z_{i} X_{i}$ with input alphabet $X_{i} \in$ $\{-1,1\}$.
(a) In this part we assume that $\left\{Z_{i}\right\}$ are i.i.d. with

$$
Z_{i}=\left\{\begin{array}{rc}
1, & p=0.5 \\
-1, & p=0.5
\end{array}\right.
$$

Let us send a sequence of capacity achieving codewords of length n over this channel.

Then for the capacity of such a channel we can write

$$
\begin{aligned}
C & =\frac{1}{n} I\left(X^{n} ; Y^{n}\right) \\
& =\frac{1}{n}\left[H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)\right] \\
& =\frac{1}{n}\left[H\left(Y^{n}\right)-H\left(Z^{n}\right)\right] \\
& \stackrel{(1)}{=} \frac{1}{n}\left[H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Z_{i}\right)\right] \\
& \stackrel{(2)}{=} \frac{1}{n}\left[H\left(Y^{n}\right)-n\right] \\
& \leq 0
\end{aligned}
$$

where (1) follows because Z_{i} are i.i.d. and (2) follows because $H\left(Y^{n}\right)$ is at most n. So for the capacity in this case we have $C=0$.
(b) In this part of problem we assume that Z is randomly chosen at the beginning of transmission and remains fixed during the transmission so $Z_{i}=Z$ where we have

$$
Z=\left\{\begin{aligned}
1, & p=0.5 \\
-1, & p=0.5
\end{aligned}\right.
$$

Again for the capacity we can write

$$
\begin{aligned}
C & =\frac{1}{n} I\left(X^{n} ; Y^{n}\right) \\
& =\frac{1}{n}\left[H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)\right] \\
& =\frac{1}{n}\left[H\left(Y^{n}\right)-H\left(Z^{n}\right)\right] \\
& \stackrel{(1)}{=} \frac{1}{n}\left[H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Z_{i} \mid Z^{i-1}\right)\right] \\
& \stackrel{(2)}{=} \frac{1}{n}\left[H\left(Y^{n}\right)-1\right] \\
& \stackrel{(3)}{=} \frac{1}{n}[n-1] \xrightarrow{n \rightarrow \infty} 1 \quad \text { bits, }
\end{aligned}
$$

where (1) follows from the chain rule, (2) follows because $H\left(Z_{i} \mid Z^{i-1}\right)=0$ for $i \geq 2$ and $H\left(Z_{i} \mid Z^{i-1}\right)=H(Z)=1$ for $i=1$, and (3) follows because the uniform input distribution makes the output distribution uniform which maximizes $H\left(Y^{n}\right)$.

Problem 5

In this problem we consider a BSC with crossover probability $0<\epsilon<1$ represented by $X_{i}=$ $Y_{i}+Z_{i} \bmod 2$, where X_{i}, Y_{i}, and Z_{i} are, respectively, the input, the output, and the noise variable at time i. Then

$$
\mathbb{P}\left[Z_{i}=0\right]=1-\epsilon \quad \text { and } \quad \mathbb{P}\left[Z_{i}=1\right]=\epsilon
$$

for all i. We assume that $\left\{X_{i}\right\}$ and $\left\{Z_{i}\right\}$ are independent, but we make no assumption that Z_{i} are i.i.d. so that the channel may have memory.
(a) We can write

$$
\begin{aligned}
I\left(X^{n} ; Y^{n}\right) & =H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right) \\
& =H\left(Y^{n}\right)-H\left(Z^{n}\right) \\
& \stackrel{(1)}{\leq} n-H\left(Z^{n}\right) \\
& =n\left[1-\frac{1}{n} H\left(Z^{n}\right)\right] \\
& \stackrel{(2)}{\leq} n[1-\mathcal{H}(Z)]
\end{aligned}
$$

where $\mathcal{H}(Z)$ is the entropy rate of the random process $\left\{Z_{i}\right\}$. Note that
(1) follows from the fact that $H\left(Y^{n}\right) \leq n$, and
(2) follows because we have $\mathcal{H}(Z) \leq \frac{1}{n} H\left(Z^{n}\right)$. To show this last inequality we have to show that the sequence $f_{n}=\frac{1}{n} H\left(Z^{n}\right)$ is a non-increasing sequence because we know that $\mathcal{H}(Z)=\lim _{n \rightarrow \infty} f_{n}$.
To this end we write

$$
\begin{aligned}
f_{n+1}-f_{n} & =\frac{1}{n+1} H\left(Z^{n+1}\right)-\frac{1}{n} H\left(Z^{n}\right) \\
& =\frac{1}{n+1} \sum_{i=1}^{n+1} H\left(Z_{i} \mid Z^{i-1}\right)-\frac{1}{n} \sum_{i=1}^{n} H\left(Z_{i} \mid Z^{i-1}\right) \\
& =\frac{1}{n+1} H\left(Z_{n+1} \mid Z^{n}\right)+\sum_{i=1}^{n}\left[\frac{1}{n+1} H\left(Z_{i} \mid Z^{i-1}\right)-\frac{1}{n} H\left(Z_{i} \mid Z^{i-1}\right)\right] \\
& =\frac{1}{n+1} H\left(Z_{n+1} \mid Z^{n}\right)-\frac{1}{n(n+1)} \sum_{i=1}^{n} H\left(Z_{i} \mid Z^{i-1}\right) \\
& =\frac{1}{n+1}\left[H\left(Z_{n+1} \mid Z^{n}\right)-\frac{1}{n} \sum_{i=1}^{n} H\left(Z_{i} \mid Z^{i-1}\right)\right] .
\end{aligned}
$$

From the lecture we know that for the stationary process $\left\{Z_{i}\right\}$ the sequence $H\left(Z_{i} \mid Z^{i-1}\right)$ is a non-increasing sequence so we have

$$
H\left(Z_{n+1} \mid Z^{n}\right) \leq H\left(Z_{i} \mid Z^{i-1}\right) \quad \text { For } i=1, \ldots, n,
$$

so we have

$$
\begin{aligned}
f_{n+1}-f_{n} & =\frac{1}{n+1}\left[H\left(Z_{n+1} \mid Z^{n}\right)-\frac{1}{n} \sum_{i=1}^{n} H\left(Z_{i} \mid Z^{i-1}\right)\right] \\
& \leq 0
\end{aligned}
$$

which shows that $\mathcal{H}(Z) \leq \frac{1}{n} H\left(Z^{n}\right)$.
(b) From part (a) we know that we can choose the input distribution such that makes the output distribution uniform so make the inequality (1) tight. Then we can observe that by increasing the block length n we have $\frac{1}{n} H\left(Z^{n}\right) \rightarrow \mathcal{H}(Z)$ so we have shown that by increasing the block length and choosing the input distribution properly we can achieve the upper bound in part (a).
(c) In part (b) we have shown that we can achieve

$$
I\left(X^{n} ; Y^{n}\right)=n(1-\mathcal{H}(Z))
$$

From part (a) we know that

$$
\mathcal{H}(Z) \leq f_{n} \leq f_{n-1} \leq \cdots \leq f_{1}=H\left(Z_{1}\right)=h_{2}(\epsilon)
$$

so we have that

$$
I\left(X^{n} ; Y^{n}\right)=n(1-\mathcal{H}(Z)) \geq n\left(1-h_{2}(\epsilon)\right)=n \cdot C,
$$

where C is the capacity of the BSC is it is memory-less.

