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Solutions: Homework Set # 7

Problem 1

(a) Let us write the mutual information I(Xn;Y n) as follows

I(Xn;Y n) = I(X1,X
n
2 ;Y n−1, Yn)

= I( X1
︸︷︷︸

A

, Y n−1
︸ ︷︷ ︸

B

;Y n−1
︸ ︷︷ ︸

B

, Yn
︸︷︷︸

C

).

We can write

I(A,B;B,C)
(1)
= I(A;BC) + I(B;BC|A)

= I(A;BC) + H(B|A) + H(B|ABC)
︸ ︷︷ ︸

0

,

where (1) follows from chain rule. So we have

I(Xn;Y n) = I(X1;Y
n) + H(Y n−1|X1)

(1)
=

n∑

i=1

I(Yi;X1|Y
i−1) +

n∑

i=1

H(Yi|X1, Y
i−1

︸ ︷︷ ︸

Xi

)

(2)
= I(X1;Y1) +

n∑

i=1

H(Yi|Xi)

(3)
= I(X1;Y1) + nh2(p),

where
(1) follows by applying the chain rule for mutual information and conditional entropy;
(2) follows from the fact that I(Yi;X1|Y

i−1) = 0 for 1 < i ≤ n, because we can write

I(Yi;X1|Y
i−1) = H(Yi|Y

i−1) − H(Yi|X1, Y
i−1)

= H(Yi|X
i
2) − H(Yi|X

i)

= H(Yi|Xi) − H(Yi|Xi)

= 0;

(3) follows from the fact that we have a binary symmetric channel so we have H(Yi|Xi) =
h2(p) where h2(p) , −p log2 p − (1 − p) log2 1 − p.

So we can write

lim
n→∞

1

n
I(Xn;Y n) = lim

n→∞

1

n
[I(X1;Y1) + nh2(p)]

= h2(p),

because I(X1;Y1) ≤ H(X1) ≤ 1.
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(b) We know that the capacity of the binary symmetric channel is 1 − h2(p) so there exist
some value of p such that h2(p) > 1 − h2(p) or equivalently h2(p) > 1/2.

Note that limn→∞
1
n
I(Xn;Y n) is not the rate at which this scheme can convey information

from source to destination. To find the communication rate for this scheme we should find
the mutual information between transmitted message W and received sequence of bits Y n

namely limn→∞
1
n
I(W ;Y n). This is in fact the quantity that we calculate in part (c). So

part (a) does not imply that the capacity with feedback increases because the quantity
that we calculate in (a) is not capacity.

(c) Note that we have the following Markov chain

W ↔ X1 ↔ Y1 ↔ · · · ↔ Yn,

or more compactly
W ↔ X1 ↔ Y n.

Using data processing inequality we can write

I(W ;Y n) ≤ I(X1;Y
n).

But we have calculated I(X1;Y
n) in part (a) where we obtained I(X1;Y

n) = I(X1;Y1).
So we can write

lim
n→∞

1

n
I(W ;Y n) ≤ lim

n→∞

1

n
I(X1;Y

n)

= lim
n→∞

1

n
I(X1;Y1)

≤ lim
n→∞

1

n
H(X1)

≤ lim
n→∞

1

n
· 1

= 0.

So the actual capacity of this channel is 0.

Problem 2

(a) Let px1x2
denote the probability of X1 = x1 and X2 = x2. then from definition:

I(X1,X2;Y1, Y2) = H(X1,X2) − H(X1,X2|Y1, Y2)

= H(X1,X2) since X1 and X2 can be known exactly from Y1 and Y2

= −p00 log p00 − p01 log p01 − p10 log p10 − p11 log p11

(b)

I(X1,X2;Y1, Y2) = H(X1,X2)

≤ log2(4)

where the equality holds for p0,0 = p1,0 = p0,1 = p1,1 = 1
4 .
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(c) We assume in this part that p0,0 = p1,0 = p0,1 = p1,1 = 1
4 and find I(X1;Y1). To this end,

let’s first calculate pY1
(y1).

pY1
(0) = pY1,Y2

(0, 0) + pY1,Y2
(0, 1) =

1

2
,

and

pY1
(1) = pY1,Y2

(1, 0) + pY1,Y2
(1, 1) =

1

2
.

Thus H(Y1) = 1. Furthermore, pY1|X1
(y1|x1) is found to be:

pY1|X1
(0|0) =

1

2

pY1|X1
(1|0) =

1

2

pY1|X1
(0|1) =

1

2

pY1|X1
(1|1) =

1

2
.

Thus H(Y1|X1) = 1
2 + 1

2 = 1. So finally,

I(X1;Y1) = H(Y1) − H(Y1|X1)

= 1 − 1

= 0.

Thus, the distribution on the input sequence that achieves capacity does not necessarily
maximize the mutual information between individual symbols and their corresponding
outputs. What to note here is that although the knowledge of Y1 and Y2 together, leaves no
uncertainty in X1 and X2, the knowledge of Y1 alone give no information about X1. Just to
notice this yourself, if you have received only Y1 = 0, can you decide if X1 = 0 was sent or
X2 = 0? In fact, under the proposed uniform distribution of p0,0 = p1,0 = p0,1 = p1,1 = 1

4 ,
given Y1 the events X1 = 0 and X2 = 0 would be equally likely.

Problem 3

Since we know the Fano’s inequality for random variables (not the random sequences) we start
by relating H(Xk|Yk) to H(Xi|Yi):

H(Xk|Y k) =
k∑

i=1

H(Xi|Y
kXi−1

1 )

≤

k∑

i=1

H(Xi|Yi) since conditioning reduces entropy

≤

k∑

i=1

pi(e) log(|X |) + H(pi(e)) Fano’s inequality for H(Xi|Yi)

where pi(e) = Pr(Xi 6= Yi).
Let’s write

pi(e) = Pr(Xi 6= Yi) = E1Xi 6=Yi
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(This is true by definition:

E1Xi 6=Yi
= Pr(Xi 6= Yi) × 1 + Pr(Xi = Yi) × 0 = Pr(Xi 6= Yi) = pi(e).)

So

H(Xk|Y k) =
k∑

i=1

pi(e) log(|X |) + H(pi(e))

=
k∑

i=1

E1Xi 6=Yi
log(|X |) +

k∑

i=1

H(E1Xi 6=Yi
)

To find the expression of the question we show that

•
∑k

i=1 E1Xi 6=Yi
= E

∑k
i=1 1Xi 6=Yi

= EdH(Xk, Y k) (By definition of Hamming distance)

•
∑k

i=1 H(E1Xi 6=Yi
) ≤ kH( 1

k
EdH(Xk, Yk))

k∑

i=1

H(E1Xi 6=Yi
) = k

k∑

i=1

1

k
H(E1Xi 6=Yi

)

≤ kH(

k∑

i=1

1

k
E1Xi 6=Yi

)

= kH(
1

k
EdH(Xk, Y k))

Problem 4

(a) Let us assume

max
x∈X

D(WY |X ||PY )

c(x)
= T.

This means that
∀x ∈ X : D(WY |X ||PY ) ≤ Tc(x).

Then we have

∑

x∈X P̃X(x)D(WY |X ||PY )
∑

x∈X P̃X(x)c(x)
≤

∑

x∈X P̃X(x)Tc(x)
∑

x∈X P̃X(x)c(x)
= T.
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(b) We have
∑

x∈X

P̃X(x)D(WY |X ||PY ) −
∑

x∈X

P̃X(x)D(WY |X ||P̃Y )

=
∑

x∈X

P̃X(x)
[

D(WY |X ||PY ) − D(WY |X ||P̃Y )
]

=
∑

x∈X

P̃X(x)




∑

y∈Y

WY |X(y|x)

[

log
WY |X(y|x)

PY (y)
− log

WY |X(y|x)

P̃Y (y)

]




=
∑

x∈X

P̃X(x)
∑

y∈Y

WY |X(y|x)

[

log
P̃Y (y)

PY (y)

]

=
∑

x∈X ,
y∈Y

P̃X(x)WY |X(y|x)

[

log
P̃Y (y)

PY (y)

]

=
∑

y∈Y

log
P̃Y (y)

PY (y)

∑

x∈X

P̃X(x)WY |X(y|x)

=
∑

y∈Y

P̃Y (y) log
P̃Y (y)

PY (y)
= D(P̃Y ||PY )

≥0.

The second part can be proved easily bu replacing the above inequality in the result of
part (a).

(c) It is easy to see that

max
x∈X

D(WY |X ||P ∗
Y )

c(x)
≤ λ.

Using part (b) we have
∑

x∈X P̃X(x)D(WY |X ||P̃Y )
∑

x∈X P̃X(x)c(x)
≤ max

x∈X

D(WY |X ||P ∗
Y )

c(x)
≤ λ.

Having the equality, we conclude that
∑

x∈X P̃X(x)D(WY |X ||P̃Y )
∑

x∈X P̃X(x)c(x)
=

∑

x∈X P̃X(x)D(WY |X ||P ∗
Y )

∑

x∈X P̃X(x)c(x)
= λ.

Thus
∑

P̃X(x)D(WY |X ||P̃Y ) −
∑

P ∗
X(x)D(WY |X ||P ∗

Y ) = −D(P̃Y ||P
∗
Y ) = 0,

so we deduce that P̃Y = P ∗
Y .

(d) We have
I(X;Y )

E[c(x)]
=

∑

x∈X PX(x)D(WY |X ||PY )
∑

x∈X PX(x)c(x)
≤ max

x∈X

D(WY |X ||PY )

c(x)
.

By part (c), the distribution that maximizes the capacity per unit cost, Ccost, is P ∗(x)
characterized by

D(WY |X ||P ∗
Y )

c(x)
≤ λ, ∀x ∈ X ,
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and
D(WY |X ||P ∗

Y )

c(x)
= λ, ∀x : P ∗

X(x) > 0,

where P ∗
Y =

∑

x P ∗
X(x)WY |X(y|x).
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