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Solutions: Homework Set # 6

Problem 1 (Cascade Network)

(a) We know that the capacity of the channel is equal to

C = max
PX

I(X;V ).

From the problem setup we observe that we have the following Markov chain

X ↔ Y ↔ U ↔ V.

By data processing inequality we have I(X;V ) ≤ I(X;Y ) and I(X;V ) ≤ I(U ;V ). Then
we can proceed as follows. We have I(X;V ) ≤ I(X;Y ) so we can find the maxPX

of both
side so we have

C = max
PX

I(X;V ) ≤ max
PX

I(X;Y ) = C(p).

To show C ≤ C(q) is a little bit more tricky and it should be done in two step of maxi-
mization. Again we have I(X;V ) ≤ I(U ;V ) so we can write

C = max
PX

I(X;V ) ≤ I(U ;V )|for some P ′

U
dictated by choosing P ∗

X
to be the maximizer of I(X;V )

≤ max
PU

I(U ;V ) = C(q).

So finally we have
C ≤ min[C(p), C(q)].

Note that the above argument works for every two cascade channel, not only the binary
symmetric channel.

(b) In this case, when there is no processing at the relay, U = Y , the overall channel from
X to V can be regarded as a new binary symmetric channel with some new transition
probability. To find the transition probability of the overall channel we process as follows

P [V = 0|X = 0] =
∑

i∈{0,1}

P [V = 0, Y = i|X = 0]

(1)
=

∑

i∈{0,1}

P [V = 0|X = 0, Y = i] · P [Y = i|X = 0]

(2)
=

∑

i∈{0,1}

P [V = 0|Y = i] · P [Y = i|X = 0]

= (1 − p)(1 − q) + pq
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where (1) follows from the chain rule for probability, (2) follows from the Markov chain
we have. Then we can write

P [V = 0|X = 1] =
∑

i∈{0,1}

P [V = 0, Y = i|X = 1]

=
∑

i∈{0,1}

P [V = 0|X = 1, Y = i] · P [Y = i|X = 1]

=
∑

i∈{0,1}

P [V = 0|Y = i] · P [Y = i|X = 1]

= p(1 − q) + (1 − p)q.

Similarly we can find P [V = 1|X = 0] and P [V = 1|X = 1] using the same method but
the answer will be the same.

So the for the capacity in this case we have C ′ = 1 − h2(p(1 − q) + (1 − p)q).

(c) In this part we assume that relay can do some processing. The scheme that we suggest
is as follows. Let r = min[C(p), C(q)]. First source S used some channel code with rate
r to encode its data and send it over the first channel. Then relay wait until receive the
whole block of data and decode it. Because the source sends information at rate below the
capacity of first channel (r ≤ C(p)) we can make the decoding error as small as possible.
After decoding, the relay re-encode the information using some channel code with rate r
(this time for the second channel) and send it to the destination D. Again because we
have r ≤ C(q) the destination can decode the data with a very small probability of error.
So our scheme achieves the rate r = min[C(p), C(q)].

(d) We have
C = min[1 − h2(p), 1 − h2(q)],

and
C ′ = 1 − h2(p(1 − q) + (1 − p)q).

Without loss of generality let us assume that 0 ≤ p ≤ q ≤ 1/2. Note that for a binary
symmetric channel that has cross probability larger than 1/2 we can change the role of
1 and 0 in its output so we can always assume that the cross probability of a binary
symmetric channel is some parameter in the interval [0, 1/2].

The we observe that the binary entropy function h2(x) is an increasing function for x ∈
[0, 1/2]. So using the above assumptions, for C we have

C = 1 − h2(q).

Then we will show that C ′ ≤ C. To this end we have to show that h2(p(1−q)+(1−p)q) ≥
h2(q). Because the h2(·) is a concave function and has the symmetry h2(x) = h2(1 − x)
for x ∈ [0, 1] then we should prove that

q ≤ p(1 − q) + (1 − p)q ≤ 1 − q.

For the left hand side inequality we can write

q ≤ p(1 − q) + (1 − p)q ⇐⇒ q ≤ q + p(1 − 2q)
︸ ︷︷ ︸

≥0

,
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which is always true (under the above assumptions on p and q).

For the right hand side inequality we can write

p(1 − q) + (1 − p)q ≤ 1 − q ⇐⇒ 0 ≤ (1 − 2q)
︸ ︷︷ ︸

≥0

(1 − p)
︸ ︷︷ ︸

≥0

,

which is again always true (under the above assumptions on p and q). So we are done.

We should expect the result C ′ ≤ C before doing any calculation. When we let the relay
R to do some processing one of its option is to do not anything and just forwards the bits.
So obviously we can deduce that by performing some extra processing we may do better,
so we conclude C ′ ≤ C.

Problem 2 (Binary Multiplier Channel)

(a) The receiver observes both Y and Z. Based on the value of random variable Z it can
decide whether the value of Y provides any information about X or not. If Z = 1 then
Y = X and if Z = 0 then the value of Y is zero independently of X. So by observing
both Y and Z the equivalent channel C : X −→ Y Z is an erasure channel with capacity

1 − P [Erasure] = 1 − P [Z = 0] = α.

(b) Now we assume that the receiver does not have access to the random variable Z. In this
part, the goal is to find the capacity of the channel C′ : X −→ Y .

To this end let us expand the mutual information

I(X;Y ) = H(Y ) − H(Y |X).

Then we have to find the expressions of H(Y ) and H(Y |X) with respect to α and p.

To calculate H(Y ) we need to find probability P [Y = 1]. We can write

P [Y = 1] = P [X = 1, Z = 1] = P [X = 1] · P [Z = 1] = αp,

so we have
H(Y ) = h2(αp),

where h2(x) , −x log2 x − (1 − x) log2 (1 − x) is the binary entropy function.

Then we have to find an expression for H(Y |X). We can expand it as follows

H(Y |X) = H(Y |X = 0)P [X = 0] + H(Y |X = 1)P [X = 1]

= 0 × P [X = 0] + H(Z)P [X = 1]

= p · h2(α).

Putting everything together we have

I(X;Y ) = h2(αp) − p · h2(α),

and we want to find the maximum value of I(X;Y ) with respect to the input distribution
which here is only described by the parameter p. So to find the maximum of this mutual
information we find its derivative with respect to p.
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First, note that for the derivative of h2(x) we have

h′
2(x) = log2

1 − x

x
,

so we can write

∂I(X;Y )

∂p
=

∂h2(αp)

∂p
− h2(α)

= α · log2
1 − αp

αp
− h2(α).

To find the value of p which maximize I(X;Y ) we have to set ∂I(X;Y )
∂p = 0 so we have

α · log2
1 − αp

αp
− h2(α) = 0,

or if α 6= 0
1 − αp

αp
= 2h2(α)/α.

Then we can rearrange the above expression to obtain

p =
1

α
[
1 + 2h2(α)/α

] .

Finally, for the capacity of the channel we have

C = h2

(
1

1 + 2h2(α)/α

)

−
1

[
1 + 2h2(α)/α

] ·
h2(α)

α
.

For sanity check let us consider two limiting cases α → 0 and α → 1. For the first case Z
is always zero and the output of the channel is independent from its input so we expect
the channel has zero capacity in this case. For the second case Z is always one so we have
a perfect binary channel that its capacity should be 1 bit. Now let us consider these two
cases

α −→ 1 ⇒
h2(α)

α
−→ 0 ⇒ C −→ h2(1/2) = 1,

and

α −→ 0 ⇒
h2(α)

α
−→ +∞ ⇒ C −→ h2(0) = 0.

Problem 3 (Jointly Typical Sequences)

(a) We need to prove that

(xn, yn) ∈ A(n)
ǫ (X,Y ) ⇔ xn ∈ A(n)

ǫ (X), zn ∈ A(n)
ǫ (Z),

where yn = xnzn. First we calculate some entropies:

H(X) =1

H(Z) =H(Y |X) = H2(α)

H(X,Y ) =H(X) + H(Y |X) = 1 + H(Y |X) = 1 + H2(α)

H(Y ) = − α log(α) − (1 − α) log(
1 − α

2
).
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Notice that p(xn) = (1
2 )n, ∀xn, hence − 1

n log p(xn) = 1 which implies xn ∈ A
(n)
ǫ (X)

for any xn. On the other hand, (xn, yn) ∈ A
(n)
ǫ (X,Y ) implies that − 1

n log p(xn, yn) ∈
(H(X,Y )− ǫ,H(X,Y )− ǫ). Since p(xn, yn) = (1

2 )n(1− p)n−kpk = p(xn)p(zn), where k is
the number of places x and y differ, it follows that

−
1

n
log p(xn, yn) = −

1

n
log(

1

2
)n(1 − p)n−kpk

= −
1

n
log p(xn)p(zn)

= −
1

n
log p(xn) −

1

n
log p(zn)

=1 −
1

n
log p(zn) ∈ (H(X,Y ) − ǫ,H(X,Y ) − ǫ).

So, − 1
n log p(zn) ∈ (H(Z) − ǫ,H(Z) − ǫ), i.e. zn is typical. Using the same equations

in reverse direction, we see that assuming typical zn implies that − 1
n log p(xn, yn) ∈

(H(X,Y ) − ǫ,H(X,Y ) − ǫ).

It remains to show that yn is typical. Notice that yi = xizi. Then

p(Yi = 0) =p(Xi = 1, Zi = 0) + p(Xi = −1, Zi = 0)

=p(Xi = 1)p(Zi = 0) + p(Xi = −1)p(Zi = 0)

=α.

p(Yi = 1) =p(Xi = 1, Zi = 1)

=p(Xi = 1)p(Zi = 1)

=
1

2
(1 − α) =

1

2
(1 − α).

Hence, we should verify that for large enough n, − 1
n log p(yn) = H(Y ), ∀yn i.e. for large

enough n, every yn is typical: Assume that E is the set of indices in yn where 0 is observed.

p(yn) =
n∏

i=1

p(yi)

=(α)|E|(
1

2
(1 − α))n−|E|

Thus,

−
1

n
log p(yn) = −

|E|

n
log(α) −

n − |E|

n
log(

1

2
(1 − α))

which converges in probability to

−α log(α) − (1 − α) log(
1

2
(1 − α)) = H(Y ).

(b) By joint AEP We know that the probability that yn is jointly typical with an independent
xn(i) is roughly 2−nI(X;Y ).
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(c)

Pr(error|xn(1) was sent) ≤Pr((xn, yn) /∈ A(n)
ǫ (X,Y ) + Pr(A)

<ǫ + Pr(A),

where A denotes the event that there exists a codeword xn(i), i 6= 1 which is jointly
typical with Y n. Using the union bound and the fact that xn(i)’s are i.i.d, we see that

Pr (A) =Pr (E2 ∪ . . . ∪ E2nR |xn(1) was sent)

≤

2nR

∑

i=1

Pr(Ei|x
n(1))

=

2nR

∑

i=1

Pr(E2|x
n(1))

≤2nR2

Thus,

Pr(error|xn(1) was sent) ≤Pr((xn, yn) /∈ A(n)
ǫ (X,Y ) + Pr(A)

<ǫ + 23nǫ2−n(I(X;Y )−R).,

which is smaller than 2ǫ when R < I(X;Y ) and n is sufficiently large. The probability of
error is then

Pr(error) =
2nR∑

i=1

Pr(error|xn(i) was sent)Pr(xn(i) was sent) = Pr(error|xn(1) was sent) < 2ǫ.

Problem 4 (Deterministic Channel)

(a) Let us write

I(X;Y ) = H(Y ) − H(Y |X)

(1)
= H(Y )

≤ log2 m,

where (1) follows because f(·) is a deterministic function so we have H(Y |X) = 0; if we
know X then we know Y completely. Furthermore, if f(·) is a surjective function, the all
values {1, . . . ,m} can be taken by Y . So by assigning an input distribution PX(x) such
that PY (y) become uniform we would obtain the maximum of I(X;Y ) which is log2 m so
we have

C = max
PX

I(X;Y ) = log2 m.

However, when f(·) is not surjective then with the same argument as stated above we
have

C = max
PX

I(X;Y ) = log2 |Im(f)|,

where Im(f) denotes the image of f

Im(f) , {y | y = f(x), ∀x ∈ {1, . . . , n}} .
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(b) Here we have Y = AX and again we can write

I(X;Y ) = H(Y ) − H(Y |X)

= H(Y )

(1)

≤ log2 2rank(A)

= rank(A),

where (1) is true because of the following reason. For each vector X, the vector Y ,
Y = AX, would be one of the elements of the column space of A. This space has
2rank(A) elements and thus H(Y ) ≤ log2 2rank(A). By choosing the input distribution to be
uniform, PY (y) would be uniform over all elements of this column space and we achieve
the maximum of H(Y ). So we have

C = max
PX

I(X;Y ) = rank(A).

(c) Consider two channels Y = PX with capacity C1 = rank(P ) and Y = TX with capacity
C2 = rank(T ) with capacity C2 = rank(T ).

Then consider the cascade channel Y2 = PY1 and Y1 = TX. Thus we have Y2 = PTX so
the capacity of the cascade channel is Ccascade = rank(PT ).

From problem 1, we know that

Ccascade ≤ min[C1, C2].

Thus we have
rank(PT ) ≤ min[rank(P ), rank(T )].
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