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Solutions: Homework Set # 5

Problem 1 (There are almost no perfect codes)

(a) We know that if the code is αN -error-correcting code, then its minimum distance must
be greater than 2αN , namely

dmin > 2αN.

(b) For each pair of codewords ci, cj ∈ C we can write

2αN < dmin

≤ d(ci, cj).

From the definition of c0, c1, and c2 we have

d(c0, c1) = (u + v)N, d(c1, c2) = (u + w)N, and d(c0, c2) = (v + w)N.

But we know that 2αN < d(ci, cj) so we can write

(u + v) > 2α, (u + w) > 2α, and (v + w) > 2α.

Summing these three inequities and dividing by two, we have

u + v + w > 3α.

So if α > 1/3, we can deduce u + v + w > 1, so x < 0, which is impossible. Such a code
cannot exist. So the code cannot have three codewords, let alone 2NRC .

We conclude that, whereas Shannon proved there are plenty of codes for communicating
over a binary symmetric channel with α > 1/3, there are no perfect codes that can do
this. (An αN -error-correcting code can be used for error-free communication over a binary
symmetric channel with flipping probability α.)

Problem 2 (Reed-Solomon Codes)

(a) Suppose that the parity check matrix H is an (n − k) × n matrix and let us assume hi,
i = 1, . . . , n, are the columns of H, namely

H =





| |
h1 · · · hn

| |





(n−k)×n

.

We assume that every d − 1 columns of H are linearly independent. This means that if
we know

a1hi1 + · · · + ad−1hid−1
=

−→
0 ,
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for some numbers ai then we conclude that a1 = · · · = ad−1 = 0. Here
−→
0 denotes the all

zero vector of length n− k and the indices i1, . . . , id−1, take values from the set {1, . . . , n}
and non of them are equal.

We know that for a linear code we define the minimum distance of the code as follows

dmin , min
c,c′∈C,c 6=c′

d(c, c′)

= min
c,c′∈C,c 6=c′

d(c − c′, 0)

= min
c∈C,c 6=0

hw(c),

where d(·, ·) is the Hamming distance between two codewords and hw(·) is the Hamming
weight of a codeword, the number of non-zero elements of that codeword.

Now assume that the minimum distance of the code C represented by the parity check
matrix H is less than d. We will show that this assumption leads us to a contradiction.
By this assumption we know that there exist a non-zero codeword c ∈ C where hw(c) < d.
Because c is a codeword it should satisfy the equation

HcT =
−→
0 . (1)

Let us assume hw(c) = k < d and let i1, . . . , ik, denote the indices of non-zero elements of
c. So (1) can be written as follows

ci1hi1 + · · · + cikhik =
−→
0 .

We know that k < d so by the assumption of the problem the vectors hi1 , . . . , hik , are
linearly independent. This means that we should have ci1 = · · · = cik = 0. Remember
that these are the only non-zero elements of c so we can deduce that the codeword c should
be zero which is a contradiction (we had assumed that it was a non-zero codeword).

The above argument shows that the minimum distance of the code C should be at least d.

(b) Without loss of generality and for the simplicity of notation we only consider the first n−k
columns but the argument is true for every subset of columns containing n − k elements.

Let us consider the sub-matrix H ′ of H that contains the first n− k columns of H. So H ′

is an (n − k) × (n − k) square matrix of the following form

H ′ =










1 1 · · · 1
α1 α2 · · · αn−k

α2
1 α2

2 · · · α2
n−k

...
...

. . .
...

αn−k−1
1 αn−k−1

2 · · · αn−k−1
n−k










(n−k)×(n−k)

.

In fact H ′ is a Vandermonde matrix. From the linear algebra we know that a square
matrix is full rank (all of the rows are independent with each other and all of the columns
are independent from each other) if its determinant is non-zero. So to show that the n−k
columns of H ′ are linearly independent we show that the determinant of H ′ is non-zero.
From the hint of the problem we know that

det(H ′) =
∏

1≤i<j≤(n−k)

(αj − αi),
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which is not zero if we have αi 6= αj for all i, j, i 6= j.

The above argument can be applied to other subset of n − k columns of H exactly in
the same way. So up to here we have shown that every n − k columns of H are linearly
independent.

(c) From part (a) and part (b) we can deduce that the minimum distance of code C described
by matrix H is at least n − k + 1, namely

dmin ≥ n − k + 1.

On the other hand, from the Singleton bound (which is proved in the class) we know that

dmin ≤ n − k + 1,

so for the code C we have dmin = n − k + 1, which means that C is a maximum distance
separable code.

Problem 3

(a) For the entropy rate of this Markov chain we can write

H(S) = lim
n→∞

H(Sn|Sn−1, . . . , S1)

= lim
n→∞

H(Sn|Sn−1)

= H(S2|S1),

where Si ∈ {00, 01, 10}.

Now we can expand H(S2|S1) and write

H(S2|S1) =
∑

s∈{00,01,10}

H(S2|S1 = s)P [S1 = s],

where P [S1 = s] is the stationary distribution of this Markov chain.

Note that in this Markov chain from every state we can go to two other states. So the
maximum value of H(S2|S1 = s) is at most 1 bit for every state s. Furthermore we note
that we can make H(S2|S1 = s) = 1 for every s by choosing p = q = r = 1/2. In this case
the entropy rate of the Markov chain is maximized and we have

H(S2|S1) =
∑

s∈{00,01,10}

H(S2|S1 = s)P [S1 = s]

=
∑

s∈{00,01,10}

1 · P [S1 = s]

= 1 bit.

(b) For every state transition of the Markov chain the source outputs two bits, i.e., X2i−1

and X2i. Then we feed these bits into finite state machine depicted in Figure 1. We will
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show that this FSM compress the sequence as much as possible. For the entropy rate of
the source output, the sequence X1, . . . ,X2n, we have

lim
n→∞

1

2n
H(X1, . . . ,X2n) = lim

n→∞

1

2n
H(S1, . . . , Sn)

=
1

2
lim

n→∞

1

n
H(S1, . . . , Sn)

=
1

2
H(S)

= 1/2 bit.

The FSM given in Figure 1 is designed such that it maps 01 → 0, 00 → 1, and 10 → 1,
(note to the properties of source {Xi}

2n
i=1). So for the entropy rate of output sequence of

FSM {Yi}
n
i=1 we have

H(Y) = lim
n→∞

1

n
H(Y1, . . . , Yn)

= lim
n→∞

1

n
H(X1, . . . ,X2n)

= lim
n→∞

1

n
H(S1, . . . , Sn)

= H(S)

= 1 bit,

which is the maximum possible entropy rate of sequence of binary bits. So we have show
that by using FSM of Figure 1 we can maximally compress the sequence {Xi}

2n
i=1 with

entropy rate 1/2 to the sequence {Yi}
n
i=1 with entropy rate 1.

(c) Clearly this FSM is uniquely decodable because by having the initial state of FSM and
the output string {Yi} we can decode the sequence of input that is fed to the FSM. Note
that having the initial state and observing the output at each time is sufficient to find
what is the next state of FSM so at each time we can uniquely determine what was the
input to the FSM.

(d) From the lecture we know that the condition of being information loss-less is a necessary
condition to have a uniquely decodable encoder so this FSM is also information loss-less.

Problem 4

(a) The stationary distribution is π = [p0, p1], such that πP = π, where

P =

[
p0,0 p0,1

p1,0 p1,1

]

.

Thus, π = [
p1,0

p0,1+p1,0
,

p0,1

p0,1+p1,0
]

The form of the sequence of states from state 0 returning to state 0 for the first time
would be

0

l
︷ ︸︸ ︷

11...1 0 for l = 0, 1, ...
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A

B

01/0

00/1

01/0

10/1

Figure 1: The finite state machine for compressing the source explained in problem 3. Note that
the labels (for example, 01/0) on the arrows show the output of the source and the corresponding
output of the FSM respectively. For example, if current state Ai = A, and the output of the
source yields 01, then the FSM outputs 0 and makes a state transition to B, i.e., Ai+1 = B.

And each has a returning time of l + 1. So on average we have

E(returning time to 0) =
∑

l

p(X1...Xl+2 = 011..10|X1 = 0) × (l + 1)

= p(X1X2 = 00|X1 = 0)×1+p(X1X2X3 = 010|X1 = 0)×2+
∑

l≥2

p(X1X2...Xl+2 = 0

l
︷︸︸︷

11..1 0) × (l + 1)

= p0,0 + p0,1p1,0 × 2 +
∞∑

l=2

(l + 1)p0,1(p1,1)
l−1p1,0

= p0,0 + p0,1p1,0
1

p1,1

∑∞
l=1 (l + 1)(p1,1)

l

= p0,0 + p0,1p1,0
1

p1,1

∞∑

l=1

(p1,1)
l

︸ ︷︷ ︸

=1
p1,1

1−p1,1

+p0,1p1,0
1

p1,1

∞∑

l=1

l(p1,1)
l

︸ ︷︷ ︸

=
p1,1

(1−p1,1)2
(∗)

=
p1,0+p0,1

p1,0
= 1

p0

(∗):
∑∞

l=1 l(p1,1)
l = p1,1 + 2 × p2

1,1 + 3 × p3
1,1 + ...

= p1,1+

p2
1,1 + p2

1,1+

p3
1,1 + p3

1,1 + p3
1,1 + ...

...
...

... + ...
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=
p1,1

1−p1,1
+

p2
1,1

1−p1,1
+

p3
1,1

1−p1,1
+ ...

=
p1,1

(1−p1,1)2

(b) First note that in this expectation it is assumed that X0 = 0. Furthermore, XT0 = 0 as
well. Thus For i 6= 0,

si = E0[
∑

n≥1

1{Xn=i}1{n≤T0}] (2)

=
∑

i

E0[
∑

n≥0

1{Xn=i}1{n<T0}] (3)

(4)

So now we prove that
∑

i sipi,j = sj

∑

i

sipi,j = p0,j +
∑

i6=0

E0[
∑

n≥1

1{Xn=i}1{n≤T0}]pi,j (5)

= p0,j +
∑

i6=0

E0[
∑

n≥0

1{Xn=i}1{n<T0}]pi,j (6)

= p0,j +
∑

i6=0

∑

T0>n≥0

E1{Xn=i}pi,j (7)

= p0,j +
∑

T0>n≥1

∑

i6=0

Pr{Xn = i}pi,j (8)

=
∑

T0>n≥0

∑

i6=0

[Pr{Xn+1 = j} − Pr{Xn = 0}p0,j ] (9)

=
∑

T0>n≥0

E1{Xn+1=j} (10)

= E0[
∑

n+1>≥1

1{Xn+1=j}1{n+1<T0}] (11)

= sj (12)

and thus,
∑

i

pipi,j =
∑

i

sipi,j
∑

j sj

=
sj

∑

j sj

= pj

Furthermore, s0 = 1 and
∑

j Sj = E(T0) both by definition.

So p0 = 1
E(T0) which is the answer to the question, for any general first order Markov

process that has a stationary distribution. This is true for any other state as well.

(c) From part (b), we know the average number of the steps of the Markov process to return
back to state 0, if we calculate its stationary distribution: (Note that the extended Markov
process is formed so that we have a first order Markov process)
p(xn−1

0 ) = p(x0x1...xn−1)

= p(x0)p(x0 → x1)p(x1 → x2)...p(xn−2 → xn−1)

px0px0,x1px1,x2....pxn−2,xn−1
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