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Solutions: Homework Set # 2

Problem 1

We know that

H(X,Y ) ≤ H(X,Y,Z) = H(Y,Z) + H(Z|Y,Z).

Now, since H(X|Y,Z) = 0,

H(X,Y ) ≤ H(Y,Z),

and thus,

H(X) + H(Y ) − I(X;Y ) ≤ H(Z) + H(Y |Z) ≤ H(Z) + H(Y ),

and so

I(X;Y ) ≥ H(X) − H(Z).

Problem 2

(a) In this part, we will see that I(X1;X2;X3) can be positive or negative. This says that
we can have both I(X1;X2) ≥ I(X1;X2|X3) and I(X1;X2) < I(X1;X2|X3) depending
on X1,X2,X3. so, while conditioning reduces entropy, it can increase or decrease mutual
information.

• Let X1 and X2 be independent. Let X3 = X1 + X2, Then

I(X1;X2) = 0

I(X1;X2|X3) = I(X1;X2|X1 + X2) = H(X1|X1 + X2) − H(X1|X1 + X2,X2)

= H(X1|X1 + X2) − 0 > 0.

So in this example I(X1;X2;X3) < 0. Note that having X1 and X2 independent
leads to H(X1|X1 + X2) being strictly positive.

• Let X1 → X3 → X2 form a Markov chain. Then

I(X1,X2) ≥ 0

I(X1;X2|X3) = H(X1|X3) − H(X1|X2,X3) = 0.

So in this example I(X1;X2;X3) ≥ 0
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(b) We first note that I(X1;X2;X3) is symmetric in X1, X2, and X3:

I(X1;X2;X3) = I(X1;X2) − I(X1;X2|X3)

= H(X1) − H(X1|X2) − H(X1|X3) + H(X1|X2,X3)

= I(X1;X3) − I(X1;X3|X2)

and similarly,

I(X1;X2;X3) = I(X1;X2) − I(X1;X2|X3)

= H(X2) − H(X2|X1) − H(X2|X3) + H(X2|X1,X3)

= I(X2;X3) − I(X2;X3|X1)

Positivity of mutual information then concludes that I(X1;X2;X3) = I(X1;X2)−I(X1;X2|X3) ≤
I(X1;X2). Similarly I(X1;X2;X3) ≤ I(X1;X3) and I(X1;X2;X3) ≤ I(X2;X3).

(c) Positivity of mutual information concludes that I(X1;X2;X3) = I(X1;X2)−I(X1;X2|X3) ≥
−I(X1;X2|X3). Similarly I(X1;X2;X3) ≥ −I(X1;X3|X2) and I(X1;X2;X3) ≥ −I(X2;X3|X1).

Problem 3

Note that in general, whenever you have a random variable you also have any deterministic
function of that, i.e.,

I(A;B) = I(A;B, f(B)). (1)

Also by replacing a random variable by its deterministic function, the mutual information does
not exceed,

I(A;B) = I(A;B, f(B)) = I(A; f(B)) + I(A;B|f(B)) ≥ I(A; f(B)), (2)

where the inequality holds since I(A;B|f(B)) ≥ 0.

I(X; X̆
(a)

≤ I(X;TZ)

(b)

≤ I(X;SZ)

(c)
= I(X;SZX̂)

(d)
= I(X; X̂) + I(X;SZ)

where

• (a) follows from (2) since X̆ = f4(T,Z),

• (b) is again by (2) and the fact that T = f3(Z),

• (c) is due (1) since X̂ = f2(S),

• and (d) is by chain rule for mutual information.

Remark: There are many other ways to prove this inequality, e.g., by expanding the
mutual information as the difference of entropy functions. However, any correct solution needs
to incorporate the properties of entropy or mutual information acting on functions, such as (1)
and (2).

Note that although H(f(B)|B) = 0, but H(B|f(B)) can be positive (e.g., a constant func-
tion), and it is zero if and only if the function f(·) is injective.
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Problem 4

(a) Let P = (p1, · · · , pi, · · · , pj, · · · , pn), P1 =
(

p1, · · · ,
pi+pj

2 · · · ,
pi+pj

2 , · · · pn

)

and denote

their entropies by H(P ) and H(P1) respectively.

H(P1) − H(P ) = −2
pi + pj

2
log

pi + pj

2
+ (pi log pi + pj log pj) (3)

= −2

(
pi + pj

2
log

pi + pj

2
−

(
1

2
pi log pi +

1

2
pj log pj

))

(4)

(a)

≥ 0 (5)

where (a) follows by Jensen’s inequality since x log x is a convex function function.

(b) Let Q = PA = (q1, · · · , qn). So each qi =
∑

j pjaj,i.

H(P ) = −
n∑

i=1

pi log pi (6)

(a)
= −

n∑

i=1

n∑

j=1

ai,jpi log pi (7)

(b)
= −

n∑

j=1

n∑

i=1

ai,jpi log pi (8)

(c)

≤ −

n∑

j=1

n∑

i=1

ai,jpi log

(
n∑

i=1

ai,jpi

)

(9)

= −
n∑

j=1

qj log qj (10)

= H(PA). (11)

• (a) follows from
∑n

j=1 ai,j = 1, ∀i = 1, · · · , n.

• (b) is obtained by changing the order of
∑

i and
∑

j.

• (c) follows by Jensen’s inequality and convexity of x log x:
∑n

i=1 ai,jpi log pi ≥ qj log qj

(Note that
∑n

i=1 ai,j = 1,∀j = 1, · · · , n).

Problem 5

(a) Since T (x) is a statistic it is a function of X so it is completely determined by knowing
X. This means that formally we can write

Pr(T (x)|X, θ) = Pr(T (x)|X).

So we have the following Markov chain: θ ↔ X ↔ T (X). By the data processing
inequality we can write

I(θ;T (X)) ≤ I(θ;X),

for all distribution on the random variable θ.
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(b) Let us define X , (X1, . . . ,Xn). To show that T (X) = (m,M) is a sufficient statistics
for our problem, we will use the Fisher-Neyman factorization theorem. We will state the
theorem for both discrete and continuous cases but only prove it for the discrete case as
the proof for the continuous case needs some technicality.

Theorem 1 (Fisher-Neyman Factorization Theorem). Suppose that X = (X1, . . . ,Xn)
has a joint density or frequency function f(x; θ), θ ∈ Θ. A statistic T = T (X) is sufficient

for θ if and only if

f(x; θ) = g(T (x), θ)h(x).

Proof. First, suppose that T is a sufficient statistics. We can write

f(x; θ) = Pr[X = x] =
∑

t

Pr[X = x, T = t].

But T is a function of x so Pr[X = x, T = t] is non-zero only if t = T (x). Then we can
write

f(x; θ) = Pr[X = x, T = T (x)] = Pr[T = T (x)] Pr[X = x|T = T (x)].

Since T is sufficient, Pr[X = x|T = T (x)] is independent of θ and so we have f(x; θ) =
g(T (x); θ)h(x).

Now suppose that f(x; θ) = g(T (x); θ)h(x). Let us assume T (x) = t and write

Pr[X = x|T = t] =
Pr[X = x, T = t]

P [T = t]
.

Because T (x) is a function of x we can write Pr[X = x, T = t] = Pr[X = x] · 1{T (x)=t}.
This let us write

Pr[X = x|T = t] =
Pr[X = x] · 1{T (x)=t}

P [T = t]

=
g(T (x); θ)h(x) · 1{T (x)=t}
∑

y:T (y)=t g(T (y); θ)h(y)

=
h(x) · 1{T (x)=t}
∑

y:T (y)=t h(y)
,

which does not depend on θ and we are done.

Back to our problem, for each random variable Xi we can write the density function as
follows

fXi
(xi; θ) = u(θ + 1 − xi) · u(xi − θ),

where u(x) is the step function

u(x) =

{
1 x ≥ 0,
0 x < 0.
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Because observations are independent from each other (X1, . . . ,Xn, are independent from
each other) for the joint density function fX(x; θ) we have

fX(x; θ) =

n∏

i=1

fXi
(xi; θ)

=

n∏

i=1

u(θ + 1 − xi) · u(xi − θ)

= u(θ + 1 − max(x)) · u(min(x) − θ)
︸ ︷︷ ︸

g(T (x);θ)

· 1
︸︷︷︸

h(x)

,

so by the Fisher-Neyman factorization theorem T (x) = (m,M) is a sufficient statistics for
θ.
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