Solutions: More Exercises

Problem 1

We know that $X_{i} \sim \operatorname{Bernoulli}(\theta)$ so $\mathbb{P}\left[X_{i}=1\right]=\theta$ and $\mathbb{P}\left[X_{i}=0\right]=1-\theta$.
(a) $\theta=1 / 2$ so $H\left(X_{i}\right)=1$ for $i=1, \ldots, n$.

By definition $\left(X_{1}, \ldots, X_{n}\right)=(0, \ldots, 0) \in A_{\epsilon}^{(n)}$ if and only if

$$
2^{-n[H(X)+\epsilon]} \leq \mathbb{P}\left[\left(X_{1}, \ldots, X_{n}\right)=(0, \ldots, 0)\right] \leq 2^{-n[H(X)-\epsilon]},
$$

or

$$
2^{-n[H(X)+\epsilon]} \leq \prod_{i=1}^{n} \overbrace{\mathbb{P}\left[X_{i}=0\right]}^{1 / 2} \leq 2^{-n[H(X)-\epsilon]} .
$$

Then we can take the $\log (\cdot)$ of both side of the above inequalities. Because that the $\log (\cdot)$ function is an increasing function the order of the inequalities do not change and we have

$$
\begin{gathered}
-n[1+\epsilon] \leq-n \leq-n[1-\epsilon], \\
1+\epsilon \geq 1-\epsilon .
\end{gathered}
$$

So $(0, \ldots, 0) \in A_{\epsilon}^{(n)}$ if and only if $\epsilon \geq 0$ which means that it is true for every ϵ. In fact for $\theta=1 / 2$ all of the 2^{n} possible sequences are belong to $A_{\epsilon}^{(n)}$.
(b) Again by definition $\left(x_{1}, \ldots, x_{n}\right) \in A_{\epsilon}^{(n)}$ if and only if

$$
2^{-n[H(X)+\epsilon]} \leq \overbrace{\mathbb{P}\left[\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right]}^{\mathbb{P}\left[X_{1}=x_{1}\right] \ldots \mathbb{P}\left[X_{n}=x_{n}\right]} \leq 2^{-n[H(X)-\epsilon]},
$$

if and only if

$$
-n[H(X)+\epsilon] \leq \log \prod_{i=1}^{n} \mathbb{P}\left[X_{i}=x_{i}\right] \leq-n[H(X)-\epsilon],
$$

if and only if

$$
-n[H(X)+\epsilon] \leq \log \left(\theta^{L\left(x^{n}\right)} \cdot(1-\theta)^{n-L\left(x^{n}\right)}\right) \leq-n[H(X)-\epsilon]
$$

which only depends on $L\left(x^{n}\right)$.
(c) For the probability of observing a sequence $\left(x_{1}, \ldots, x_{n}\right) \in A_{\epsilon}^{(n)}$, by definition we have the following bounds

$$
2^{-n[H(X)+\epsilon]} \leq \mathbb{P}\left[\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right] \leq 2^{-n[H(X)-\epsilon]}
$$

so we can write

$$
\frac{\mathbb{P}[\text { most probable sequence }]}{\mathbb{P}[\text { least probable sequence }]}=\frac{2^{-n[H(X)-\epsilon]}}{2^{-n[H(X)+\epsilon]}}=2^{2 n \epsilon} \xrightarrow{n \rightarrow \infty} \infty
$$

which shows that the typical sequences are not "approximately equiprobable".
(d) From (b) we can write

$$
\begin{gathered}
-n[H(X)+\epsilon] \leq L\left(x^{n}\right) \log (\theta)+\left(n-L\left(x^{n}\right)\right) \log (1-\theta) \leq-n[H(X)-\epsilon], \\
-n[H(X)+\epsilon] \leq L\left(x^{n}\right) \log \left(\frac{\theta}{1-\theta}\right)+n \log (1-\theta) \leq-n[H(X)-\epsilon],
\end{gathered}
$$

and

$$
-n[H(X)+\log (1-\theta)+\epsilon] \leq L\left(x^{n}\right) \log \left(\frac{\theta}{1-\theta}\right) \leq-n[H(X)+\log (1-\theta)-\epsilon]
$$

We know that

$$
\left\{\begin{array}{l}
\log \left(\frac{\theta}{1-\theta}\right)>0: \quad \theta>1 / 2 \\
\log \left(\frac{\theta}{1-\theta}\right)<0: \quad \theta<1 / 2
\end{array}\right.
$$

so for $\theta>1 / 2$ we have

$$
\frac{-n[H(\theta)+\log (1-\theta)+\epsilon]}{\log \left(\frac{\theta}{1-\theta}\right)} \leq L\left(x^{n}\right) \leq \frac{-n[H(\theta)+\log (1-\theta)-\epsilon]}{\log \left(\frac{\theta}{1-\theta}\right)},
$$

where $H(\theta)=-\theta \log (\theta)-(1-\theta) \log (1-\theta)$. Then we have

$$
n \cdot \theta-n \cdot \frac{\epsilon}{\log \left(\frac{\theta}{1-\theta}\right)} \leq L\left(x^{n}\right) \leq n \cdot \theta+n \cdot \frac{\epsilon}{\log \left(\frac{\theta}{1-\theta}\right)} .
$$

So by choosing $p=\theta$ and $\alpha=\frac{\epsilon}{\log \left(\frac{\theta}{1-\theta}\right)}$ we have $C^{(n)}(\alpha, p)=A_{\epsilon}^{(n)}$.

Problem 2

Every set S_{i} is chosen uniformly at random from all 2^{m} possible subsets of the set $\{1, \ldots, m\}$. Then at step i we ask the question: is $X \in S_{i}$? Based on the answers to these questions we want to find the value of X.
(a) Let us assume that $X=1$. Then we can write the event that the question S_{i} at i th step has the same answer for object 1 and 2 as follows

$$
\text { same answer at } i \text { th step }=[\overbrace{1 \in S_{i}, 2 \in S_{i}}^{\text {event } A_{i}} \cup[\overbrace{1 \notin S_{i}, 2 \notin S_{i}}^{\text {event } B_{i}}],
$$

because $A_{i} \cap B_{i}=\emptyset$. So for the probabilities we have
$\mathbb{P}[$ same answer at i th step $]=\mathbb{P}\left[1 \in S_{i}, 2 \in S_{i}\right]+\mathbb{P}\left[1 \notin S_{i}, 2 \notin S_{i}\right]=\mathbb{P}\left[A_{i}\right]+\mathbb{P}\left[B_{i}\right]$
Now we can use the chain rule to write

$$
\mathbb{P}\left[1 \in S_{i}, 2 \in S_{i}\right]=\mathbb{P}\left[2 \in S_{i} \mid 1 \in S_{i}\right] \mathbb{P}\left[1 \in S_{i}\right]
$$

Then it can be easily observed that

$$
\mathbb{P}\left[1 \in S_{i}\right]=\frac{2^{m-1}}{2^{m}}=1 / 2
$$

and

$$
\mathbb{P}\left[2 \in S_{i} \mid 1 \in S_{i}\right]=\frac{2^{m-2}}{2^{m-1}}=1 / 2
$$

so

$$
\mathbb{P}\left[A_{i}\right]=\mathbb{P}\left[1 \in S_{i}, 2 \in S_{i}\right]=\frac{1}{4}
$$

Using a similar argument we can show that

$$
\mathbb{P}\left[B_{i}\right]=\mathbb{P}\left[1 \notin S_{i}, 2 \notin S_{i}\right]=\frac{1}{4}
$$

So we have

$$
\mathbb{P}[\text { same answer with object } 2 \text { after } k \text { step }]=\prod_{i=1}^{k} \mathbb{P}\left[A_{i} \cup B_{i}\right]=\prod_{i=1}^{k} \mathbb{P}\left[A_{i}\right]+\mathbb{P}\left[B_{i}\right]=1 / 2^{k} \text {. }
$$

(b) We can use the argument of part (a) to write

$$
\mathbb{P}[\text { same answer with object } i \text { after } k \text { step }]=1 / 2^{k},
$$

so the expected number of objects in the set $\{2, \ldots, m\}$ that have the same answers to the k questions as does the correct object 1 is

$$
\text { average number of wrong objects }=\frac{m-1}{2^{k}}=\frac{2^{n}-1}{2^{k}}=2^{n-k}-2^{-k} \text {. }
$$

(c) Choosing $k=n+\sqrt{n}$ we have

$$
\text { average number of wrong objects }=2^{n-n-\sqrt{n}}-2^{-n-\sqrt{n}}=2^{-\sqrt{n}}-2^{-n-\sqrt{n}} \text {. }
$$

(d) Let E be the number of wrong objects after asking k questions. This is a random variable that in part (b) and (c) we calculated its expected value. For $k=n+\sqrt{n}$ we found that $\mathbb{E}[E]=2^{-\sqrt{n}}-2^{-n-\sqrt{n}}$. Now we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}[E] \rightarrow 0
$$

But we want to show that the probability of wrong answers goes to zero as $n \rightarrow \infty$. To this end, we use the Markov's inequality as following

$$
\mathbb{P}[E \geq 1]=\mathbb{P}[E \geq \underbrace{\frac{1}{2^{-\sqrt{n}}-2^{-n+\sqrt{n}}}}_{t} \underbrace{\left(2^{-\sqrt{n}}-2^{-n-\sqrt{n}}\right)}_{\mu}] \stackrel{(\mathrm{i})}{\leq} 2^{-\sqrt{n}}-2^{-n-\sqrt{n}}
$$

where (i) follows from Markov's inequality. So for the probability of having wrong answer we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}[E \geq 1] \longrightarrow 0
$$

Because the random variable E takes its value from $\{0,1,2, \ldots\}$ we conclude that $E=0$ with probability approaching 1 as $n \rightarrow \infty$.

Problem 3

\mathcal{P} is a given set of participants and \mathcal{A} is a collection of subsets of \mathcal{P}.
(a) We know that $A, B \subset \mathcal{P}, B \notin \mathcal{A}$ and $A \cup B \in \mathcal{A}$. Using chain rule we can write

$$
H\left(X_{A}, S \mid X_{B}\right)=H\left(X_{A} \mid X_{B}\right)+\underbrace{H\left(S \mid X_{A}, X_{B}\right)}_{0},
$$

so we have $H\left(X_{A} \mid X_{B}\right)=H\left(X_{A}, S \mid X_{B}\right)$. Again applying the chain rule we obtain

$$
H\left(X_{A} \mid X_{B}\right)=H\left(X_{A}, S \mid X_{B}\right)=\underbrace{H\left(S \mid X_{B}\right)}_{H(S)}+H\left(X_{A} \mid X_{B}, S\right)
$$

and we are done.
(b) In this part we have $B \in \mathcal{A}$. Using the chain rule we can write

$$
\begin{aligned}
H\left(X_{A} \mid X_{B}\right) & =H\left(X_{A}, S \mid X_{B}\right)-H\left(S \mid X_{A}, X_{B}\right) \\
& =H\left(X_{A} \mid X_{B}, S\right)+\underbrace{H\left(S \mid X_{B}\right)}_{0}-\underbrace{H\left(S \mid X_{A}, X_{B}\right)}_{0} .
\end{aligned}
$$

The last term is zero because we have $H\left(S \mid X_{A}, X_{B}\right) \leq H\left(S \mid X_{B}\right)=0$, since conditioning reduces the entropy.
(c) Here we assume that $A, B, C \subset \mathcal{P}$ where $A \cup C \in \mathcal{A}, B \cup C \in \mathcal{A}$, and $C \notin \mathcal{A}$. Then we can write

so we have $I\left(X_{A} ; X_{B} \mid X_{C}\right) \geq H(S)$.

Problem 4

Two random variables X and X^{\prime} are i.i.d. with entropy $H(X)$.
(a) We want to show that $\mathbb{P}\left[X=X^{\prime}\right] \geq 2^{-H(X)}$. Suppose that $X \sim P(x)$ and let us write

$$
\begin{aligned}
2^{-H(X)} & =2^{\mathbb{E}[\log P(X)]} \\
& \stackrel{(\mathrm{i})}{\leq \mathbb{E}}\left[2^{\log P(X)}\right] \\
& =\sum_{x} P(x) 2^{\log P(x)} \\
& =\sum_{x} P(x)^{2} \\
& =\mathbb{P}\left[X=X^{\prime}\right]
\end{aligned}
$$

where (i) comes from the Jensen's inequality applying on the function $f(y)=2^{y}$. Because the function f is convex we have $\mathbb{E} f(Y) \geq f(\mathbb{E} Y)$. So defining a new random variable $Y \triangleq \log P(X)$ we have

$$
2^{\mathbb{E} \log P(X)} \leq \mathbb{E} 2^{Y} \overbrace{\log P(X)}^{Y},
$$

which results in (i).
(b) This part is also very similar to the previous part. Let us write

$$
\begin{aligned}
2^{-H(P)-D(P \| Q)} & =2^{\sum P(x) \log P(x)+\sum P(x) \log \frac{Q(x)}{P(x)}}=2^{\sum P(x) \log Q(x)} \\
& =2^{\mathbb{E}_{p}} \overbrace{\log Q(x)}^{r} \leq \mathbb{E}_{p} 2^{\log Q(x)}=\sum P(x) 2^{\log Q(x)} \\
& =\sum P(x) Q(x) \\
& =\mathbb{P}\left[X=X^{\prime}\right] .
\end{aligned}
$$

The same method applies for the other one.

Problem 5

(a) Suppose that we have two stochastic processes X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} such that $Y_{i}=$ $\Phi\left(X_{i}\right)$ for $i=1,2, \ldots$, where $\Phi(\cdot)$ is some deterministic function. Then we can write

$$
\left(Y_{1}, \ldots, Y_{n}\right)=\left(\Phi\left(X_{1}\right), \ldots, \Phi\left(X_{n}\right)\right)=F\left(X_{1}, \ldots, X_{n}\right),
$$

or

$$
\left(Y_{1}^{n}\right)=F\left(X_{1}^{n}\right),
$$

for some deterministic multivariate function $F(\cdot)$. Now using the chain rule we have

$$
H\left(X_{1}^{n}, Y_{1}^{n}\right)=\left\{\begin{array}{l}
H\left(X_{1}^{n}\right)+\overbrace{H\left(Y_{1}^{n} \mid X_{1}^{n}\right)}^{=0}, \\
H\left(Y_{1}^{n}\right)+\overbrace{H\left(X_{1}^{n} \mid Y_{1}^{n}\right)}^{\geq 0}
\end{array}\right.
$$

so we can conclude that $H\left(X_{1}^{n}\right) \geq H\left(Y_{1}^{n}\right)$. Then we take the limit as follows

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}^{n}\right) \geq \lim _{n \rightarrow \infty} \frac{1}{n} H\left(Y_{1}^{n}\right)
$$

which results in

$$
H(\mathcal{Y}) \leq H(\mathcal{X})
$$

(b) Refer to the proof of part (c).
(c) $Z_{i}=\Psi\left(X_{i}, \ldots, X_{i+l}\right)$ for $i=1,2, \ldots$, and $i \leq l \leq n$ where l is a fixed number. Then we can write

$$
\left(Z_{1}, \ldots, Z_{n-l}\right)=\left[\Psi\left(X_{1}, \ldots, X_{1+l}\right), \ldots, \Psi\left(X_{n-l}, \ldots, X_{n}\right)\right]=F\left(X_{1}, \ldots, X_{n}\right),
$$

where $F(\cdot)$ is a deterministic multivariate function. Using the same argument given in part (a) we have

$$
H\left(Z_{1}^{n-l}\right) \leq H\left(X_{1}^{n}\right)
$$

Multiplying both side by $1 / n$ and taking the limit we obtain

$$
\lim _{n \rightarrow \infty} \frac{n-l}{n} \frac{1}{n-l} H\left(Z_{1}^{n-l}\right) \leq \lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}^{n}\right),
$$

or we can write

$$
\lim _{n \rightarrow \infty} \frac{1}{n-l} H\left(Z_{1}^{n-l}\right) \leq \lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}^{n}\right),
$$

because for fixed values of l we have $\lim _{n \rightarrow \infty} \frac{n-l}{n}=1$. Then we can conclude that

$$
H(\mathcal{Z}) \leq H(\mathcal{Y})
$$

(d) We have a second order Markov process over alphabet $\{0.1\}$ which realized as follows

$$
X_{n}= \begin{cases}\text { Bernoulli (0.5) } & \text { if } \quad X_{n-1}=X_{n-2} \\ \text { Bernoulli (0.9) } & \text { if } \quad X_{n-1} \neq X_{n-2}\end{cases}
$$

Let us define the Markov process $Z_{n}=\left(X_{n}, X_{n+1}\right)$. Obviously Z_{n} is a first order Markov process or a Markov chain (it is a process that the current state only depends on the last state). From the definition of process Z_{n} we can write

$$
H\left(Z_{1}, \ldots, Z_{n}\right)=H\left(X_{1}, \ldots, X_{n+1}\right) .
$$

Taking the limit we can write

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z_{1}, \ldots, Z_{n}\right)=\lim _{n \rightarrow \infty} \frac{n+1}{n} \frac{1}{n+1} H\left(X_{1}, \ldots, X_{n+1}\right),
$$

so we have

$$
H(\mathcal{Z})=H(\mathcal{X})
$$

To find the entropy rate of process X_{n} we can find the entropy rate of process Z_{n} that is a first order Markov chain with the states: $00,01,10,11$. From the definition of the process X_{n} we can derive the transition matrix of the Markov chain Z_{n} which is as follows

$$
P=\begin{gathered}
\\
00 \\
01 \\
10 \\
11
\end{gathered}\left[\begin{array}{cccc}
00 & 01 & 10 & 11 \\
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.1 & 0.9 \\
0.1 & 0.9 & 0 & 0 \\
0 & 0 & 0.5 & 0.5
\end{array}\right],
$$

which is equivalent to the following transition graph

To find the entropy rate of the Markov chain Z_{n} firstly we have to find it stationary distribution μ which is the solution of the following system of equations

$$
\mu=\mu P .
$$

Solving the above system of equations we obtain

$$
\mu=\left[\begin{array}{cccc}
00 & 01 & 10 & 11 \\
0.087 & 0.4352 & 0.4352 & 0.7833]
\end{array} .\right.
$$

Then for the entropy rates we can write

$$
H(\mathcal{X})=H(\mathcal{Z})=H\left(Z_{2} \mid Z_{1}\right)=\sum_{i \in\{00,01,10,11\}} \mu_{i} \sum_{j \in\{00,01,10,11\}} P_{i j} \log P_{i j}
$$

