Homework Set #5Due 17 November 2009, 6 pm, in INR036

Problem 1 (There are almost no perfect codes)

Let \mathcal{C} be a linear binary *perfect code* consisting of binary sequences of length N. Assume that for the rate of code C we have $R_C > 0$ where $R_C \triangleq \frac{\log_2 |\vec{C}|}{N}$. In this problem we would like to show that useful perfect codes do not exist (here, "useful"

means having large block-length N, and rate close neither to 0 nor 1).

Let $\alpha \in (1/3, 1/2)$ be a parameter. In this problem we will show that there is no large perfect code that is αN -error-correcting.

Remember that a code is *perfect* αN -*error-correcting code* if the set of αN -spheres centered on the codewords of the code fill the Hamming space without overlapping.

Let us suppose that such a code has been found.

- (a) Knowing that the code is αN -error-correcting code, what can we say about its minimum distance?
- (b) Let us focus just on three codewords of this code. (Remember that the code has rate $R_{\mathcal{C}} > 0$, so it should have $2^{NR_{\mathcal{C}}}$ codewords which is a large number if N grows.) Without loss of generality, we choose one of the codewords to be the all-zero codeword and define the other two to have overlaps with it as shown in the following

$c_0 = 000000$	00000000000000	000000	0000
$c_1 = 111111$	111111111111111	000000	0000
$c_2 = \underbrace{000000}$	1111111111111	<u>111111</u>	$\underbrace{0000}$
uN	vN	wN	xN

where u + v + w + x = 1.

Use the distance property of code \mathcal{C} to show that it cannot even have three codewords c_0 , c_1 , and c_2 (let alone 2^{NR_c} codewords).

Problem 2 (Reed-Solomon Codes)

- (a) Show that if H is the parity check matrix of a code of length n, then the code has minimum distance at least d if every d-1 columns of H are linearly independent.
- (b) Consider a linear code defined over a finite field \mathbb{F} with the parity check matrix

$$H = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-k-1} & \alpha_2^{n-k-1} & \cdots & \alpha_n^{n-k-1} \end{bmatrix}_{(n-k) \times n}$$

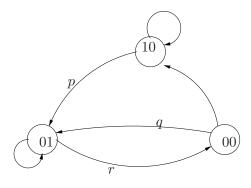


Figure 1: Problem 3

where $k \leq n \leq |\mathbb{F}|$ and $\alpha_i \in \mathbb{F}$ such that $\alpha_i \neq \alpha_j$ if $i \neq j$. A matrix with this form called a *Vandermonde matrix*. It can be shown that the parity check matrix of a Reed-Solomon code is in fact a Vandermonde matrix.

Show that every n - k columns of H are linearly independent. Hint: For a square $n \times n$ Vandermonde matrix

$$V = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-1} \end{bmatrix}_{n \times n}$$

we have

$$\det(V) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i).$$

(c) From part (b) and the Singelton bound conclude that the Reed-Solomon codes are maximum distance seperable codes.

Problem 3

We have a source that produces a sequence of bits with the following two properties:

- A "1" is always followed by a "0",
- No more than three "0"s come in a row.

Assume that this source can be modeled by a first order Markov chain as shown in Fig 1

- (a) Choose p, q, and r such that the entropy rate of this Markov process is maximized.
- (b) Construct a 2-state FSM that receives the source outputs as its input and maximally compresses it.
- (c) Is this finite state machine uniquely decodable?
- (d) Is this finite state machine information lossless?

Problem 4 (LEMPEL-ZIV ALGORITHM IS ASYMPTOTICALLY OPTIMAL)

Consider a first order Markov process X_0, X_1, \cdots with the stationary distribution $[p_0, p_1, \cdots, p_m]$, where p_i denotes the stationary distribution of being in state $i \in \{0, \cdots, m\}$. Assume that the Markov process is in state 0. We define T_0 as the number of steps it takes for the process to return to state 0 again.

- (a) Calculate $\mathbb{E}T_0$ for a 2-state Markov process in terms of p_0 and p_1 .
- (b) Define s_i as the expected number of visits to state *i* before returning from 0 to state 0. i.e.,

$$s_i = \mathbb{E}_0[\sum_{n \ge 1} 1_{\{X_n = i\}} 1_{\{n \le T_0\}}],$$

where the index 0 of \mathbb{E}_0 shows the fact that we are considering the chain from the time it has left state 0. Show that

$$p_i = \frac{s_i}{\sum_j s_j}$$

and conclude that $p_0 = \frac{1}{\mathbb{E}(T_0)}$.

(c) Take the Markov process X_0, X_1, \cdots and form the following extended Markov process from it: $X_0^{n-1}, X_1^n, X_2^{n+1}, \cdots$. How many steps does it take on average for this extended process to return for the first time to the state $00 \cdots 0$ (after it left it).

In the LZ77 algorithm with infinite-length sliding window, in order to encode the block $x_0x_1 \cdots x_{n-1}$, one finds and communicates the last time the *n* symbols have been seen. Call it $R_n(x_0x_1 \cdots x_{n-1})$. If we denote the length of description of $R_n(X_0X_1 \cdots X_{n-1})$ by $l(X_0X_1 \cdots X_{n-1})$, it can easily be shown that

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}l(X_0 X_1 \cdots, X_{n-1}) = H(\mathcal{X})$$

and this is the basic idea of the proof of optimality of LZ77 algorithm. Refer to Homework 5 of last year's homeworks for details of proof.