Problem 1 (Simple optimum compression of a markov source)

Consider the three-state Markov process U_{1}, U_{2}, \cdots having transition matrix given below.

	U_{n}	S_{1}	S_{2}	S_{3}
U_{n-1}				
S_{1}	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	
S_{2}	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	
S_{3}		0	$\frac{1}{2}$	$\frac{1}{2}$

Thus the probability that S_{1} follows S_{3} is equal to zero. Design three codes C_{1}, C_{2}, C_{3} (one for each state 1,2 , and 3), each code mapping elements of the set of S_{i} 's into sequences of 0 's and 1's, such that this Markov process can be sent with maximal compression by the following scheme:
(a) Note the present symbol $X_{n}=i$.
(b) Select code C_{i}.
(c) Note the next symbol $X_{n+1}=j$ and send the codeword in C_{i} corresponding to j.
(d) Repeat for the next symbol. What is the average message length of the next symbol conditioned on the previous state $X_{n}=i$ using this coding scheme? What is the unconditional average number of bits per source symbol? Relate this to the entropy rate $H(\mathcal{U})$ of the Markov chain.

Problem 2 (Describing Types)

Define the type $P_{\mathbf{x}}$ (or empirical probability distribution) of a sequence x_{1}, \cdots, x_{n} be the relative proportion of occurences of each symbol \mathcal{X}; i.e., $P_{\mathbf{x}}(a)=N(a \mid \mathbf{x}) / n$ for all $a \in \mathcal{X}$, where $N(a \mid \mathbf{x})$ is the number of times the symbol a ocurs in the sequence $\mathbf{x} \in \mathcal{X}^{n}$.
(a) Show that if $X_{1}, \cdots X_{n}$ are drawn i.i.d. according to $Q(x)$, the probability of \mathbf{x} depends only on its type and is given by

$$
Q^{n}(\mathbf{x})=2^{-n\left(H\left(P_{\mathbf{x}}\right)+D\left(P_{\mathbf{x}} \| Q\right)\right)}
$$

Hint: Start by showing the following:

$$
\begin{aligned}
Q^{n}(\mathbf{x}) & =\prod_{i=1}^{n} Q\left(x_{i}\right) \\
& =\prod_{a \in \mathcal{X}} Q(a)^{N(a \mid \mathbf{x})} \\
& =\prod_{a \in \mathcal{X}} Q(a)^{n P_{\mathbf{x}}(a)}
\end{aligned}
$$

Define the type class $T(P)$ as the set of sequences of length n and type P :

$$
T(P)=\left\{\mathbf{x} \in \mathcal{X}^{n}: P_{\mathbf{x}}=P\right\}
$$

For example, if we consider binary alphabet, the type is defined by the number of 1 's in the sequence and the size of the type class is therefore $\binom{n}{k}$.
(b) It can be shown that

$$
|T(P)| \doteq 2^{n H(P)}
$$

Prove this for binary alphabet by proving

$$
\frac{1}{n+1} 2^{n H\left(\frac{k}{n}\right)} \leq\binom{ n}{k} \leq 2^{n H\left(\frac{k}{n}\right)}
$$

Hint: To derive the upper bound start by proving

$$
\begin{aligned}
1 & \geq\binom{ n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k} \\
& =\binom{n}{k} 2^{n\left(\frac{k}{n} \log \frac{k}{n}+\frac{n-k}{n} \log \frac{n-k}{n}\right)}
\end{aligned}
$$

To derive the lower bound, start by proving the following chain of inequalities

$$
\begin{aligned}
1 & =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \leq(n+1) \max _{k}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =(n+1) \max _{k}\binom{n}{n p} p^{n p}(1-p)^{n-n p}
\end{aligned}
$$

(c) Use (a) and (b) to show that

$$
Q^{n}(T(P)) \doteq 2^{-n D(P \| Q)}
$$

Problem 3 (Arithmetic Coding)

Let X_{i} be binary stationary Markov with transition matrix $\left(\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$.
(a) Find $F(01110)=\operatorname{Pr}\left\{. X_{1} X_{2} \cdots X_{5}<.01110\right\}$.
(b) How many bits.$F_{1} F_{2} \cdots$ can be known for sure if it is not known how 01110 continues?

Problem 4 (Lempel-Ziv-I)

Give the parsing and encoding of 00000011010100000110101 using the tree-structured LempelZiv algorithm

Problem 5 (Lempel-Ziv-II)

In the siliding window variant of Lempel-Ziv, a short match can be represented by either (F, P, L) or (F, C), where F denotes the flag, P the pointer, L the lengh of the match, and C the uncompressed charater. Assume that the window length is W, and assume that the maximum match length is M.
(a) How many bits are required to represent P ? to represent L ?
(b) Assume that C, the representation of a character, is 8 bits long. As a function of W and M, what is the shortest match that one should represent as a match rather than as uncompressed characters?

