Problem 1 (Convergence in probability)

Let $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ be independent, identically distributed random variables drawn from $\mathcal{X}=\{0,1,2,3,4,5\}$ according to the probability distribution $\{8 / 23,6 / 23,4 / 23,2 / 23,2 / 23,1 / 23\}$ which is ordered according to \mathcal{X} above.
Define $Y_{n}=\frac{1}{n} \log p\left(X_{1}, X_{2}, \cdots, X_{n}\right)$, and $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$.
(a) Does Y_{n} converge in probability? If so, calculate the value Y it converges to.
(b) Does Z_{n} converge in probability? If so, calculate the value Z it converges to.
(c) Compare Z and $(\mathbb{E}[X])^{2}$ and explain why that relationship holds for an arbitrary choice of \mathcal{X} and $p(x)$.

Problem 2 (Initial conditions of a Markov chain)

Suppose $\left\{X_{i}\right\}$ is a Markov chain, i.e., $X_{0} \leftrightarrow X_{1} \leftrightarrow \cdots \leftrightarrow X_{n}$. In other words

$$
p\left(x_{0}, \ldots, x_{n}\right)=p\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
$$

Show that $H\left(X_{0} \mid X_{n}\right) \geq H\left(X_{0} \mid X_{n-1}\right)$. In other words, the initial conditions of the Markov chain becomes more and more difficult to recover as time (or process $\left\{X_{i}\right\}$) unfolds.

Problem 3 (Prediction of future block from past block)

For a stationary stochastic process, show that

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n} I\left(X_{1}, X_{2} \ldots, X_{n} ; X_{n+1}, \ldots, X_{2 n}\right)=0
$$

This can be interpreted that asymptotically, the dependence between adjacent n-length blocks of a stationary process grows sub-linearly in n.

Problem 4 (Alternative view of AEP)

Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables drawn according to the probability mass function $p(x), x \in\{1, \ldots, m\}$. Thus we have $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)$. We know that from the law of large numbers that $-\frac{1}{n} \log p\left(x_{1}, \ldots, x_{n}\right) \rightarrow H(X)$ in probability. Let $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} q\left(x_{i}\right)$, where q is another probability mass function on $\{1, \ldots, m\}$.
(a) Evaluate $\lim _{n \rightarrow \infty}-\frac{1}{n} \log q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where X_{1}, X_{2}, \ldots are i.i.d. according to $p(x)$.
(b) Now evaluate the limit of the log-likelihood ratio $\lim _{n \rightarrow \infty}-\frac{1}{n} \log \frac{q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{p\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$, when X_{1}, X_{2}, \ldots are i.i.d. according to $p(x)$. Thus we have another interpretation of a familiar informationtheoretic quantity in terms of the odds of favoring q when the true distribution is p.

