Homework Set \#2

Due 8 October 2009, 6 pm, in INR036

Problem 1 (Secrecy Scenario)

Let X be the plain text, Y be the cipher text, and Z be the key in a secret key cryptosystem. Since X can be recovered from Y and Z, we have $H(X \mid Y, Z)=0$. Show that

$$
I(X ; Y) \geq H(X)-H(Z)
$$

Problem 2 (Conditional Mutual Information)

Define $I\left(X_{1} ; X_{2} ; X_{3}\right)=I\left(X_{1} ; X_{2}\right)-I\left(X_{1} ; X_{2} \mid X_{3}\right)$.
(a) Prove or disprove $I\left(X_{1} ; X_{2} ; X_{3}\right) \geq 0$.
(b) Show that

$$
-\min \left\{I\left(X_{1} ; X_{2} \mid X_{3}\right), I\left(X_{1} ; X_{3} \mid X_{2}\right), I\left(X_{2} ; X_{3} \mid X_{1}\right)\right\} \leq I\left(X_{1} ; X_{2} ; X_{3}\right)
$$

(c) Show that

$$
I\left(X_{1} ; X_{2} ; X_{3}\right) \leq \min \left\{I\left(X_{1} ; X_{2}\right), I\left(X_{1} ; X_{3}\right), I\left(X_{2} ; X_{3}\right)\right\}
$$

Problem 3

Let the random variable X be a message we want to send to a receiver (receiver 1) and a good approximation \hat{X} is required at that receiver. Consider another receiver, named receiver 2 , which has access to a random variable Z, where Z and X are from a joint distribution $p(x, z)$. Receiver 2 is interested in another approximation of X, denoted by \breve{X}. Imagine the encoding strategy is as follows. The encoder describes X, by $S=f_{1}(X)$, where S is such that we can find \hat{X} as a function of $S\left(\hat{X}=f_{2}(S)\right)$. Imagine that T is constructed from $S\left(T=f_{3}(S)\right)$, such that \breve{X} is then found as a function of Z and $T\left(\breve{X}=f_{4}(T, Z)\right)$. This system is shown in Fig. 2. Show that

$$
I(X ; \breve{X}) \leq I(X ; \hat{X})+I(X ; S Z \mid \hat{X})
$$

Problem 4

Let $P=\left(p_{1}, \cdots, p_{i}, \cdots, p_{j}, \cdots, p_{n}\right)$ be a probability distribution.
(a) Show that the distribution $\left(p_{1}, \cdots, \frac{p_{i}+p_{j}}{2}, \cdots, \frac{p_{i}+p_{j}}{2}, \cdots, p_{n}\right)$ has a larger entropy than the original distribution.
(b) In general, let $A=\left[a_{i, j}\right]$ be a $n \times n$ stochastic matrix such that $0 \leq a_{i, j} \leq 1, \sum_{i=1}^{n} a_{i j}=1$ and $\sum_{j=1}^{n} a_{i j}=1$ for all $1 \leq i, j \leq n$. Prove that $P A$ has a larger entropy than P. Try to do this using Jensen's inequality.

Figure 1: Transmission system in Problem 5.

Problem 5 (Sufficient Statistics)

Suppose that we have a family of probability mass functions $\left\{f_{\theta}(x)\right\}$ indexed by θ, and let X be a sample from a distribution in this family. Let $T(X)$ be any statistic (e.g. sample mean or sample variance is a possible statistic.)
(a) Show that

$$
I(\theta ; T(X)) \leq I(\theta ; X)
$$

for any distribution on θ.
A statistic $T(X)$ is called sufficient if equality holds for any distribution on θ, or equivalently if $\theta \rightarrow T(X) \rightarrow X$ forms a Markov chain for all distributions on θ.
(b) Let $f_{\theta}=\operatorname{Uniform}(\theta, \theta+1)$. Show that a sufficient statistic for θ is

$$
T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right) .
$$

Hint: To this end, you should show that

$$
\operatorname{Pr}\left\{\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid m, M\right\},
$$

does not depend on θ for a fixed n where

$$
m=\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

and

$$
M=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} .
$$

