Homework Set #2 Due 8 October 2009, 6 pm, in INR036

Problem 1 (Secrecy Scenario)

Let X be the plain text, Y be the cipher text, and Z be the key in a secret key cryptosystem. Since X can be recovered from Y and Z, we have H(X|Y,Z) = 0. Show that

 $I(X;Y) \ge H(X) - H(Z).$

Problem 2 (Conditional Mutual Information)

Define $I(X_1; X_2; X_3) = I(X_1; X_2) - I(X_1; X_2 | X_3).$

- (a) Prove or disprove $I(X_1; X_2; X_3) \ge 0$.
- (b) Show that

 $-\min\{I(X_1; X_2|X_3), I(X_1; X_3|X_2), I(X_2; X_3|X_1)\} \le I(X_1; X_2; X_3)$

(c) Show that

 $I(X_1; X_2; X_3) \le \min \{ I(X_1; X_2), I(X_1; X_3), I(X_2; X_3) \}$

Problem 3

Let the random variable X be a message we want to send to a receiver (receiver 1) and a good approximation \hat{X} is required at that receiver. Consider another receiver, named receiver 2, which has access to a random variable Z, where Z and X are from a joint distribution p(x, z). Receiver 2 is interested in another approximation of X, denoted by \check{X} . Imagine the encoding strategy is as follows. The encoder describes X, by $S = f_1(X)$, where S is such that we can find \hat{X} as a function of S ($\hat{X} = f_2(S)$). Imagine that T is constructed from S ($T = f_3(S)$), such that \check{X} is then found as a function of Z and T ($\check{X} = f_4(T, Z)$). This system is shown in Fig. 2. Show that

$$I(X;X) \le I(X;X) + I(X;SZ|X).$$

Problem 4

Let $P = (p_1, \cdots, p_i, \cdots, p_j, \cdots, p_n)$ be a probability distribution.

(a) Show that the distribution $(p_1, \dots, \frac{p_i+p_j}{2}, \dots, \frac{p_i+p_j}{2}, \dots, p_n)$ has a larger entropy than the original distribution.

(b) In general, let $A = [a_{i,j}]$ be a $n \times n$ stochastic matrix such that $0 \le a_{i,j} \le 1$, $\sum_{i=1}^{n} a_{ij} = 1$ and $\sum_{j=1}^{n} a_{ij} = 1$ for all $1 \le i, j \le n$. Prove that *PA* has a larger entropy than *P*. Try to do this using Jensen's inequality.

Figure 1: Transmission system in Problem 5.

Problem 5 (Sufficient Statistics)

Suppose that we have a family of probability mass functions $\{f_{\theta}(x)\}$ indexed by θ , and let X be a sample from a distribution in this family. Let T(X) be any statistic (e.g. sample mean or sample variance is a possible statistic.)

(a) Show that

$$I(\theta; T(X)) \le I(\theta; X)$$

for any distribution on θ .

A statistic T(X) is called sufficient if equality holds for any distribution on θ , or equivalently if $\theta \to T(X) \to X$ forms a Markov chain for all distributions on θ .

(b) Let $f_{\theta} = \text{Uniform}(\theta, \theta + 1)$. Show that a sufficient statistic for θ is

$$T(X_1, X_2, \dots, X_n) = (\max\{X_1, X_2, \dots, X_n\}, \min\{X_1, X_2, \dots, X_n\}).$$

Hint: To this end, you should show that

 $\Pr\{(X_1, X_2, \dots, X_n) = (x_1, x_2, \dots, x_n) | m, M\},\$

does not depend on θ for a fixed n where

$$m = \min\{x_1, x_2, \dots, x_n\},\$$

and

$$M = \max\{x_1, x_2, \dots, x_n\}.$$