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Problem 1 (Parallel Channels and Water-filling)

Consider a pair of parallel Gaussian channels:

(

Y1

Y2

)

=

(

X1

X2

)

+

(

Z1

Z2

)

, (1)

where
(

Z1

Z2

)

∼ N
(

0,

[

σ2
1 0
0 σ2

2

])

, (2)

and there is a power constraint E(X2
1 + X2

2 ) ≤ 2P . Assume that σ1 > σ2. At what power does
the channel stop behaving like a single channel with noise power σ2

2 , and begins behaving like
a pair of channels?

Problem 2 (Vector Gaussian channel)

Consider the vector Gaussian noise channel Y = X + Z, where X = (X1,X2,X3), Z =
(Z1, Z2, Z3), and Y = (Y1, Y2, Y3), E‖X‖2 ≤ P , and

Z ∼ N



0,





1 0 1
0 1 1
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 . (3)

Find the capacity. The answer might be surprising.

Problem 3 (Source-channel coding)

Consider the Gaussian channel shown in Fig. 1 with

Y = X + Z,

where Z ∼ N (0, N) is a Gaussian noise independent of X, and X ∈ R and Y ∈ R are the
input and the output of the channel, respectively. Let ρ : X → R

+ be the cost function for the
channel input, and define the channel capacity for a given cost P as

C(P ) = max
p(x):E[ρ(X)]≤P

I(X;Y ).

The source in Fig. 2 produces Gaussian symbols S ∼ N (0, Q) with zero mean and variance
Q. The encoder maps a sequence of length k of the source symbols to a sequence of length m of
the channel input Xm, using the encoding function Xm = f(Sk) and Xm is fed to the channel.
The decoder uses the channel output Y m to estimate the source sequence Ŝk = g(Y m). The
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Figure 1: The Gaussian channel
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Figure 2: Transmission with distortion

quality of this reconstruction is measured by a distortion function d(·, ·) : S × Ŝ → R
+. The

rate-distortion function for a given distortion D is defined as

R(D) = min
p(ŝ|s):E[d(s,ŝ)]≤D

I(S; Ŝ).

(a) Prove that R(D) ≤ C(P ).

(b) Evaluate the functions R(D) and C(P ) for d(s, ŝ) = (s − ŝ)2 and ρ(x) = x2. Use the
inequality R(D) ≤ C(P ) to obtain a bound on D in terms of P , Q, and N .

(c) Suppose we use m = k = 1 and take the source symbol Sℓ and scale to obtain the channel
input which satisfies the power constraint, i.e., Xℓ = αSℓ, such that E[X2

ℓ ] = P . Find the
value of α.

Given Yℓ = αSℓ + Zℓ, the decoder finds Ŝℓ = βYℓ, such that E[(Sℓ − Ŝℓ)
2] is minimized.

Find the β, and show that E[(Sℓ − Ŝℓ)
2] ≤ D.

Hint: Compute E[(Sℓ− Ŝℓ)
2] in terms of P , Q, N , and β. Take the derivative with respect

to β.

The solution of part (b) shows that one can achieve optimal performance through uncoded
transmission. In class, we have proved a source-channel separation result which showed that it
is optimal to separately encode the source and do channel coding on it. In parts (c), and (d)
we show that even when separation holds, one can get very simple scheme if we combine source
and channel coding, if the conditions of the matching theorem are satisfied.

The matching theorem states that using encoding and decoding functions of block length 1
(m = k = 1) is optimal if and only if the following conditions hold.

(i) I(S; Ŝ) = I(X;Y ),

(ii) ρ(x) = aD(pY |X=x(y|x) ‖ pY (y))+ b, where a and b are constant, and D(· ‖ ·) denotes the
Kullback-Leibler divergence,

(iii) d(s, ŝ) = −c log p
S|Ŝ(s|ŝ) + d(s), where c is a constant and d(s) is an arbitrary function of

s (does not depend on ŝ).
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Using this theorem, we seek conditions to have optimal code block length 1 for this problem.

(d) Let ρ(x) = x2 be the cost function and x = f(s) = α′s be the encoding function. Show
that condition (ii) is satisfied.

(e) Let the distortion function be d(s, ŝ) = (s − ŝ)2 and the decoding function be of the form
ŝ = g(y) = β′y. For given α′ =

√

P/Q find the value of β′ such that condition (iii) is
satisfied. Compare β′ to β you have found in part (c). How can you explain it?
Hint: You can use the facts that Ŝ ∼ N (0, β′2(P + N)), i.e.,

p
Ŝ
(ŝ) =

1
√

2π(P + N)β′
exp

[

− ŝ2

2β′2(P + N)

]

,

and Ŝ|s ∼ N (α′β′s, β′2N), i.e,

p
Ŝ|S(ŝ|s) =

1√
2πNβ′

exp

[

−(ŝ − α′β′s)2

2β′2N

]

.

Use the Bayes’ rule

p
S|Ŝ(s|ŝ) =

p
Ŝ|S(ŝ|s)pS(s)

p
Ŝ
(ŝ)

.

to find p
S|Ŝ(s|ŝ).

Problem 4 (Lossy Compression with Side-Information)

Suppose we want to encode an i.i.d. Gaussian source {Xi} for a squared error distortion
criterion. That is, for a given distortion constraint D and block length n, we want to find
X̂n = f(Xn) such that

E

[

1

n

n
∑

i=1

|Xi − X̂i|2
]

≤ D. (4)

Now, suppose that {Yi} is also an i.i.d. Gaussian sequence with
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]

=
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ρ 1

]

.

Assume Y n is given to both encoder and decoder as shown in Fig. 3 and we want to compress
Xn given knowledge of Y n at both the encoder and decoder.

Xn DecEnc X̂n

Y n Y n

Figure 3: Lossy Gaussian data compression with side information.
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(a) One can show that the minimum required rate of compression in order to satisfy the dis-
tortion constraint in (4) is given by

R(D) = min
p(x̂|x,y):E[ 1

n

Pn
i=1

|Xi−X̂i|2]≤D.

I(X; X̂ |Y ).

Show that R(D) ≥ 1
2 log

σ2

x|y

D
where σ2

x|y = 1 − ρ2.

(b) Demonstrate a conditional density p(x̂|x, y) that achieves this lower bound.
Hint: In class we studied the encoding scheme and the optimal density for the case
when there was no side-information. There, we derived the optimal p(x̂|x) along with an
equivalent “test channel” summarizing this conditional distribution, as X = X̂ +Z where
all variables are Gaussian and Z and X̂ are independent. You can build on this scheme.

Problem 5 (Rate distortion for uniform source with hamming distortion)

Consider a source X uniformly distributed on the set {1, · · · ,m}. Find the rate distortion
function for this source with Hamming distortion; i.e.,

d(x, x̂) =

{

0 if x = x̂
1 if x 6= x̂

(5)
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