ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 18
Introduction to Communication Systems
Solutions to Homework 9
December 26, 2009
Problem 1. 1. Since $a \equiv a^{\prime} ;(\bmod m)$, it implies that $a-a^{\prime}=k m$ for some integer k.
On the other hand we have:

$$
a^{t}-a^{\prime t}=\left(a-a^{\prime}\right)\left(a^{t-1}+a^{t-2} a^{\prime}+\cdots+a^{\prime t-1}\right)=m k\left(a^{t-1}+a^{t-2} a^{\prime}+\cdots+a^{\prime t-1}\right)
$$

Therefore, $a^{t}-a^{\prime t}$ is divisible by m, which implies that $a^{t} \equiv a^{\prime t} ;(\bmod m)$.
2. The converse is not necessarily true. For example $(-1)^{2} \equiv(+1)^{2} ;(\bmod 5)$ but $(-1) \neq(+1)(\bmod 5)$.
Problem 2. We have

$$
a^{3}+3=a^{3}+27-24=a^{3}+3^{3}-24=(a+3)\left(a^{2}-3 a+9\right)-24
$$

So, if $a^{3}+3$ is devisible by $a+3,(a+3)\left(a^{2}-3 a+9\right)-24$ should be also divisible by $a+3$. Therefore 24 is devisible by $a+3$. But we know that the only factors of 24 are : $1,2,3,4,6,8,12,24$. This means that $a+3$ should be one of these numbers. Since a is assumed to be a positive integer number, the only possibilities for a are $a=1,3,5,9$, or 21 .
Problem 3. Since n is assumed to be an odd number, we can write $n=2 k+1$

1. We have:

$$
n^{2}-1=(n-1)(n+1)=(2 k+1-1)(2 k+1+1)=(2 k)(2 k+2)=4 k(k+1) .
$$

Notice that k and $k+1$ are two consecutive numbers. Therefore one of them is even and the other one is odd. In both cases, the product of them is an even number. So, $k(k+1)=2 m$. Therefore:

$$
n^{2}-1=4 k(k+1)=4(2 m)=8 m
$$

This shows that $n^{2}-1$ is a mutiple of 8 .
2. We will factor $n^{8}-1$ as:

$$
n^{8}-1=\left(n^{4}-1\right)\left(n^{4}+1\right)=\left(n^{2}-1\right)\left(n^{2}+1\right)\left(n^{4}+1\right) .
$$

From the first part of the question we know that $n^{2}-1$ is divisible by 8 . So, $n^{2}-1=$ 8 m . Also, we know that the other factors are even numbers, since n is an odd number. Therefore we have:

$$
n^{8}-1=\left(n^{2}-1\right)\left(n^{2}+1\right)\left(n^{4}+1\right)=8 m \times 2 l \times 2 p=32 m l p
$$

This shows that $n^{8}-1$ is divisible by 32 .
Problem 4. First we write the congruence equation as

$$
7 n \equiv-5 ;(\bmod 2009)
$$

Now, we need to find $7^{-1}(\bmod 2009)$. Using Euclid's algorithm, we can show that $7^{-1} \equiv$ 287; $(\bmod 2009)$. Now, if we multiply both sides of the equation with 287 we have:

$$
287 \times 7 n \equiv 287 \times(-5) ;(\bmod 2009)
$$

Therefore :

$$
n \equiv-1435 \equiv 574 ;(\bmod 2009)
$$

