Problem 1. - If $a \equiv a^{\prime}(\bmod m)$, show that for any integer $t, a^{t} \equiv a^{\prime t}(\bmod m)$.

- Is the converse true? (i.e if $a^{t} \equiv a^{\prime t}(\bmod m)$ for some $t \geq 2$, can we always conclude that $a \equiv a^{\prime}(\bmod m)$

Problem 2. For which positive integer numbers a, is $a^{3}+3$ divisible by $a+3$? (Hint: $3=27-24$)

Problem 3. Prove that if n is an odd integer number then:

- $n^{2}-1$ is divisible by 8
- $n^{8}-1$ is divisible by 32

Problem 4. Find all the integer numbers n such that $7 n+5 \equiv 0 ;(\bmod 2009)$.

